USB device stack, with KL25Z fixes for USB 3.0 hosts and sleep/resume interrupt handling

Dependents:   frdm_Slider_Keyboard idd_hw2_figlax_PanType idd_hw2_appachu_finger_chording idd_hw3_AngieWangAntonioDeLimaFernandesDanielLim_BladeSymphony ... more

Fork of USBDevice by mbed official

This is an overhauled version of the standard mbed USB device-side driver library, with bug fixes for KL25Z devices. It greatly improves reliability and stability of USB on the KL25Z, especially with devices using multiple endpoints concurrently.

I've had some nagging problems with the base mbed implementation for a long time, manifesting as occasional random disconnects that required rebooting the device. Recently (late 2015), I started implementing a USB device on the KL25Z that used multiple endpoints, and suddenly the nagging, occasional problems turned into frequent and predictable crashes. This forced me to delve into the USB stack and figure out what was really going on. Happily, the frequent crashes made it possible to track down and fix the problems. This new version is working very reliably in my testing - the random disconnects seem completely eradicated, even under very stressful conditions for the device.

Summary

  • Overall stability improvements
  • USB 3.0 host support
  • Stalled endpoint fixes
  • Sleep/resume notifications
  • Smaller memory footprint
  • General code cleanup

Update - 2/15/2016

My recent fixes introduced a new problem that made the initial connection fail most of the time on certain hosts. It's not clear if the common thread was a particular type of motherboard or USB chip set, or a specific version of Windows, or what, but several people ran into it. We tracked the problem down to the "stall" fixes in the earlier updates, which we now know weren't quite the right fixes after all. The latest update (2/15/2016) fixes this. It has new and improved "unstall" handling that so far works well with diverse hosts.

Race conditions and overall stability

The base mbed KL25Z implementation has a lot of problems with "race conditions" - timing problems that can happen when hardware interrupts occur at inopportune moments. The library shares a bunch of static variable data between interrupt handler context and regular application context. This isn't automatically a bad thing, but it does require careful coordination to make sure that the interrupt handler doesn't corrupt data that the other code was in the middle of updating when an interrupt occurs. The base mbed code, though, doesn't do any of the necessary coordination. This makes it kind of amazing that the base code worked at all for anyone, but I guess the interrupt rate is low enough in most applications that the glitch rate was below anyone's threshold to seriously investigate.

This overhaul adds the necessary coordination for the interrupt handlers to protect against these data corruptions. I think it's very solid now, and hopefully entirely free of the numerous race conditions in the old code. It's always hard to be certain that you've fixed every possible bug like this because they strike (effectively) at random, but I'm pretty confident: my test application was reliably able to trigger glitches in the base code in a matter of minutes, but the same application (with the overhauled library) now runs for days on end without dropping the connection.

Stalled endpoint fixes

USB has a standard way of handling communications errors called a "stall", which basically puts the connection into an error mode to let both sides know that they need to reset their internal states and sync up again. The original mbed version of the USB device library doesn't seem to have the necessary code to recover from this condition properly. The KL25Z hardware does some of the work, but it also seems to require the software to take some steps to "un-stall" the connection. (I keep saying "seems to" because the hardware reference material is very sketchy about all of this. Most of what I've figured out is from observing the device in action with a Windows host.) This new version adds code to do the necessary re-syncing and get the connection going again, automatically, and transparently to the user.

USB 3.0 Hosts

The original mbed code sometimes didn't work when connecting to hosts with USB 3.0 ports. This didn't affect every host, but it affected many of them. The common element seemed to be the Intel Haswell chip set on the host, but there may be other chip sets affected as well. In any case, the problem affected many PCs from the Windows 7 and 8 generation, as well as many Macs. It was possible to work around the problem by avoiding USB 3.0 ports - you could use a USB 2 port on the host, or plug a USB 2 hub between the host and device. But I wanted to just fix the problem and eliminate the need for such workarounds. This modified version of the library has such a fix, which so far has worked for everyone who's tried.

Sleep/resume notifications

This modified version also contains an innocuous change to the KL25Z USB HAL code to handle sleep and resume interrupts with calls to suspendStateChanged(). The original KL25Z code omitted these calls (and in fact didn't even enable the interrupts), but I think this was an unintentional oversight - the notifier function is part of the generic API, and other supported boards all implement it. I use this feature in my own application so that I can distinguish sleep mode from actual disconnects and handle the two conditions correctly.

Smaller memory footprint

The base mbed version of the code allocates twice as much memory for USB buffers as it really needed to. It looks like the original developers intended to implement the KL25Z USB hardware's built-in double-buffering mechanism, but they ultimately abandoned that effort. But they left in the double memory allocation. This version removes that and allocates only what's actually needed. The USB buffers aren't that big (128 bytes per endpoint), so this doesn't save a ton of memory, but even a little memory is pretty precious on this machine given that it only has 16K.

(I did look into adding the double-buffering support that the original developers abandoned, but after some experimentation I decided they were right to skip it. It just doesn't seem to mesh well with the design of the rest of the mbed USB code. I think it would take a major rewrite to make it work, and it doesn't seem worth the effort given that most applications don't need it - it would only benefit applications that are moving so much data through USB that they're pushing the limits of the CPU. And even for those, I think it would be a lot simpler to build a purely software-based buffer rotation mechanism.)

General code cleanup

The KL25Z HAL code in this version has greatly expanded commentary and a lot of general cleanup. Some of the hardware constants were given the wrong symbolic names (e.g., EVEN and ODD were reversed), and many were just missing (written as hard-coded numbers without explanation). I fixed the misnomers and added symbolic names for formerly anonymous numbers. Hopefully the next person who has to overhaul this code will at least have an easier time understanding what I thought I was doing!

Committer:
bogdanm
Date:
Mon Aug 05 14:13:36 2013 +0300
Revision:
11:eeb3cbbaa996
Parent:
8:335f2506f422
Child:
17:bbd6dac92961
Bug fixes, added suppor for LPC1347

Author: Samuel Mokrani

Who changed what in which revision?

UserRevisionLine numberNew contents of line
samux 1:80ab0d068708 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
samux 1:80ab0d068708 2 *
samux 1:80ab0d068708 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
samux 1:80ab0d068708 4 * and associated documentation files (the "Software"), to deal in the Software without
samux 1:80ab0d068708 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
samux 1:80ab0d068708 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
samux 1:80ab0d068708 7 * Software is furnished to do so, subject to the following conditions:
samux 1:80ab0d068708 8 *
samux 1:80ab0d068708 9 * The above copyright notice and this permission notice shall be included in all copies or
samux 1:80ab0d068708 10 * substantial portions of the Software.
samux 1:80ab0d068708 11 *
samux 1:80ab0d068708 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
samux 1:80ab0d068708 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
samux 1:80ab0d068708 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
samux 1:80ab0d068708 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
samux 1:80ab0d068708 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
samux 1:80ab0d068708 17 */
samux 1:80ab0d068708 18
bogdanm 11:eeb3cbbaa996 19 #if defined(TARGET_LPC11U24) || defined(TARGET_LPC1347)
bogdanm 11:eeb3cbbaa996 20
bogdanm 11:eeb3cbbaa996 21 #if defined(TARGET_LPC1347)
bogdanm 11:eeb3cbbaa996 22 #define USB_IRQ USB_IRQ_IRQn
bogdanm 11:eeb3cbbaa996 23 #elif defined(TARGET_LPC11U24)
bogdanm 11:eeb3cbbaa996 24 #define USB_IRQ USB_IRQn
bogdanm 11:eeb3cbbaa996 25 #endif
samux 1:80ab0d068708 26
samux 1:80ab0d068708 27 #include "USBHAL.h"
samux 1:80ab0d068708 28
samux 1:80ab0d068708 29 USBHAL * USBHAL::instance;
samux 1:80ab0d068708 30
samux 1:80ab0d068708 31 // Valid physical endpoint numbers are 0 to (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
samux 1:80ab0d068708 32 #define LAST_PHYSICAL_ENDPOINT (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
samux 1:80ab0d068708 33
samux 1:80ab0d068708 34 // Convert physical endpoint number to register bit
samux 1:80ab0d068708 35 #define EP(endpoint) (1UL<<endpoint)
samux 1:80ab0d068708 36
samux 1:80ab0d068708 37 // Convert physical to logical
samux 1:80ab0d068708 38 #define PHY_TO_LOG(endpoint) ((endpoint)>>1)
samux 1:80ab0d068708 39
samux 1:80ab0d068708 40 // Get endpoint direction
samux 1:80ab0d068708 41 #define IN_EP(endpoint) ((endpoint) & 1U ? true : false)
samux 1:80ab0d068708 42 #define OUT_EP(endpoint) ((endpoint) & 1U ? false : true)
samux 1:80ab0d068708 43
samux 1:80ab0d068708 44 // USB RAM
samux 1:80ab0d068708 45 #define USB_RAM_START (0x20004000)
samux 1:80ab0d068708 46 #define USB_RAM_SIZE (0x00000800)
samux 1:80ab0d068708 47
samux 1:80ab0d068708 48 // SYSAHBCLKCTRL
samux 1:80ab0d068708 49 #define CLK_USB (1UL<<14)
samux 1:80ab0d068708 50 #define CLK_USBRAM (1UL<<27)
samux 1:80ab0d068708 51
samux 1:80ab0d068708 52 // USB Information register
samux 1:80ab0d068708 53 #define FRAME_NR(a) ((a) & 0x7ff) // Frame number
samux 1:80ab0d068708 54
samux 1:80ab0d068708 55 // USB Device Command/Status register
samux 1:80ab0d068708 56 #define DEV_ADDR_MASK (0x7f) // Device address
samux 1:80ab0d068708 57 #define DEV_ADDR(a) ((a) & DEV_ADDR_MASK)
samux 1:80ab0d068708 58 #define DEV_EN (1UL<<7) // Device enable
samux 1:80ab0d068708 59 #define SETUP (1UL<<8) // SETUP token received
samux 1:80ab0d068708 60 #define PLL_ON (1UL<<9) // PLL enabled in suspend
samux 1:80ab0d068708 61 #define DCON (1UL<<16) // Device status - connect
samux 1:80ab0d068708 62 #define DSUS (1UL<<17) // Device status - suspend
samux 1:80ab0d068708 63 #define DCON_C (1UL<<24) // Connect change
samux 1:80ab0d068708 64 #define DSUS_C (1UL<<25) // Suspend change
samux 1:80ab0d068708 65 #define DRES_C (1UL<<26) // Reset change
samux 1:80ab0d068708 66 #define VBUSDEBOUNCED (1UL<<28) // Vbus detected
samux 1:80ab0d068708 67
samux 1:80ab0d068708 68 // Endpoint Command/Status list
samux 1:80ab0d068708 69 #define CMDSTS_A (1UL<<31) // Active
samux 1:80ab0d068708 70 #define CMDSTS_D (1UL<<30) // Disable
samux 1:80ab0d068708 71 #define CMDSTS_S (1UL<<29) // Stall
samux 1:80ab0d068708 72 #define CMDSTS_TR (1UL<<28) // Toggle Reset
samux 1:80ab0d068708 73 #define CMDSTS_RF (1UL<<27) // Rate Feedback mode
samux 1:80ab0d068708 74 #define CMDSTS_TV (1UL<<27) // Toggle Value
samux 1:80ab0d068708 75 #define CMDSTS_T (1UL<<26) // Endpoint Type
samux 1:80ab0d068708 76 #define CMDSTS_NBYTES(n) (((n)&0x3ff)<<16) // Number of bytes
samux 1:80ab0d068708 77 #define CMDSTS_ADDRESS_OFFSET(a) (((a)>>6)&0xffff) // Buffer start address
samux 1:80ab0d068708 78
samux 1:80ab0d068708 79 #define BYTES_REMAINING(s) (((s)>>16)&0x3ff) // Bytes remaining after transfer
samux 1:80ab0d068708 80
samux 1:80ab0d068708 81 // USB Non-endpoint interrupt sources
samux 1:80ab0d068708 82 #define FRAME_INT (1UL<<30)
samux 1:80ab0d068708 83 #define DEV_INT (1UL<<31)
samux 1:80ab0d068708 84
samux 1:80ab0d068708 85 static volatile int epComplete = 0;
samux 1:80ab0d068708 86
samux 1:80ab0d068708 87 // One entry for a double-buffered logical endpoint in the endpoint
samux 1:80ab0d068708 88 // command/status list. Endpoint 0 is single buffered, out[1] is used
samux 1:80ab0d068708 89 // for the SETUP packet and in[1] is not used
bogdanm 11:eeb3cbbaa996 90 typedef struct {
samux 1:80ab0d068708 91 uint32_t out[2];
samux 1:80ab0d068708 92 uint32_t in[2];
bogdanm 11:eeb3cbbaa996 93 } PACKED EP_COMMAND_STATUS;
samux 1:80ab0d068708 94
bogdanm 11:eeb3cbbaa996 95 typedef struct {
samux 1:80ab0d068708 96 uint8_t out[MAX_PACKET_SIZE_EP0];
samux 1:80ab0d068708 97 uint8_t in[MAX_PACKET_SIZE_EP0];
samux 1:80ab0d068708 98 uint8_t setup[SETUP_PACKET_SIZE];
bogdanm 11:eeb3cbbaa996 99 } PACKED CONTROL_TRANSFER;
samux 1:80ab0d068708 100
bogdanm 11:eeb3cbbaa996 101 typedef struct {
samux 1:80ab0d068708 102 uint32_t maxPacket;
samux 1:80ab0d068708 103 uint32_t buffer[2];
samux 1:80ab0d068708 104 uint32_t options;
bogdanm 11:eeb3cbbaa996 105 } PACKED EP_STATE;
samux 1:80ab0d068708 106
samux 1:80ab0d068708 107 static volatile EP_STATE endpointState[NUMBER_OF_PHYSICAL_ENDPOINTS];
samux 1:80ab0d068708 108
samux 1:80ab0d068708 109 // Pointer to the endpoint command/status list
samux 1:80ab0d068708 110 static EP_COMMAND_STATUS *ep = NULL;
samux 1:80ab0d068708 111
samux 1:80ab0d068708 112 // Pointer to endpoint 0 data (IN/OUT and SETUP)
samux 1:80ab0d068708 113 static CONTROL_TRANSFER *ct = NULL;
samux 1:80ab0d068708 114
samux 1:80ab0d068708 115 // Shadow DEVCMDSTAT register to avoid accidentally clearing flags or
samux 1:80ab0d068708 116 // initiating a remote wakeup event.
samux 1:80ab0d068708 117 static volatile uint32_t devCmdStat;
samux 1:80ab0d068708 118
samux 1:80ab0d068708 119 // Pointers used to allocate USB RAM
samux 1:80ab0d068708 120 static uint32_t usbRamPtr = USB_RAM_START;
samux 1:80ab0d068708 121 static uint32_t epRamPtr = 0; // Buffers for endpoints > 0 start here
samux 1:80ab0d068708 122
samux 1:80ab0d068708 123 #define ROUND_UP_TO_MULTIPLE(x, m) ((((x)+((m)-1))/(m))*(m))
samux 1:80ab0d068708 124
samux 1:80ab0d068708 125 void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size);
samux 1:80ab0d068708 126 void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size) {
samux 1:80ab0d068708 127 if (size > 0) {
samux 1:80ab0d068708 128 do {
samux 1:80ab0d068708 129 *dst++ = *src++;
samux 1:80ab0d068708 130 } while (--size > 0);
samux 1:80ab0d068708 131 }
samux 1:80ab0d068708 132 }
samux 1:80ab0d068708 133
samux 1:80ab0d068708 134
samux 1:80ab0d068708 135 USBHAL::USBHAL(void) {
bogdanm 11:eeb3cbbaa996 136 NVIC_DisableIRQ(USB_IRQ);
samux 8:335f2506f422 137
samux 8:335f2506f422 138 // fill in callback array
samux 8:335f2506f422 139 epCallback[0] = &USBHAL::EP1_OUT_callback;
samux 8:335f2506f422 140 epCallback[1] = &USBHAL::EP1_IN_callback;
samux 8:335f2506f422 141 epCallback[2] = &USBHAL::EP2_OUT_callback;
samux 8:335f2506f422 142 epCallback[3] = &USBHAL::EP2_IN_callback;
samux 8:335f2506f422 143 epCallback[4] = &USBHAL::EP3_OUT_callback;
samux 8:335f2506f422 144 epCallback[5] = &USBHAL::EP3_IN_callback;
samux 8:335f2506f422 145 epCallback[6] = &USBHAL::EP4_OUT_callback;
samux 8:335f2506f422 146 epCallback[7] = &USBHAL::EP4_IN_callback;
samux 1:80ab0d068708 147
samux 1:80ab0d068708 148 // nUSB_CONNECT output
samux 1:80ab0d068708 149 LPC_IOCON->PIO0_6 = 0x00000001;
samux 1:80ab0d068708 150
samux 1:80ab0d068708 151 // Enable clocks (USB registers, USB RAM)
samux 1:80ab0d068708 152 LPC_SYSCON->SYSAHBCLKCTRL |= CLK_USB | CLK_USBRAM;
samux 1:80ab0d068708 153
samux 1:80ab0d068708 154 // Ensure device disconnected (DCON not set)
samux 1:80ab0d068708 155 LPC_USB->DEVCMDSTAT = 0;
samux 1:80ab0d068708 156
samux 1:80ab0d068708 157 // to ensure that the USB host sees the device as
samux 1:80ab0d068708 158 // disconnected if the target CPU is reset.
samux 1:80ab0d068708 159 wait(0.3);
samux 1:80ab0d068708 160
samux 1:80ab0d068708 161 // Reserve space in USB RAM for endpoint command/status list
samux 1:80ab0d068708 162 // Must be 256 byte aligned
samux 1:80ab0d068708 163 usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 256);
samux 1:80ab0d068708 164 ep = (EP_COMMAND_STATUS *)usbRamPtr;
samux 1:80ab0d068708 165 usbRamPtr += (sizeof(EP_COMMAND_STATUS) * NUMBER_OF_LOGICAL_ENDPOINTS);
samux 1:80ab0d068708 166 LPC_USB->EPLISTSTART = (uint32_t)(ep) & 0xffffff00;
samux 1:80ab0d068708 167
samux 1:80ab0d068708 168 // Reserve space in USB RAM for Endpoint 0
samux 1:80ab0d068708 169 // Must be 64 byte aligned
samux 1:80ab0d068708 170 usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 64);
samux 1:80ab0d068708 171 ct = (CONTROL_TRANSFER *)usbRamPtr;
samux 1:80ab0d068708 172 usbRamPtr += sizeof(CONTROL_TRANSFER);
samux 1:80ab0d068708 173 LPC_USB->DATABUFSTART =(uint32_t)(ct) & 0xffc00000;
samux 1:80ab0d068708 174
samux 1:80ab0d068708 175 // Setup command/status list for EP0
samux 1:80ab0d068708 176 ep[0].out[0] = 0;
samux 1:80ab0d068708 177 ep[0].in[0] = 0;
samux 1:80ab0d068708 178 ep[0].out[1] = CMDSTS_ADDRESS_OFFSET((uint32_t)ct->setup);
samux 1:80ab0d068708 179
samux 1:80ab0d068708 180 // Route all interrupts to IRQ, some can be routed to
samux 1:80ab0d068708 181 // USB_FIQ if you wish.
samux 1:80ab0d068708 182 LPC_USB->INTROUTING = 0;
samux 1:80ab0d068708 183
samux 1:80ab0d068708 184 // Set device address 0, enable USB device, no remote wakeup
samux 1:80ab0d068708 185 devCmdStat = DEV_ADDR(0) | DEV_EN | DSUS;
samux 1:80ab0d068708 186 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 187
samux 1:80ab0d068708 188 // Enable interrupts for device events and EP0
samux 1:80ab0d068708 189 LPC_USB->INTEN = DEV_INT | EP(EP0IN) | EP(EP0OUT) | FRAME_INT;
samux 1:80ab0d068708 190 instance = this;
samux 1:80ab0d068708 191
samux 1:80ab0d068708 192 //attach IRQ handler and enable interrupts
bogdanm 11:eeb3cbbaa996 193 NVIC_SetVector(USB_IRQ, (uint32_t)&_usbisr);
samux 1:80ab0d068708 194 }
samux 1:80ab0d068708 195
samux 1:80ab0d068708 196 USBHAL::~USBHAL(void) {
samux 1:80ab0d068708 197 // Ensure device disconnected (DCON not set)
samux 1:80ab0d068708 198 LPC_USB->DEVCMDSTAT = 0;
samux 1:80ab0d068708 199 // Disable USB interrupts
bogdanm 11:eeb3cbbaa996 200 NVIC_DisableIRQ(USB_IRQ);
samux 1:80ab0d068708 201 }
samux 1:80ab0d068708 202
samux 1:80ab0d068708 203 void USBHAL::connect(void) {
bogdanm 11:eeb3cbbaa996 204 NVIC_EnableIRQ(USB_IRQ);
samux 1:80ab0d068708 205 devCmdStat |= DCON;
samux 1:80ab0d068708 206 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 207 }
samux 1:80ab0d068708 208
samux 1:80ab0d068708 209 void USBHAL::disconnect(void) {
bogdanm 11:eeb3cbbaa996 210 NVIC_DisableIRQ(USB_IRQ);
samux 1:80ab0d068708 211 devCmdStat &= ~DCON;
samux 1:80ab0d068708 212 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 213 }
samux 1:80ab0d068708 214
samux 1:80ab0d068708 215 void USBHAL::configureDevice(void) {
samux 8:335f2506f422 216 // Not required
samux 1:80ab0d068708 217 }
samux 1:80ab0d068708 218
samux 1:80ab0d068708 219 void USBHAL::unconfigureDevice(void) {
samux 8:335f2506f422 220 // Not required
samux 1:80ab0d068708 221 }
samux 1:80ab0d068708 222
samux 1:80ab0d068708 223 void USBHAL::EP0setup(uint8_t *buffer) {
samux 1:80ab0d068708 224 // Copy setup packet data
samux 1:80ab0d068708 225 USBMemCopy(buffer, ct->setup, SETUP_PACKET_SIZE);
samux 1:80ab0d068708 226 }
samux 1:80ab0d068708 227
samux 1:80ab0d068708 228 void USBHAL::EP0read(void) {
samux 1:80ab0d068708 229 // Start an endpoint 0 read
samux 1:80ab0d068708 230
samux 1:80ab0d068708 231 // The USB ISR will call USBDevice_EP0out() when a packet has been read,
samux 1:80ab0d068708 232 // the USBDevice layer then calls USBBusInterface_EP0getReadResult() to
samux 1:80ab0d068708 233 // read the data.
samux 1:80ab0d068708 234
samux 1:80ab0d068708 235 ep[0].out[0] = CMDSTS_A |CMDSTS_NBYTES(MAX_PACKET_SIZE_EP0) \
samux 1:80ab0d068708 236 | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
samux 1:80ab0d068708 237 }
samux 1:80ab0d068708 238
samux 1:80ab0d068708 239 uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
samux 1:80ab0d068708 240 // Complete an endpoint 0 read
samux 1:80ab0d068708 241 uint32_t bytesRead;
samux 1:80ab0d068708 242
samux 1:80ab0d068708 243 // Find how many bytes were read
samux 1:80ab0d068708 244 bytesRead = MAX_PACKET_SIZE_EP0 - BYTES_REMAINING(ep[0].out[0]);
samux 1:80ab0d068708 245
samux 1:80ab0d068708 246 // Copy data
samux 1:80ab0d068708 247 USBMemCopy(buffer, ct->out, bytesRead);
samux 1:80ab0d068708 248 return bytesRead;
samux 1:80ab0d068708 249 }
samux 1:80ab0d068708 250
samux 8:335f2506f422 251
samux 8:335f2506f422 252 void USBHAL::EP0readStage(void) {
samux 8:335f2506f422 253 // Not required
samux 8:335f2506f422 254 }
samux 8:335f2506f422 255
samux 1:80ab0d068708 256 void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
samux 1:80ab0d068708 257 // Start and endpoint 0 write
samux 1:80ab0d068708 258
samux 1:80ab0d068708 259 // The USB ISR will call USBDevice_EP0in() when the data has
samux 1:80ab0d068708 260 // been written, the USBDevice layer then calls
samux 1:80ab0d068708 261 // USBBusInterface_EP0getWriteResult() to complete the transaction.
samux 1:80ab0d068708 262
samux 1:80ab0d068708 263 // Copy data
samux 1:80ab0d068708 264 USBMemCopy(ct->in, buffer, size);
samux 1:80ab0d068708 265
samux 1:80ab0d068708 266 // Start transfer
samux 1:80ab0d068708 267 ep[0].in[0] = CMDSTS_A | CMDSTS_NBYTES(size) \
samux 1:80ab0d068708 268 | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->in);
samux 1:80ab0d068708 269 }
samux 1:80ab0d068708 270
samux 1:80ab0d068708 271
samux 1:80ab0d068708 272 EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
samux 1:80ab0d068708 273 uint8_t bf = 0;
samux 1:80ab0d068708 274 uint32_t flags = 0;
samux 1:80ab0d068708 275
samux 1:80ab0d068708 276 //check which buffer must be filled
samux 1:80ab0d068708 277 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 278 // Double buffered
samux 1:80ab0d068708 279 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 280 bf = 1;
samux 1:80ab0d068708 281 } else {
samux 1:80ab0d068708 282 bf = 0;
samux 1:80ab0d068708 283 }
samux 1:80ab0d068708 284 }
samux 1:80ab0d068708 285
samux 1:80ab0d068708 286 // if isochronous endpoint, T = 1
samux 1:80ab0d068708 287 if(endpointState[endpoint].options & ISOCHRONOUS)
samux 1:80ab0d068708 288 {
samux 1:80ab0d068708 289 flags |= CMDSTS_T;
samux 1:80ab0d068708 290 }
samux 1:80ab0d068708 291
samux 1:80ab0d068708 292 //Active the endpoint for reading
samux 1:80ab0d068708 293 ep[PHY_TO_LOG(endpoint)].out[bf] = CMDSTS_A | CMDSTS_NBYTES(maximumSize) \
samux 1:80ab0d068708 294 | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out) | flags;
samux 1:80ab0d068708 295 return EP_PENDING;
samux 1:80ab0d068708 296 }
samux 1:80ab0d068708 297
samux 1:80ab0d068708 298 EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead) {
samux 1:80ab0d068708 299
samux 1:80ab0d068708 300 uint8_t bf = 0;
samux 1:80ab0d068708 301
samux 1:80ab0d068708 302 if (!(epComplete & EP(endpoint)))
samux 1:80ab0d068708 303 return EP_PENDING;
samux 1:80ab0d068708 304 else {
samux 1:80ab0d068708 305 epComplete &= ~EP(endpoint);
samux 1:80ab0d068708 306
samux 1:80ab0d068708 307 //check which buffer has been filled
samux 1:80ab0d068708 308 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 309 // Double buffered (here we read the previous buffer which was used)
samux 1:80ab0d068708 310 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 311 bf = 0;
samux 1:80ab0d068708 312 } else {
samux 1:80ab0d068708 313 bf = 1;
samux 1:80ab0d068708 314 }
samux 1:80ab0d068708 315 }
samux 1:80ab0d068708 316
samux 1:80ab0d068708 317 // Find how many bytes were read
samux 1:80ab0d068708 318 *bytesRead = (uint32_t) (endpointState[endpoint].maxPacket - BYTES_REMAINING(ep[PHY_TO_LOG(endpoint)].out[bf]));
samux 1:80ab0d068708 319
samux 1:80ab0d068708 320 // Copy data
samux 1:80ab0d068708 321 USBMemCopy(data, ct->out, *bytesRead);
samux 1:80ab0d068708 322 return EP_COMPLETED;
samux 1:80ab0d068708 323 }
samux 1:80ab0d068708 324 }
samux 1:80ab0d068708 325
samux 1:80ab0d068708 326 void USBHAL::EP0getWriteResult(void) {
samux 8:335f2506f422 327 // Not required
samux 1:80ab0d068708 328 }
samux 1:80ab0d068708 329
samux 1:80ab0d068708 330 void USBHAL::EP0stall(void) {
samux 1:80ab0d068708 331 ep[0].in[0] = CMDSTS_S;
samux 1:80ab0d068708 332 ep[0].out[0] = CMDSTS_S;
samux 1:80ab0d068708 333 }
samux 1:80ab0d068708 334
samux 1:80ab0d068708 335 void USBHAL::setAddress(uint8_t address) {
samux 1:80ab0d068708 336 devCmdStat &= ~DEV_ADDR_MASK;
samux 1:80ab0d068708 337 devCmdStat |= DEV_ADDR(address);
samux 1:80ab0d068708 338 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 339 }
samux 1:80ab0d068708 340
samux 1:80ab0d068708 341 EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
samux 1:80ab0d068708 342 uint32_t flags = 0;
samux 1:80ab0d068708 343 uint32_t bf;
samux 1:80ab0d068708 344
samux 1:80ab0d068708 345 // Validate parameters
samux 1:80ab0d068708 346 if (data == NULL) {
samux 1:80ab0d068708 347 return EP_INVALID;
samux 1:80ab0d068708 348 }
samux 1:80ab0d068708 349
samux 1:80ab0d068708 350 if (endpoint > LAST_PHYSICAL_ENDPOINT) {
samux 1:80ab0d068708 351 return EP_INVALID;
samux 1:80ab0d068708 352 }
samux 1:80ab0d068708 353
samux 1:80ab0d068708 354 if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
samux 1:80ab0d068708 355 return EP_INVALID;
samux 1:80ab0d068708 356 }
samux 1:80ab0d068708 357
samux 1:80ab0d068708 358 if (size > endpointState[endpoint].maxPacket) {
samux 1:80ab0d068708 359 return EP_INVALID;
samux 1:80ab0d068708 360 }
samux 1:80ab0d068708 361
samux 1:80ab0d068708 362 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 363 // Double buffered
samux 1:80ab0d068708 364 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 365 bf = 1;
samux 1:80ab0d068708 366 } else {
samux 1:80ab0d068708 367 bf = 0;
samux 1:80ab0d068708 368 }
samux 1:80ab0d068708 369 } else {
samux 1:80ab0d068708 370 // Single buffered
samux 1:80ab0d068708 371 bf = 0;
samux 1:80ab0d068708 372 }
samux 1:80ab0d068708 373
samux 1:80ab0d068708 374 // Check if already active
samux 1:80ab0d068708 375 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
samux 1:80ab0d068708 376 return EP_INVALID;
samux 1:80ab0d068708 377 }
samux 1:80ab0d068708 378
samux 1:80ab0d068708 379 // Check if stalled
samux 1:80ab0d068708 380 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
samux 1:80ab0d068708 381 return EP_STALLED;
samux 1:80ab0d068708 382 }
samux 1:80ab0d068708 383
samux 1:80ab0d068708 384 // Copy data to USB RAM
samux 1:80ab0d068708 385 USBMemCopy((uint8_t *)endpointState[endpoint].buffer[bf], data, size);
samux 1:80ab0d068708 386
samux 1:80ab0d068708 387 // Add options
samux 1:80ab0d068708 388 if (endpointState[endpoint].options & RATE_FEEDBACK_MODE) {
samux 1:80ab0d068708 389 flags |= CMDSTS_RF;
samux 1:80ab0d068708 390 }
samux 1:80ab0d068708 391
samux 1:80ab0d068708 392 if (endpointState[endpoint].options & ISOCHRONOUS) {
samux 1:80ab0d068708 393 flags |= CMDSTS_T;
samux 1:80ab0d068708 394 }
samux 1:80ab0d068708 395
samux 1:80ab0d068708 396 // Add transfer
samux 1:80ab0d068708 397 ep[PHY_TO_LOG(endpoint)].in[bf] = CMDSTS_ADDRESS_OFFSET( \
samux 1:80ab0d068708 398 endpointState[endpoint].buffer[bf]) \
samux 1:80ab0d068708 399 | CMDSTS_NBYTES(size) | CMDSTS_A | flags;
samux 1:80ab0d068708 400
samux 1:80ab0d068708 401 return EP_PENDING;
samux 1:80ab0d068708 402 }
samux 1:80ab0d068708 403
samux 1:80ab0d068708 404 EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
samux 1:80ab0d068708 405 uint32_t bf;
samux 8:335f2506f422 406
samux 1:80ab0d068708 407 // Validate parameters
samux 1:80ab0d068708 408 if (endpoint > LAST_PHYSICAL_ENDPOINT) {
samux 1:80ab0d068708 409 return EP_INVALID;
samux 1:80ab0d068708 410 }
samux 1:80ab0d068708 411
samux 1:80ab0d068708 412 if (OUT_EP(endpoint)) {
samux 1:80ab0d068708 413 return EP_INVALID;
samux 1:80ab0d068708 414 }
samux 1:80ab0d068708 415
samux 1:80ab0d068708 416 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 417 // Double buffered // TODO: FIX THIS
samux 1:80ab0d068708 418 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 419 bf = 1;
samux 1:80ab0d068708 420 } else {
samux 1:80ab0d068708 421 bf = 0;
samux 1:80ab0d068708 422 }
samux 1:80ab0d068708 423 } else {
samux 1:80ab0d068708 424 // Single buffered
samux 1:80ab0d068708 425 bf = 0;
samux 1:80ab0d068708 426 }
samux 1:80ab0d068708 427
samux 1:80ab0d068708 428 // Check if endpoint still active
samux 1:80ab0d068708 429 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
samux 1:80ab0d068708 430 return EP_PENDING;
samux 1:80ab0d068708 431 }
samux 1:80ab0d068708 432
samux 1:80ab0d068708 433 // Check if stalled
samux 1:80ab0d068708 434 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
samux 1:80ab0d068708 435 return EP_STALLED;
samux 1:80ab0d068708 436 }
samux 1:80ab0d068708 437
samux 1:80ab0d068708 438 return EP_COMPLETED;
samux 1:80ab0d068708 439 }
samux 1:80ab0d068708 440
samux 1:80ab0d068708 441 void USBHAL::stallEndpoint(uint8_t endpoint) {
samux 1:80ab0d068708 442
samux 8:335f2506f422 443 // FIX: should this clear active bit?
samux 1:80ab0d068708 444 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 445 ep[PHY_TO_LOG(endpoint)].in[0] |= CMDSTS_S;
samux 1:80ab0d068708 446 ep[PHY_TO_LOG(endpoint)].in[1] |= CMDSTS_S;
samux 1:80ab0d068708 447 } else {
samux 1:80ab0d068708 448 ep[PHY_TO_LOG(endpoint)].out[0] |= CMDSTS_S;
samux 1:80ab0d068708 449 ep[PHY_TO_LOG(endpoint)].out[1] |= CMDSTS_S;
samux 1:80ab0d068708 450 }
samux 1:80ab0d068708 451 }
samux 1:80ab0d068708 452
samux 1:80ab0d068708 453 void USBHAL::unstallEndpoint(uint8_t endpoint) {
samux 1:80ab0d068708 454 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 455 // Double buffered
samux 1:80ab0d068708 456 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 457 ep[PHY_TO_LOG(endpoint)].in[0] = 0; // S = 0
samux 1:80ab0d068708 458 ep[PHY_TO_LOG(endpoint)].in[1] = 0; // S = 0
samux 1:80ab0d068708 459
samux 1:80ab0d068708 460 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 8:335f2506f422 461 ep[PHY_TO_LOG(endpoint)].in[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 462 } else {
samux 8:335f2506f422 463 ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 464 }
samux 1:80ab0d068708 465 } else {
samux 1:80ab0d068708 466 ep[PHY_TO_LOG(endpoint)].out[0] = 0; // S = 0
samux 1:80ab0d068708 467 ep[PHY_TO_LOG(endpoint)].out[1] = 0; // S = 0
samux 1:80ab0d068708 468
samux 1:80ab0d068708 469 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 8:335f2506f422 470 ep[PHY_TO_LOG(endpoint)].out[1] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 471 } else {
samux 8:335f2506f422 472 ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 473 }
samux 1:80ab0d068708 474 }
samux 1:80ab0d068708 475 } else {
samux 1:80ab0d068708 476 // Single buffered
samux 1:80ab0d068708 477 if (IN_EP(endpoint)) {
samux 8:335f2506f422 478 ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 479 } else {
samux 8:335f2506f422 480 ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S = 0, TR = 1, TV = 0
samux 1:80ab0d068708 481 }
samux 1:80ab0d068708 482 }
samux 1:80ab0d068708 483 }
samux 1:80ab0d068708 484
samux 1:80ab0d068708 485 bool USBHAL::getEndpointStallState(unsigned char endpoint) {
samux 1:80ab0d068708 486 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 487 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 488 if (ep[PHY_TO_LOG(endpoint)].in[1] & CMDSTS_S) {
samux 1:80ab0d068708 489 return true;
samux 1:80ab0d068708 490 }
samux 1:80ab0d068708 491 } else {
samux 1:80ab0d068708 492 if (ep[PHY_TO_LOG(endpoint)].in[0] & CMDSTS_S) {
samux 1:80ab0d068708 493 return true;
samux 1:80ab0d068708 494 }
samux 1:80ab0d068708 495 }
samux 1:80ab0d068708 496 } else {
samux 1:80ab0d068708 497 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 498 if (ep[PHY_TO_LOG(endpoint)].out[1] & CMDSTS_S) {
samux 1:80ab0d068708 499 return true;
samux 1:80ab0d068708 500 }
samux 1:80ab0d068708 501 } else {
samux 1:80ab0d068708 502 if (ep[PHY_TO_LOG(endpoint)].out[0] & CMDSTS_S) {
samux 1:80ab0d068708 503 return true;
samux 1:80ab0d068708 504 }
samux 1:80ab0d068708 505 }
samux 1:80ab0d068708 506 }
samux 1:80ab0d068708 507
samux 1:80ab0d068708 508 return false;
samux 1:80ab0d068708 509 }
samux 1:80ab0d068708 510
samux 1:80ab0d068708 511 bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) {
samux 1:80ab0d068708 512 uint32_t tmpEpRamPtr;
samux 1:80ab0d068708 513
samux 1:80ab0d068708 514 if (endpoint > LAST_PHYSICAL_ENDPOINT) {
samux 1:80ab0d068708 515 return false;
samux 1:80ab0d068708 516 }
samux 1:80ab0d068708 517
samux 1:80ab0d068708 518 // Not applicable to the control endpoints
samux 1:80ab0d068708 519 if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
samux 1:80ab0d068708 520 return false;
samux 1:80ab0d068708 521 }
samux 1:80ab0d068708 522
samux 1:80ab0d068708 523 // Allocate buffers in USB RAM
samux 1:80ab0d068708 524 tmpEpRamPtr = epRamPtr;
samux 1:80ab0d068708 525
samux 1:80ab0d068708 526 // Must be 64 byte aligned
samux 1:80ab0d068708 527 tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
samux 1:80ab0d068708 528
samux 1:80ab0d068708 529 if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
samux 1:80ab0d068708 530 // Out of memory
samux 1:80ab0d068708 531 return false;
samux 1:80ab0d068708 532 }
samux 1:80ab0d068708 533
samux 1:80ab0d068708 534 // Allocate first buffer
samux 1:80ab0d068708 535 endpointState[endpoint].buffer[0] = tmpEpRamPtr;
samux 1:80ab0d068708 536 tmpEpRamPtr += maxPacket;
samux 1:80ab0d068708 537
samux 1:80ab0d068708 538 if (!(options & SINGLE_BUFFERED)) {
samux 1:80ab0d068708 539 // Must be 64 byte aligned
samux 1:80ab0d068708 540 tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
samux 1:80ab0d068708 541
samux 1:80ab0d068708 542 if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
samux 1:80ab0d068708 543 // Out of memory
samux 1:80ab0d068708 544 return false;
samux 1:80ab0d068708 545 }
samux 1:80ab0d068708 546
samux 1:80ab0d068708 547 // Allocate second buffer
samux 1:80ab0d068708 548 endpointState[endpoint].buffer[1] = tmpEpRamPtr;
samux 1:80ab0d068708 549 tmpEpRamPtr += maxPacket;
samux 1:80ab0d068708 550 }
samux 1:80ab0d068708 551
samux 1:80ab0d068708 552 // Commit to this USB RAM allocation
samux 1:80ab0d068708 553 epRamPtr = tmpEpRamPtr;
samux 1:80ab0d068708 554
samux 1:80ab0d068708 555 // Remaining endpoint state values
samux 1:80ab0d068708 556 endpointState[endpoint].maxPacket = maxPacket;
samux 1:80ab0d068708 557 endpointState[endpoint].options = options;
samux 1:80ab0d068708 558
samux 1:80ab0d068708 559 // Enable double buffering if required
samux 1:80ab0d068708 560 if (options & SINGLE_BUFFERED) {
samux 1:80ab0d068708 561 LPC_USB->EPBUFCFG &= ~EP(endpoint);
samux 1:80ab0d068708 562 } else {
samux 1:80ab0d068708 563 // Double buffered
samux 1:80ab0d068708 564 LPC_USB->EPBUFCFG |= EP(endpoint);
samux 1:80ab0d068708 565 }
samux 1:80ab0d068708 566
samux 1:80ab0d068708 567 // Enable interrupt
samux 1:80ab0d068708 568 LPC_USB->INTEN |= EP(endpoint);
samux 1:80ab0d068708 569
samux 1:80ab0d068708 570 // Enable endpoint
samux 1:80ab0d068708 571 unstallEndpoint(endpoint);
samux 1:80ab0d068708 572 return true;
samux 1:80ab0d068708 573 }
samux 1:80ab0d068708 574
samux 1:80ab0d068708 575 void USBHAL::remoteWakeup(void) {
samux 1:80ab0d068708 576 // Clearing DSUS bit initiates a remote wakeup if the
samux 1:80ab0d068708 577 // device is currently enabled and suspended - otherwise
samux 1:80ab0d068708 578 // it has no effect.
samux 1:80ab0d068708 579 LPC_USB->DEVCMDSTAT = devCmdStat & ~DSUS;
samux 1:80ab0d068708 580 }
samux 1:80ab0d068708 581
samux 1:80ab0d068708 582
samux 1:80ab0d068708 583 static void disableEndpoints(void) {
samux 1:80ab0d068708 584 uint32_t logEp;
samux 1:80ab0d068708 585
samux 1:80ab0d068708 586 // Ref. Table 158 "When a bus reset is received, software
samux 1:80ab0d068708 587 // must set the disable bit of all endpoints to 1".
samux 1:80ab0d068708 588
samux 1:80ab0d068708 589 for (logEp = 1; logEp < NUMBER_OF_LOGICAL_ENDPOINTS; logEp++) {
samux 1:80ab0d068708 590 ep[logEp].out[0] = CMDSTS_D;
samux 1:80ab0d068708 591 ep[logEp].out[1] = CMDSTS_D;
samux 1:80ab0d068708 592 ep[logEp].in[0] = CMDSTS_D;
samux 1:80ab0d068708 593 ep[logEp].in[1] = CMDSTS_D;
samux 1:80ab0d068708 594 }
samux 1:80ab0d068708 595
samux 1:80ab0d068708 596 // Start of USB RAM for endpoints > 0
samux 1:80ab0d068708 597 epRamPtr = usbRamPtr;
samux 1:80ab0d068708 598 }
samux 1:80ab0d068708 599
samux 1:80ab0d068708 600
samux 1:80ab0d068708 601
samux 1:80ab0d068708 602 void USBHAL::_usbisr(void) {
samux 1:80ab0d068708 603 instance->usbisr();
samux 1:80ab0d068708 604 }
samux 1:80ab0d068708 605
samux 1:80ab0d068708 606 void USBHAL::usbisr(void) {
samux 1:80ab0d068708 607 // Start of frame
samux 1:80ab0d068708 608 if (LPC_USB->INTSTAT & FRAME_INT) {
samux 1:80ab0d068708 609 // Clear SOF interrupt
samux 1:80ab0d068708 610 LPC_USB->INTSTAT = FRAME_INT;
samux 1:80ab0d068708 611
samux 1:80ab0d068708 612 // SOF event, read frame number
samux 1:80ab0d068708 613 SOF(FRAME_NR(LPC_USB->INFO));
samux 1:80ab0d068708 614 }
samux 1:80ab0d068708 615
samux 1:80ab0d068708 616 // Device state
samux 1:80ab0d068708 617 if (LPC_USB->INTSTAT & DEV_INT) {
samux 1:80ab0d068708 618 LPC_USB->INTSTAT = DEV_INT;
samux 1:80ab0d068708 619
samux 1:80ab0d068708 620 if (LPC_USB->DEVCMDSTAT & DSUS_C) {
samux 1:80ab0d068708 621 // Suspend status changed
samux 1:80ab0d068708 622 LPC_USB->DEVCMDSTAT = devCmdStat | DSUS_C;
samux 1:80ab0d068708 623 if((LPC_USB->DEVCMDSTAT & DSUS) != 0) {
samux 1:80ab0d068708 624 suspendStateChanged(1);
samux 1:80ab0d068708 625 }
samux 1:80ab0d068708 626 }
samux 1:80ab0d068708 627
samux 1:80ab0d068708 628 if (LPC_USB->DEVCMDSTAT & DRES_C) {
samux 1:80ab0d068708 629 // Bus reset
samux 1:80ab0d068708 630 LPC_USB->DEVCMDSTAT = devCmdStat | DRES_C;
samux 1:80ab0d068708 631
samux 1:80ab0d068708 632 suspendStateChanged(0);
samux 1:80ab0d068708 633
samux 1:80ab0d068708 634 // Disable endpoints > 0
samux 1:80ab0d068708 635 disableEndpoints();
samux 1:80ab0d068708 636
samux 1:80ab0d068708 637 // Bus reset event
samux 1:80ab0d068708 638 busReset();
samux 1:80ab0d068708 639 }
samux 1:80ab0d068708 640 }
samux 1:80ab0d068708 641
samux 1:80ab0d068708 642 // Endpoint 0
samux 1:80ab0d068708 643 if (LPC_USB->INTSTAT & EP(EP0OUT)) {
samux 1:80ab0d068708 644 // Clear EP0OUT/SETUP interrupt
samux 1:80ab0d068708 645 LPC_USB->INTSTAT = EP(EP0OUT);
samux 1:80ab0d068708 646
samux 1:80ab0d068708 647 // Check if SETUP
samux 1:80ab0d068708 648 if (LPC_USB->DEVCMDSTAT & SETUP) {
samux 1:80ab0d068708 649 // Clear Active and Stall bits for EP0
samux 1:80ab0d068708 650 // Documentation does not make it clear if we must use the
samux 1:80ab0d068708 651 // EPSKIP register to achieve this, Fig. 16 and NXP reference
samux 1:80ab0d068708 652 // code suggests we can just clear the Active bits - check with
samux 1:80ab0d068708 653 // NXP to be sure.
samux 1:80ab0d068708 654 ep[0].in[0] = 0;
samux 1:80ab0d068708 655 ep[0].out[0] = 0;
samux 1:80ab0d068708 656
samux 1:80ab0d068708 657 // Clear EP0IN interrupt
samux 1:80ab0d068708 658 LPC_USB->INTSTAT = EP(EP0IN);
samux 1:80ab0d068708 659
samux 1:80ab0d068708 660 // Clear SETUP (and INTONNAK_CI/O) in device status register
samux 1:80ab0d068708 661 LPC_USB->DEVCMDSTAT = devCmdStat | SETUP;
samux 1:80ab0d068708 662
samux 1:80ab0d068708 663 // EP0 SETUP event (SETUP data received)
samux 1:80ab0d068708 664 EP0setupCallback();
samux 1:80ab0d068708 665 } else {
samux 1:80ab0d068708 666 // EP0OUT ACK event (OUT data received)
samux 1:80ab0d068708 667 EP0out();
samux 1:80ab0d068708 668 }
samux 1:80ab0d068708 669 }
samux 1:80ab0d068708 670
samux 1:80ab0d068708 671 if (LPC_USB->INTSTAT & EP(EP0IN)) {
samux 1:80ab0d068708 672 // Clear EP0IN interrupt
samux 1:80ab0d068708 673 LPC_USB->INTSTAT = EP(EP0IN);
samux 1:80ab0d068708 674
samux 1:80ab0d068708 675 // EP0IN ACK event (IN data sent)
samux 1:80ab0d068708 676 EP0in();
samux 1:80ab0d068708 677 }
samux 8:335f2506f422 678
samux 8:335f2506f422 679 for (uint8_t num = 2; num < 5*2; num++) {
samux 8:335f2506f422 680 if (LPC_USB->INTSTAT & EP(num)) {
samux 8:335f2506f422 681 LPC_USB->INTSTAT = EP(num);
samux 8:335f2506f422 682 epComplete |= EP(num);
samux 8:335f2506f422 683 if ((instance->*(epCallback[num - 2]))()) {
samux 8:335f2506f422 684 epComplete &= ~EP(num);
samux 8:335f2506f422 685 }
samux 8:335f2506f422 686 }
samux 1:80ab0d068708 687 }
samux 1:80ab0d068708 688 }
samux 1:80ab0d068708 689
samux 1:80ab0d068708 690 #endif