USB device stack, with KL25Z fixes for USB 3.0 hosts and sleep/resume interrupt handling

Dependents:   frdm_Slider_Keyboard idd_hw2_figlax_PanType idd_hw2_appachu_finger_chording idd_hw3_AngieWangAntonioDeLimaFernandesDanielLim_BladeSymphony ... more

Fork of USBDevice by mbed official

This is an overhauled version of the standard mbed USB device-side driver library, with bug fixes for KL25Z devices. It greatly improves reliability and stability of USB on the KL25Z, especially with devices using multiple endpoints concurrently.

I've had some nagging problems with the base mbed implementation for a long time, manifesting as occasional random disconnects that required rebooting the device. Recently (late 2015), I started implementing a USB device on the KL25Z that used multiple endpoints, and suddenly the nagging, occasional problems turned into frequent and predictable crashes. This forced me to delve into the USB stack and figure out what was really going on. Happily, the frequent crashes made it possible to track down and fix the problems. This new version is working very reliably in my testing - the random disconnects seem completely eradicated, even under very stressful conditions for the device.

Summary

  • Overall stability improvements
  • USB 3.0 host support
  • Stalled endpoint fixes
  • Sleep/resume notifications
  • Smaller memory footprint
  • General code cleanup

Update - 2/15/2016

My recent fixes introduced a new problem that made the initial connection fail most of the time on certain hosts. It's not clear if the common thread was a particular type of motherboard or USB chip set, or a specific version of Windows, or what, but several people ran into it. We tracked the problem down to the "stall" fixes in the earlier updates, which we now know weren't quite the right fixes after all. The latest update (2/15/2016) fixes this. It has new and improved "unstall" handling that so far works well with diverse hosts.

Race conditions and overall stability

The base mbed KL25Z implementation has a lot of problems with "race conditions" - timing problems that can happen when hardware interrupts occur at inopportune moments. The library shares a bunch of static variable data between interrupt handler context and regular application context. This isn't automatically a bad thing, but it does require careful coordination to make sure that the interrupt handler doesn't corrupt data that the other code was in the middle of updating when an interrupt occurs. The base mbed code, though, doesn't do any of the necessary coordination. This makes it kind of amazing that the base code worked at all for anyone, but I guess the interrupt rate is low enough in most applications that the glitch rate was below anyone's threshold to seriously investigate.

This overhaul adds the necessary coordination for the interrupt handlers to protect against these data corruptions. I think it's very solid now, and hopefully entirely free of the numerous race conditions in the old code. It's always hard to be certain that you've fixed every possible bug like this because they strike (effectively) at random, but I'm pretty confident: my test application was reliably able to trigger glitches in the base code in a matter of minutes, but the same application (with the overhauled library) now runs for days on end without dropping the connection.

Stalled endpoint fixes

USB has a standard way of handling communications errors called a "stall", which basically puts the connection into an error mode to let both sides know that they need to reset their internal states and sync up again. The original mbed version of the USB device library doesn't seem to have the necessary code to recover from this condition properly. The KL25Z hardware does some of the work, but it also seems to require the software to take some steps to "un-stall" the connection. (I keep saying "seems to" because the hardware reference material is very sketchy about all of this. Most of what I've figured out is from observing the device in action with a Windows host.) This new version adds code to do the necessary re-syncing and get the connection going again, automatically, and transparently to the user.

USB 3.0 Hosts

The original mbed code sometimes didn't work when connecting to hosts with USB 3.0 ports. This didn't affect every host, but it affected many of them. The common element seemed to be the Intel Haswell chip set on the host, but there may be other chip sets affected as well. In any case, the problem affected many PCs from the Windows 7 and 8 generation, as well as many Macs. It was possible to work around the problem by avoiding USB 3.0 ports - you could use a USB 2 port on the host, or plug a USB 2 hub between the host and device. But I wanted to just fix the problem and eliminate the need for such workarounds. This modified version of the library has such a fix, which so far has worked for everyone who's tried.

Sleep/resume notifications

This modified version also contains an innocuous change to the KL25Z USB HAL code to handle sleep and resume interrupts with calls to suspendStateChanged(). The original KL25Z code omitted these calls (and in fact didn't even enable the interrupts), but I think this was an unintentional oversight - the notifier function is part of the generic API, and other supported boards all implement it. I use this feature in my own application so that I can distinguish sleep mode from actual disconnects and handle the two conditions correctly.

Smaller memory footprint

The base mbed version of the code allocates twice as much memory for USB buffers as it really needed to. It looks like the original developers intended to implement the KL25Z USB hardware's built-in double-buffering mechanism, but they ultimately abandoned that effort. But they left in the double memory allocation. This version removes that and allocates only what's actually needed. The USB buffers aren't that big (128 bytes per endpoint), so this doesn't save a ton of memory, but even a little memory is pretty precious on this machine given that it only has 16K.

(I did look into adding the double-buffering support that the original developers abandoned, but after some experimentation I decided they were right to skip it. It just doesn't seem to mesh well with the design of the rest of the mbed USB code. I think it would take a major rewrite to make it work, and it doesn't seem worth the effort given that most applications don't need it - it would only benefit applications that are moving so much data through USB that they're pushing the limits of the CPU. And even for those, I think it would be a lot simpler to build a purely software-based buffer rotation mechanism.)

General code cleanup

The KL25Z HAL code in this version has greatly expanded commentary and a lot of general cleanup. Some of the hardware constants were given the wrong symbolic names (e.g., EVEN and ODD were reversed), and many were just missing (written as hard-coded numbers without explanation). I fixed the misnomers and added symbolic names for formerly anonymous numbers. Hopefully the next person who has to overhaul this code will at least have an easier time understanding what I thought I was doing!

Committer:
samux
Date:
Tue Jul 17 14:30:29 2012 +0000
Revision:
1:80ab0d068708
Child:
3:6d85e04fb59f
Update USBDevice lib

Who changed what in which revision?

UserRevisionLine numberNew contents of line
samux 1:80ab0d068708 1 /* Copyright (c) 2010-2011 mbed.org, MIT License
samux 1:80ab0d068708 2 *
samux 1:80ab0d068708 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
samux 1:80ab0d068708 4 * and associated documentation files (the "Software"), to deal in the Software without
samux 1:80ab0d068708 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
samux 1:80ab0d068708 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
samux 1:80ab0d068708 7 * Software is furnished to do so, subject to the following conditions:
samux 1:80ab0d068708 8 *
samux 1:80ab0d068708 9 * The above copyright notice and this permission notice shall be included in all copies or
samux 1:80ab0d068708 10 * substantial portions of the Software.
samux 1:80ab0d068708 11 *
samux 1:80ab0d068708 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
samux 1:80ab0d068708 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
samux 1:80ab0d068708 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
samux 1:80ab0d068708 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
samux 1:80ab0d068708 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
samux 1:80ab0d068708 17 */
samux 1:80ab0d068708 18
samux 1:80ab0d068708 19 #ifdef TARGET_LPC11U24
samux 1:80ab0d068708 20
samux 1:80ab0d068708 21 #include "USBHAL.h"
samux 1:80ab0d068708 22
samux 1:80ab0d068708 23 USBHAL * USBHAL::instance;
samux 1:80ab0d068708 24
samux 1:80ab0d068708 25
samux 1:80ab0d068708 26 // Valid physical endpoint numbers are 0 to (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
samux 1:80ab0d068708 27 #define LAST_PHYSICAL_ENDPOINT (NUMBER_OF_PHYSICAL_ENDPOINTS-1)
samux 1:80ab0d068708 28
samux 1:80ab0d068708 29 // Convert physical endpoint number to register bit
samux 1:80ab0d068708 30 #define EP(endpoint) (1UL<<endpoint)
samux 1:80ab0d068708 31
samux 1:80ab0d068708 32 // Convert physical to logical
samux 1:80ab0d068708 33 #define PHY_TO_LOG(endpoint) ((endpoint)>>1)
samux 1:80ab0d068708 34
samux 1:80ab0d068708 35 // Get endpoint direction
samux 1:80ab0d068708 36 #define IN_EP(endpoint) ((endpoint) & 1U ? true : false)
samux 1:80ab0d068708 37 #define OUT_EP(endpoint) ((endpoint) & 1U ? false : true)
samux 1:80ab0d068708 38
samux 1:80ab0d068708 39 // USB RAM
samux 1:80ab0d068708 40 #define USB_RAM_START (0x20004000)
samux 1:80ab0d068708 41 #define USB_RAM_SIZE (0x00000800)
samux 1:80ab0d068708 42
samux 1:80ab0d068708 43 // SYSAHBCLKCTRL
samux 1:80ab0d068708 44 #define CLK_USB (1UL<<14)
samux 1:80ab0d068708 45 #define CLK_USBRAM (1UL<<27)
samux 1:80ab0d068708 46
samux 1:80ab0d068708 47 // USB Information register
samux 1:80ab0d068708 48 #define FRAME_NR(a) ((a) & 0x7ff) // Frame number
samux 1:80ab0d068708 49
samux 1:80ab0d068708 50 // USB Device Command/Status register
samux 1:80ab0d068708 51 #define DEV_ADDR_MASK (0x7f) // Device address
samux 1:80ab0d068708 52 #define DEV_ADDR(a) ((a) & DEV_ADDR_MASK)
samux 1:80ab0d068708 53 #define DEV_EN (1UL<<7) // Device enable
samux 1:80ab0d068708 54 #define SETUP (1UL<<8) // SETUP token received
samux 1:80ab0d068708 55 #define PLL_ON (1UL<<9) // PLL enabled in suspend
samux 1:80ab0d068708 56 #define DCON (1UL<<16) // Device status - connect
samux 1:80ab0d068708 57 #define DSUS (1UL<<17) // Device status - suspend
samux 1:80ab0d068708 58 #define DCON_C (1UL<<24) // Connect change
samux 1:80ab0d068708 59 #define DSUS_C (1UL<<25) // Suspend change
samux 1:80ab0d068708 60 #define DRES_C (1UL<<26) // Reset change
samux 1:80ab0d068708 61 #define VBUSDEBOUNCED (1UL<<28) // Vbus detected
samux 1:80ab0d068708 62
samux 1:80ab0d068708 63 // Endpoint Command/Status list
samux 1:80ab0d068708 64 #define CMDSTS_A (1UL<<31) // Active
samux 1:80ab0d068708 65 #define CMDSTS_D (1UL<<30) // Disable
samux 1:80ab0d068708 66 #define CMDSTS_S (1UL<<29) // Stall
samux 1:80ab0d068708 67 #define CMDSTS_TR (1UL<<28) // Toggle Reset
samux 1:80ab0d068708 68 #define CMDSTS_RF (1UL<<27) // Rate Feedback mode
samux 1:80ab0d068708 69 #define CMDSTS_TV (1UL<<27) // Toggle Value
samux 1:80ab0d068708 70 #define CMDSTS_T (1UL<<26) // Endpoint Type
samux 1:80ab0d068708 71 #define CMDSTS_NBYTES(n) (((n)&0x3ff)<<16) // Number of bytes
samux 1:80ab0d068708 72 #define CMDSTS_ADDRESS_OFFSET(a) (((a)>>6)&0xffff) // Buffer start address
samux 1:80ab0d068708 73
samux 1:80ab0d068708 74 #define BYTES_REMAINING(s) (((s)>>16)&0x3ff) // Bytes remaining after transfer
samux 1:80ab0d068708 75
samux 1:80ab0d068708 76 // USB Non-endpoint interrupt sources
samux 1:80ab0d068708 77 #define FRAME_INT (1UL<<30)
samux 1:80ab0d068708 78 #define DEV_INT (1UL<<31)
samux 1:80ab0d068708 79
samux 1:80ab0d068708 80 static volatile int epComplete = 0;
samux 1:80ab0d068708 81
samux 1:80ab0d068708 82 // One entry for a double-buffered logical endpoint in the endpoint
samux 1:80ab0d068708 83 // command/status list. Endpoint 0 is single buffered, out[1] is used
samux 1:80ab0d068708 84 // for the SETUP packet and in[1] is not used
samux 1:80ab0d068708 85 typedef __packed struct {
samux 1:80ab0d068708 86 uint32_t out[2];
samux 1:80ab0d068708 87 uint32_t in[2];
samux 1:80ab0d068708 88 } EP_COMMAND_STATUS;
samux 1:80ab0d068708 89
samux 1:80ab0d068708 90 typedef __packed struct {
samux 1:80ab0d068708 91 uint8_t out[MAX_PACKET_SIZE_EP0];
samux 1:80ab0d068708 92 uint8_t in[MAX_PACKET_SIZE_EP0];
samux 1:80ab0d068708 93 uint8_t setup[SETUP_PACKET_SIZE];
samux 1:80ab0d068708 94 } CONTROL_TRANSFER;
samux 1:80ab0d068708 95
samux 1:80ab0d068708 96 typedef __packed struct {
samux 1:80ab0d068708 97 uint32_t maxPacket;
samux 1:80ab0d068708 98 uint32_t buffer[2];
samux 1:80ab0d068708 99 uint32_t options;
samux 1:80ab0d068708 100 } EP_STATE;
samux 1:80ab0d068708 101
samux 1:80ab0d068708 102 static volatile EP_STATE endpointState[NUMBER_OF_PHYSICAL_ENDPOINTS];
samux 1:80ab0d068708 103
samux 1:80ab0d068708 104 // Pointer to the endpoint command/status list
samux 1:80ab0d068708 105 static EP_COMMAND_STATUS *ep = NULL;
samux 1:80ab0d068708 106
samux 1:80ab0d068708 107 // Pointer to endpoint 0 data (IN/OUT and SETUP)
samux 1:80ab0d068708 108 static CONTROL_TRANSFER *ct = NULL;
samux 1:80ab0d068708 109
samux 1:80ab0d068708 110 // Shadow DEVCMDSTAT register to avoid accidentally clearing flags or
samux 1:80ab0d068708 111 // initiating a remote wakeup event.
samux 1:80ab0d068708 112 static volatile uint32_t devCmdStat;
samux 1:80ab0d068708 113
samux 1:80ab0d068708 114 // Pointers used to allocate USB RAM
samux 1:80ab0d068708 115 static uint32_t usbRamPtr = USB_RAM_START;
samux 1:80ab0d068708 116 static uint32_t epRamPtr = 0; // Buffers for endpoints > 0 start here
samux 1:80ab0d068708 117
samux 1:80ab0d068708 118 #define ROUND_UP_TO_MULTIPLE(x, m) ((((x)+((m)-1))/(m))*(m))
samux 1:80ab0d068708 119
samux 1:80ab0d068708 120 void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size);
samux 1:80ab0d068708 121 void USBMemCopy(uint8_t *dst, uint8_t *src, uint32_t size) {
samux 1:80ab0d068708 122 if (size > 0) {
samux 1:80ab0d068708 123 do {
samux 1:80ab0d068708 124 *dst++ = *src++;
samux 1:80ab0d068708 125 } while (--size > 0);
samux 1:80ab0d068708 126 }
samux 1:80ab0d068708 127 }
samux 1:80ab0d068708 128
samux 1:80ab0d068708 129
samux 1:80ab0d068708 130 USBHAL::USBHAL(void) {
samux 1:80ab0d068708 131 NVIC_DisableIRQ(USB_IRQn);
samux 1:80ab0d068708 132
samux 1:80ab0d068708 133 // nUSB_CONNECT output
samux 1:80ab0d068708 134 LPC_IOCON->PIO0_6 = 0x00000001;
samux 1:80ab0d068708 135
samux 1:80ab0d068708 136 // Enable clocks (USB registers, USB RAM)
samux 1:80ab0d068708 137 LPC_SYSCON->SYSAHBCLKCTRL |= CLK_USB | CLK_USBRAM;
samux 1:80ab0d068708 138
samux 1:80ab0d068708 139 // Ensure device disconnected (DCON not set)
samux 1:80ab0d068708 140 LPC_USB->DEVCMDSTAT = 0;
samux 1:80ab0d068708 141
samux 1:80ab0d068708 142 // to ensure that the USB host sees the device as
samux 1:80ab0d068708 143 // disconnected if the target CPU is reset.
samux 1:80ab0d068708 144 wait(0.3);
samux 1:80ab0d068708 145
samux 1:80ab0d068708 146 // Reserve space in USB RAM for endpoint command/status list
samux 1:80ab0d068708 147 // Must be 256 byte aligned
samux 1:80ab0d068708 148 usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 256);
samux 1:80ab0d068708 149 ep = (EP_COMMAND_STATUS *)usbRamPtr;
samux 1:80ab0d068708 150 usbRamPtr += (sizeof(EP_COMMAND_STATUS) * NUMBER_OF_LOGICAL_ENDPOINTS);
samux 1:80ab0d068708 151 LPC_USB->EPLISTSTART = (uint32_t)(ep) & 0xffffff00;
samux 1:80ab0d068708 152
samux 1:80ab0d068708 153 // Reserve space in USB RAM for Endpoint 0
samux 1:80ab0d068708 154 // Must be 64 byte aligned
samux 1:80ab0d068708 155 usbRamPtr = ROUND_UP_TO_MULTIPLE(usbRamPtr, 64);
samux 1:80ab0d068708 156 ct = (CONTROL_TRANSFER *)usbRamPtr;
samux 1:80ab0d068708 157 usbRamPtr += sizeof(CONTROL_TRANSFER);
samux 1:80ab0d068708 158 LPC_USB->DATABUFSTART =(uint32_t)(ct) & 0xffc00000;
samux 1:80ab0d068708 159
samux 1:80ab0d068708 160 // Setup command/status list for EP0
samux 1:80ab0d068708 161 ep[0].out[0] = 0;
samux 1:80ab0d068708 162 ep[0].in[0] = 0;
samux 1:80ab0d068708 163 ep[0].out[1] = CMDSTS_ADDRESS_OFFSET((uint32_t)ct->setup);
samux 1:80ab0d068708 164
samux 1:80ab0d068708 165 // Route all interrupts to IRQ, some can be routed to
samux 1:80ab0d068708 166 // USB_FIQ if you wish.
samux 1:80ab0d068708 167 LPC_USB->INTROUTING = 0;
samux 1:80ab0d068708 168
samux 1:80ab0d068708 169 // Set device address 0, enable USB device, no remote wakeup
samux 1:80ab0d068708 170 devCmdStat = DEV_ADDR(0) | DEV_EN | DSUS;
samux 1:80ab0d068708 171 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 172
samux 1:80ab0d068708 173 // Enable interrupts for device events and EP0
samux 1:80ab0d068708 174 LPC_USB->INTEN = DEV_INT | EP(EP0IN) | EP(EP0OUT) | FRAME_INT;
samux 1:80ab0d068708 175 instance = this;
samux 1:80ab0d068708 176
samux 1:80ab0d068708 177 //attach IRQ handler and enable interrupts
samux 1:80ab0d068708 178 NVIC_SetVector(USB_IRQn, (uint32_t)&_usbisr);
samux 1:80ab0d068708 179 NVIC_EnableIRQ(USB_IRQn);
samux 1:80ab0d068708 180 }
samux 1:80ab0d068708 181
samux 1:80ab0d068708 182 USBHAL::~USBHAL(void) {
samux 1:80ab0d068708 183 // Ensure device disconnected (DCON not set)
samux 1:80ab0d068708 184 LPC_USB->DEVCMDSTAT = 0;
samux 1:80ab0d068708 185
samux 1:80ab0d068708 186 // Disable USB interrupts
samux 1:80ab0d068708 187 NVIC_DisableIRQ(USB_IRQn);
samux 1:80ab0d068708 188 }
samux 1:80ab0d068708 189
samux 1:80ab0d068708 190 void USBHAL::connect(void) {
samux 1:80ab0d068708 191 devCmdStat |= DCON;
samux 1:80ab0d068708 192 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 193 }
samux 1:80ab0d068708 194
samux 1:80ab0d068708 195 void USBHAL::disconnect(void) {
samux 1:80ab0d068708 196 devCmdStat &= ~DCON;
samux 1:80ab0d068708 197 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 198 }
samux 1:80ab0d068708 199
samux 1:80ab0d068708 200 void USBHAL::configureDevice(void) {
samux 1:80ab0d068708 201 }
samux 1:80ab0d068708 202
samux 1:80ab0d068708 203 void USBHAL::unconfigureDevice(void) {
samux 1:80ab0d068708 204 }
samux 1:80ab0d068708 205
samux 1:80ab0d068708 206 void USBHAL::EP0setup(uint8_t *buffer) {
samux 1:80ab0d068708 207 // Copy setup packet data
samux 1:80ab0d068708 208 USBMemCopy(buffer, ct->setup, SETUP_PACKET_SIZE);
samux 1:80ab0d068708 209 }
samux 1:80ab0d068708 210
samux 1:80ab0d068708 211 void USBHAL::EP0read(void) {
samux 1:80ab0d068708 212 // Start an endpoint 0 read
samux 1:80ab0d068708 213
samux 1:80ab0d068708 214 // The USB ISR will call USBDevice_EP0out() when a packet has been read,
samux 1:80ab0d068708 215 // the USBDevice layer then calls USBBusInterface_EP0getReadResult() to
samux 1:80ab0d068708 216 // read the data.
samux 1:80ab0d068708 217
samux 1:80ab0d068708 218 ep[0].out[0] = CMDSTS_A |CMDSTS_NBYTES(MAX_PACKET_SIZE_EP0) \
samux 1:80ab0d068708 219 | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out);
samux 1:80ab0d068708 220 }
samux 1:80ab0d068708 221
samux 1:80ab0d068708 222 uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) {
samux 1:80ab0d068708 223 // Complete an endpoint 0 read
samux 1:80ab0d068708 224 uint32_t bytesRead;
samux 1:80ab0d068708 225
samux 1:80ab0d068708 226 // Find how many bytes were read
samux 1:80ab0d068708 227 bytesRead = MAX_PACKET_SIZE_EP0 - BYTES_REMAINING(ep[0].out[0]);
samux 1:80ab0d068708 228
samux 1:80ab0d068708 229 // Copy data
samux 1:80ab0d068708 230 USBMemCopy(buffer, ct->out, bytesRead);
samux 1:80ab0d068708 231 return bytesRead;
samux 1:80ab0d068708 232 }
samux 1:80ab0d068708 233
samux 1:80ab0d068708 234 void USBHAL::EP0write(uint8_t *buffer, uint32_t size) {
samux 1:80ab0d068708 235 // Start and endpoint 0 write
samux 1:80ab0d068708 236
samux 1:80ab0d068708 237 // The USB ISR will call USBDevice_EP0in() when the data has
samux 1:80ab0d068708 238 // been written, the USBDevice layer then calls
samux 1:80ab0d068708 239 // USBBusInterface_EP0getWriteResult() to complete the transaction.
samux 1:80ab0d068708 240
samux 1:80ab0d068708 241 // Copy data
samux 1:80ab0d068708 242 USBMemCopy(ct->in, buffer, size);
samux 1:80ab0d068708 243
samux 1:80ab0d068708 244 // Start transfer
samux 1:80ab0d068708 245 ep[0].in[0] = CMDSTS_A | CMDSTS_NBYTES(size) \
samux 1:80ab0d068708 246 | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->in);
samux 1:80ab0d068708 247 }
samux 1:80ab0d068708 248
samux 1:80ab0d068708 249
samux 1:80ab0d068708 250 EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) {
samux 1:80ab0d068708 251 uint8_t bf = 0;
samux 1:80ab0d068708 252 uint32_t flags = 0;
samux 1:80ab0d068708 253
samux 1:80ab0d068708 254 //check which buffer must be filled
samux 1:80ab0d068708 255 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 256 // Double buffered
samux 1:80ab0d068708 257 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 258 bf = 1;
samux 1:80ab0d068708 259 } else {
samux 1:80ab0d068708 260 bf = 0;
samux 1:80ab0d068708 261 }
samux 1:80ab0d068708 262 }
samux 1:80ab0d068708 263
samux 1:80ab0d068708 264 // if isochronous endpoint, T = 1
samux 1:80ab0d068708 265 if(endpointState[endpoint].options & ISOCHRONOUS)
samux 1:80ab0d068708 266 {
samux 1:80ab0d068708 267 flags |= CMDSTS_T;
samux 1:80ab0d068708 268 }
samux 1:80ab0d068708 269
samux 1:80ab0d068708 270 //Active the endpoint for reading
samux 1:80ab0d068708 271 ep[PHY_TO_LOG(endpoint)].out[bf] = CMDSTS_A | CMDSTS_NBYTES(maximumSize) \
samux 1:80ab0d068708 272 | CMDSTS_ADDRESS_OFFSET((uint32_t)ct->out) | flags;
samux 1:80ab0d068708 273 return EP_PENDING;
samux 1:80ab0d068708 274 }
samux 1:80ab0d068708 275
samux 1:80ab0d068708 276 EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead) {
samux 1:80ab0d068708 277
samux 1:80ab0d068708 278 uint8_t bf = 0;
samux 1:80ab0d068708 279
samux 1:80ab0d068708 280 if (!(epComplete & EP(endpoint)))
samux 1:80ab0d068708 281 return EP_PENDING;
samux 1:80ab0d068708 282 else {
samux 1:80ab0d068708 283 epComplete &= ~EP(endpoint);
samux 1:80ab0d068708 284
samux 1:80ab0d068708 285 //check which buffer has been filled
samux 1:80ab0d068708 286 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 287 // Double buffered (here we read the previous buffer which was used)
samux 1:80ab0d068708 288 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 289 bf = 0;
samux 1:80ab0d068708 290 } else {
samux 1:80ab0d068708 291 bf = 1;
samux 1:80ab0d068708 292 }
samux 1:80ab0d068708 293 }
samux 1:80ab0d068708 294
samux 1:80ab0d068708 295 // Find how many bytes were read
samux 1:80ab0d068708 296 *bytesRead = (uint32_t) (endpointState[endpoint].maxPacket - BYTES_REMAINING(ep[PHY_TO_LOG(endpoint)].out[bf]));
samux 1:80ab0d068708 297
samux 1:80ab0d068708 298 // Copy data
samux 1:80ab0d068708 299 USBMemCopy(data, ct->out, *bytesRead);
samux 1:80ab0d068708 300 return EP_COMPLETED;
samux 1:80ab0d068708 301 }
samux 1:80ab0d068708 302 }
samux 1:80ab0d068708 303
samux 1:80ab0d068708 304 void USBHAL::EP0getWriteResult(void) {
samux 1:80ab0d068708 305 // Complete an endpoint 0 write
samux 1:80ab0d068708 306
samux 1:80ab0d068708 307 // Nothing required for this target
samux 1:80ab0d068708 308 return;
samux 1:80ab0d068708 309 }
samux 1:80ab0d068708 310
samux 1:80ab0d068708 311 void USBHAL::EP0stall(void) {
samux 1:80ab0d068708 312 ep[0].in[0] = CMDSTS_S;
samux 1:80ab0d068708 313 ep[0].out[0] = CMDSTS_S;
samux 1:80ab0d068708 314 }
samux 1:80ab0d068708 315
samux 1:80ab0d068708 316 void USBHAL::setAddress(uint8_t address) {
samux 1:80ab0d068708 317 devCmdStat &= ~DEV_ADDR_MASK;
samux 1:80ab0d068708 318 devCmdStat |= DEV_ADDR(address);
samux 1:80ab0d068708 319 LPC_USB->DEVCMDSTAT = devCmdStat;
samux 1:80ab0d068708 320 }
samux 1:80ab0d068708 321
samux 1:80ab0d068708 322 EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) {
samux 1:80ab0d068708 323 uint32_t flags = 0;
samux 1:80ab0d068708 324 uint32_t bf;
samux 1:80ab0d068708 325
samux 1:80ab0d068708 326 // Validate parameters
samux 1:80ab0d068708 327 if (data == NULL) {
samux 1:80ab0d068708 328 return EP_INVALID;
samux 1:80ab0d068708 329 }
samux 1:80ab0d068708 330
samux 1:80ab0d068708 331 if (endpoint > LAST_PHYSICAL_ENDPOINT) {
samux 1:80ab0d068708 332 return EP_INVALID;
samux 1:80ab0d068708 333 }
samux 1:80ab0d068708 334
samux 1:80ab0d068708 335 if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
samux 1:80ab0d068708 336 return EP_INVALID;
samux 1:80ab0d068708 337 }
samux 1:80ab0d068708 338
samux 1:80ab0d068708 339 if (size > endpointState[endpoint].maxPacket) {
samux 1:80ab0d068708 340 return EP_INVALID;
samux 1:80ab0d068708 341 }
samux 1:80ab0d068708 342
samux 1:80ab0d068708 343 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 344 // Double buffered
samux 1:80ab0d068708 345 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 346 bf = 1;
samux 1:80ab0d068708 347 } else {
samux 1:80ab0d068708 348 bf = 0;
samux 1:80ab0d068708 349 }
samux 1:80ab0d068708 350 } else {
samux 1:80ab0d068708 351 // Single buffered
samux 1:80ab0d068708 352 bf = 0;
samux 1:80ab0d068708 353 }
samux 1:80ab0d068708 354
samux 1:80ab0d068708 355 // Check if already active
samux 1:80ab0d068708 356 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
samux 1:80ab0d068708 357 return EP_INVALID;
samux 1:80ab0d068708 358 }
samux 1:80ab0d068708 359
samux 1:80ab0d068708 360 // Check if stalled
samux 1:80ab0d068708 361 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
samux 1:80ab0d068708 362 return EP_STALLED;
samux 1:80ab0d068708 363 }
samux 1:80ab0d068708 364
samux 1:80ab0d068708 365 // Copy data to USB RAM
samux 1:80ab0d068708 366 USBMemCopy((uint8_t *)endpointState[endpoint].buffer[bf], data, size);
samux 1:80ab0d068708 367
samux 1:80ab0d068708 368 // Add options
samux 1:80ab0d068708 369 if (endpointState[endpoint].options & RATE_FEEDBACK_MODE) {
samux 1:80ab0d068708 370 flags |= CMDSTS_RF;
samux 1:80ab0d068708 371 }
samux 1:80ab0d068708 372
samux 1:80ab0d068708 373 if (endpointState[endpoint].options & ISOCHRONOUS) {
samux 1:80ab0d068708 374 flags |= CMDSTS_T;
samux 1:80ab0d068708 375 }
samux 1:80ab0d068708 376
samux 1:80ab0d068708 377 // Add transfer
samux 1:80ab0d068708 378 ep[PHY_TO_LOG(endpoint)].in[bf] = CMDSTS_ADDRESS_OFFSET( \
samux 1:80ab0d068708 379 endpointState[endpoint].buffer[bf]) \
samux 1:80ab0d068708 380 | CMDSTS_NBYTES(size) | CMDSTS_A | flags;
samux 1:80ab0d068708 381
samux 1:80ab0d068708 382 return EP_PENDING;
samux 1:80ab0d068708 383 }
samux 1:80ab0d068708 384
samux 1:80ab0d068708 385 EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) {
samux 1:80ab0d068708 386 uint32_t bf;
samux 1:80ab0d068708 387 // Validate parameters
samux 1:80ab0d068708 388
samux 1:80ab0d068708 389 if (endpoint > LAST_PHYSICAL_ENDPOINT) {
samux 1:80ab0d068708 390 return EP_INVALID;
samux 1:80ab0d068708 391 }
samux 1:80ab0d068708 392
samux 1:80ab0d068708 393 if (OUT_EP(endpoint)) {
samux 1:80ab0d068708 394 return EP_INVALID;
samux 1:80ab0d068708 395 }
samux 1:80ab0d068708 396
samux 1:80ab0d068708 397 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 398 // Double buffered // TODO: FIX THIS
samux 1:80ab0d068708 399 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 400 bf = 1;
samux 1:80ab0d068708 401 } else {
samux 1:80ab0d068708 402 bf = 0;
samux 1:80ab0d068708 403 }
samux 1:80ab0d068708 404 } else {
samux 1:80ab0d068708 405 // Single buffered
samux 1:80ab0d068708 406 bf = 0;
samux 1:80ab0d068708 407 }
samux 1:80ab0d068708 408
samux 1:80ab0d068708 409 // Check if endpoint still active
samux 1:80ab0d068708 410 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_A) {
samux 1:80ab0d068708 411 return EP_PENDING;
samux 1:80ab0d068708 412 }
samux 1:80ab0d068708 413
samux 1:80ab0d068708 414 // Check if stalled
samux 1:80ab0d068708 415 if (ep[PHY_TO_LOG(endpoint)].in[bf] & CMDSTS_S) {
samux 1:80ab0d068708 416 return EP_STALLED;
samux 1:80ab0d068708 417 }
samux 1:80ab0d068708 418
samux 1:80ab0d068708 419 return EP_COMPLETED;
samux 1:80ab0d068708 420 }
samux 1:80ab0d068708 421
samux 1:80ab0d068708 422 void USBHAL::stallEndpoint(uint8_t endpoint) {
samux 1:80ab0d068708 423
samux 1:80ab0d068708 424 // TODO: should this clear active bit?
samux 1:80ab0d068708 425
samux 1:80ab0d068708 426 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 427 ep[PHY_TO_LOG(endpoint)].in[0] |= CMDSTS_S;
samux 1:80ab0d068708 428 ep[PHY_TO_LOG(endpoint)].in[1] |= CMDSTS_S;
samux 1:80ab0d068708 429 } else {
samux 1:80ab0d068708 430 ep[PHY_TO_LOG(endpoint)].out[0] |= CMDSTS_S;
samux 1:80ab0d068708 431 ep[PHY_TO_LOG(endpoint)].out[1] |= CMDSTS_S;
samux 1:80ab0d068708 432 }
samux 1:80ab0d068708 433 }
samux 1:80ab0d068708 434
samux 1:80ab0d068708 435 void USBHAL::unstallEndpoint(uint8_t endpoint) {
samux 1:80ab0d068708 436 if (LPC_USB->EPBUFCFG & EP(endpoint)) {
samux 1:80ab0d068708 437 // Double buffered
samux 1:80ab0d068708 438 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 439 ep[PHY_TO_LOG(endpoint)].in[0] = 0; // S = 0
samux 1:80ab0d068708 440 ep[PHY_TO_LOG(endpoint)].in[1] = 0; // S = 0
samux 1:80ab0d068708 441
samux 1:80ab0d068708 442 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 443 ep[PHY_TO_LOG(endpoint)].in[1] = CMDSTS_TR; // S =0, TR=1, TV = 0
samux 1:80ab0d068708 444 } else {
samux 1:80ab0d068708 445 ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S =0, TR=1, TV = 0
samux 1:80ab0d068708 446 }
samux 1:80ab0d068708 447 } else {
samux 1:80ab0d068708 448 ep[PHY_TO_LOG(endpoint)].out[0] = 0; // S = 0
samux 1:80ab0d068708 449 ep[PHY_TO_LOG(endpoint)].out[1] = 0; // S = 0
samux 1:80ab0d068708 450
samux 1:80ab0d068708 451 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 452 ep[PHY_TO_LOG(endpoint)].out[1] = CMDSTS_TR; // S =0, TR=1, TV = 0
samux 1:80ab0d068708 453 } else {
samux 1:80ab0d068708 454 ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S =0, TR=1, TV = 0
samux 1:80ab0d068708 455 }
samux 1:80ab0d068708 456 }
samux 1:80ab0d068708 457 } else {
samux 1:80ab0d068708 458 // Single buffered
samux 1:80ab0d068708 459 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 460 ep[PHY_TO_LOG(endpoint)].in[0] = CMDSTS_TR; // S=0, TR=1, TV = 0
samux 1:80ab0d068708 461 } else {
samux 1:80ab0d068708 462 ep[PHY_TO_LOG(endpoint)].out[0] = CMDSTS_TR; // S=0, TR=1, TV = 0
samux 1:80ab0d068708 463 }
samux 1:80ab0d068708 464 }
samux 1:80ab0d068708 465 }
samux 1:80ab0d068708 466
samux 1:80ab0d068708 467 bool USBHAL::getEndpointStallState(unsigned char endpoint) {
samux 1:80ab0d068708 468 if (IN_EP(endpoint)) {
samux 1:80ab0d068708 469 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 470 if (ep[PHY_TO_LOG(endpoint)].in[1] & CMDSTS_S) {
samux 1:80ab0d068708 471 return true;
samux 1:80ab0d068708 472 }
samux 1:80ab0d068708 473 } else {
samux 1:80ab0d068708 474 if (ep[PHY_TO_LOG(endpoint)].in[0] & CMDSTS_S) {
samux 1:80ab0d068708 475 return true;
samux 1:80ab0d068708 476 }
samux 1:80ab0d068708 477 }
samux 1:80ab0d068708 478 } else {
samux 1:80ab0d068708 479 if (LPC_USB->EPINUSE & EP(endpoint)) {
samux 1:80ab0d068708 480 if (ep[PHY_TO_LOG(endpoint)].out[1] & CMDSTS_S) {
samux 1:80ab0d068708 481 return true;
samux 1:80ab0d068708 482 }
samux 1:80ab0d068708 483 } else {
samux 1:80ab0d068708 484 if (ep[PHY_TO_LOG(endpoint)].out[0] & CMDSTS_S) {
samux 1:80ab0d068708 485 return true;
samux 1:80ab0d068708 486 }
samux 1:80ab0d068708 487 }
samux 1:80ab0d068708 488 }
samux 1:80ab0d068708 489
samux 1:80ab0d068708 490 return false;
samux 1:80ab0d068708 491 }
samux 1:80ab0d068708 492
samux 1:80ab0d068708 493 bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) {
samux 1:80ab0d068708 494 uint32_t tmpEpRamPtr;
samux 1:80ab0d068708 495
samux 1:80ab0d068708 496 if (endpoint > LAST_PHYSICAL_ENDPOINT) {
samux 1:80ab0d068708 497 return false;
samux 1:80ab0d068708 498 }
samux 1:80ab0d068708 499
samux 1:80ab0d068708 500 // Not applicable to the control endpoints
samux 1:80ab0d068708 501 if ((endpoint==EP0IN) || (endpoint==EP0OUT)) {
samux 1:80ab0d068708 502 return false;
samux 1:80ab0d068708 503 }
samux 1:80ab0d068708 504
samux 1:80ab0d068708 505 // Allocate buffers in USB RAM
samux 1:80ab0d068708 506 tmpEpRamPtr = epRamPtr;
samux 1:80ab0d068708 507
samux 1:80ab0d068708 508 // Must be 64 byte aligned
samux 1:80ab0d068708 509 tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
samux 1:80ab0d068708 510
samux 1:80ab0d068708 511 if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
samux 1:80ab0d068708 512 // Out of memory
samux 1:80ab0d068708 513 return false;
samux 1:80ab0d068708 514 }
samux 1:80ab0d068708 515
samux 1:80ab0d068708 516 // Allocate first buffer
samux 1:80ab0d068708 517 endpointState[endpoint].buffer[0] = tmpEpRamPtr;
samux 1:80ab0d068708 518 tmpEpRamPtr += maxPacket;
samux 1:80ab0d068708 519
samux 1:80ab0d068708 520 if (!(options & SINGLE_BUFFERED)) {
samux 1:80ab0d068708 521 // Must be 64 byte aligned
samux 1:80ab0d068708 522 tmpEpRamPtr = ROUND_UP_TO_MULTIPLE(tmpEpRamPtr, 64);
samux 1:80ab0d068708 523
samux 1:80ab0d068708 524 if ((tmpEpRamPtr + maxPacket) > (USB_RAM_START + USB_RAM_SIZE)) {
samux 1:80ab0d068708 525 // Out of memory
samux 1:80ab0d068708 526 return false;
samux 1:80ab0d068708 527 }
samux 1:80ab0d068708 528
samux 1:80ab0d068708 529 // Allocate second buffer
samux 1:80ab0d068708 530 endpointState[endpoint].buffer[1] = tmpEpRamPtr;
samux 1:80ab0d068708 531 tmpEpRamPtr += maxPacket;
samux 1:80ab0d068708 532 }
samux 1:80ab0d068708 533
samux 1:80ab0d068708 534 // Commit to this USB RAM allocation
samux 1:80ab0d068708 535 epRamPtr = tmpEpRamPtr;
samux 1:80ab0d068708 536
samux 1:80ab0d068708 537 // Remaining endpoint state values
samux 1:80ab0d068708 538 endpointState[endpoint].maxPacket = maxPacket;
samux 1:80ab0d068708 539 endpointState[endpoint].options = options;
samux 1:80ab0d068708 540
samux 1:80ab0d068708 541 // Enable double buffering if required
samux 1:80ab0d068708 542 if (options & SINGLE_BUFFERED) {
samux 1:80ab0d068708 543 LPC_USB->EPBUFCFG &= ~EP(endpoint);
samux 1:80ab0d068708 544 } else {
samux 1:80ab0d068708 545 // Double buffered
samux 1:80ab0d068708 546 LPC_USB->EPBUFCFG |= EP(endpoint);
samux 1:80ab0d068708 547 }
samux 1:80ab0d068708 548
samux 1:80ab0d068708 549 // Enable interrupt
samux 1:80ab0d068708 550 LPC_USB->INTEN |= EP(endpoint);
samux 1:80ab0d068708 551
samux 1:80ab0d068708 552 // Enable endpoint
samux 1:80ab0d068708 553 unstallEndpoint(endpoint);
samux 1:80ab0d068708 554 return true;
samux 1:80ab0d068708 555 }
samux 1:80ab0d068708 556
samux 1:80ab0d068708 557 void USBHAL::remoteWakeup(void) {
samux 1:80ab0d068708 558 // Clearing DSUS bit initiates a remote wakeup if the
samux 1:80ab0d068708 559 // device is currently enabled and suspended - otherwise
samux 1:80ab0d068708 560 // it has no effect.
samux 1:80ab0d068708 561 LPC_USB->DEVCMDSTAT = devCmdStat & ~DSUS;
samux 1:80ab0d068708 562 }
samux 1:80ab0d068708 563
samux 1:80ab0d068708 564
samux 1:80ab0d068708 565 static void disableEndpoints(void) {
samux 1:80ab0d068708 566 uint32_t logEp;
samux 1:80ab0d068708 567
samux 1:80ab0d068708 568 // Ref. Table 158 "When a bus reset is received, software
samux 1:80ab0d068708 569 // must set the disable bit of all endpoints to 1".
samux 1:80ab0d068708 570
samux 1:80ab0d068708 571 for (logEp = 1; logEp < NUMBER_OF_LOGICAL_ENDPOINTS; logEp++) {
samux 1:80ab0d068708 572 ep[logEp].out[0] = CMDSTS_D;
samux 1:80ab0d068708 573 ep[logEp].out[1] = CMDSTS_D;
samux 1:80ab0d068708 574 ep[logEp].in[0] = CMDSTS_D;
samux 1:80ab0d068708 575 ep[logEp].in[1] = CMDSTS_D;
samux 1:80ab0d068708 576 }
samux 1:80ab0d068708 577
samux 1:80ab0d068708 578 // Start of USB RAM for endpoints > 0
samux 1:80ab0d068708 579 epRamPtr = usbRamPtr;
samux 1:80ab0d068708 580 }
samux 1:80ab0d068708 581
samux 1:80ab0d068708 582
samux 1:80ab0d068708 583
samux 1:80ab0d068708 584 void USBHAL::_usbisr(void) {
samux 1:80ab0d068708 585 instance->usbisr();
samux 1:80ab0d068708 586 }
samux 1:80ab0d068708 587
samux 1:80ab0d068708 588 void USBHAL::usbisr(void) {
samux 1:80ab0d068708 589 // Start of frame
samux 1:80ab0d068708 590 if (LPC_USB->INTSTAT & FRAME_INT) {
samux 1:80ab0d068708 591 // Clear SOF interrupt
samux 1:80ab0d068708 592 LPC_USB->INTSTAT = FRAME_INT;
samux 1:80ab0d068708 593
samux 1:80ab0d068708 594 // SOF event, read frame number
samux 1:80ab0d068708 595 SOF(FRAME_NR(LPC_USB->INFO));
samux 1:80ab0d068708 596 }
samux 1:80ab0d068708 597
samux 1:80ab0d068708 598 // Device state
samux 1:80ab0d068708 599 if (LPC_USB->INTSTAT & DEV_INT) {
samux 1:80ab0d068708 600 LPC_USB->INTSTAT = DEV_INT;
samux 1:80ab0d068708 601
samux 1:80ab0d068708 602 if (LPC_USB->DEVCMDSTAT & DSUS_C) {
samux 1:80ab0d068708 603 // Suspend status changed
samux 1:80ab0d068708 604 LPC_USB->DEVCMDSTAT = devCmdStat | DSUS_C;
samux 1:80ab0d068708 605 if((LPC_USB->DEVCMDSTAT & DSUS) != 0) {
samux 1:80ab0d068708 606 suspendStateChanged(1);
samux 1:80ab0d068708 607 }
samux 1:80ab0d068708 608 }
samux 1:80ab0d068708 609
samux 1:80ab0d068708 610 if (LPC_USB->DEVCMDSTAT & DRES_C) {
samux 1:80ab0d068708 611 // Bus reset
samux 1:80ab0d068708 612 LPC_USB->DEVCMDSTAT = devCmdStat | DRES_C;
samux 1:80ab0d068708 613
samux 1:80ab0d068708 614 suspendStateChanged(0);
samux 1:80ab0d068708 615
samux 1:80ab0d068708 616 // Disable endpoints > 0
samux 1:80ab0d068708 617 disableEndpoints();
samux 1:80ab0d068708 618
samux 1:80ab0d068708 619 // Bus reset event
samux 1:80ab0d068708 620 busReset();
samux 1:80ab0d068708 621 }
samux 1:80ab0d068708 622 }
samux 1:80ab0d068708 623
samux 1:80ab0d068708 624 // Endpoint 0
samux 1:80ab0d068708 625 if (LPC_USB->INTSTAT & EP(EP0OUT)) {
samux 1:80ab0d068708 626 // Clear EP0OUT/SETUP interrupt
samux 1:80ab0d068708 627 LPC_USB->INTSTAT = EP(EP0OUT);
samux 1:80ab0d068708 628
samux 1:80ab0d068708 629 // Check if SETUP
samux 1:80ab0d068708 630 if (LPC_USB->DEVCMDSTAT & SETUP) {
samux 1:80ab0d068708 631 // Clear Active and Stall bits for EP0
samux 1:80ab0d068708 632 // Documentation does not make it clear if we must use the
samux 1:80ab0d068708 633 // EPSKIP register to achieve this, Fig. 16 and NXP reference
samux 1:80ab0d068708 634 // code suggests we can just clear the Active bits - check with
samux 1:80ab0d068708 635 // NXP to be sure.
samux 1:80ab0d068708 636 ep[0].in[0] = 0;
samux 1:80ab0d068708 637 ep[0].out[0] = 0;
samux 1:80ab0d068708 638
samux 1:80ab0d068708 639 // Clear EP0IN interrupt
samux 1:80ab0d068708 640 LPC_USB->INTSTAT = EP(EP0IN);
samux 1:80ab0d068708 641
samux 1:80ab0d068708 642 // Clear SETUP (and INTONNAK_CI/O) in device status register
samux 1:80ab0d068708 643 LPC_USB->DEVCMDSTAT = devCmdStat | SETUP;
samux 1:80ab0d068708 644
samux 1:80ab0d068708 645 // EP0 SETUP event (SETUP data received)
samux 1:80ab0d068708 646 EP0setupCallback();
samux 1:80ab0d068708 647 } else {
samux 1:80ab0d068708 648 // EP0OUT ACK event (OUT data received)
samux 1:80ab0d068708 649 EP0out();
samux 1:80ab0d068708 650 }
samux 1:80ab0d068708 651 }
samux 1:80ab0d068708 652
samux 1:80ab0d068708 653 if (LPC_USB->INTSTAT & EP(EP0IN)) {
samux 1:80ab0d068708 654 // Clear EP0IN interrupt
samux 1:80ab0d068708 655 LPC_USB->INTSTAT = EP(EP0IN);
samux 1:80ab0d068708 656
samux 1:80ab0d068708 657 // EP0IN ACK event (IN data sent)
samux 1:80ab0d068708 658 EP0in();
samux 1:80ab0d068708 659 }
samux 1:80ab0d068708 660
samux 1:80ab0d068708 661 if (LPC_USB->INTSTAT & EP(EP1IN)) {
samux 1:80ab0d068708 662 // Clear EP1IN interrupt
samux 1:80ab0d068708 663 LPC_USB->INTSTAT = EP(EP1IN);
samux 1:80ab0d068708 664 epComplete |= EP(EP1IN);
samux 1:80ab0d068708 665 if (EP1_IN_callback())
samux 1:80ab0d068708 666 epComplete &= ~EP(EP1IN);
samux 1:80ab0d068708 667 }
samux 1:80ab0d068708 668
samux 1:80ab0d068708 669 if (LPC_USB->INTSTAT & EP(EP1OUT)) {
samux 1:80ab0d068708 670 // Clear EP1OUT interrupt
samux 1:80ab0d068708 671 LPC_USB->INTSTAT = EP(EP1OUT);
samux 1:80ab0d068708 672 epComplete |= EP(EP1OUT);
samux 1:80ab0d068708 673 if (EP1_OUT_callback())
samux 1:80ab0d068708 674 epComplete &= ~EP(EP1OUT);
samux 1:80ab0d068708 675 }
samux 1:80ab0d068708 676
samux 1:80ab0d068708 677 if (LPC_USB->INTSTAT & EP(EP2IN)) {
samux 1:80ab0d068708 678 // Clear EPBULK_IN interrupt
samux 1:80ab0d068708 679 LPC_USB->INTSTAT = EP(EP2IN);
samux 1:80ab0d068708 680 epComplete |= EP(EP2IN);
samux 1:80ab0d068708 681 if (EP2_IN_callback())
samux 1:80ab0d068708 682 epComplete &= ~EP(EP2IN);
samux 1:80ab0d068708 683 }
samux 1:80ab0d068708 684
samux 1:80ab0d068708 685 if (LPC_USB->INTSTAT & EP(EP2OUT)) {
samux 1:80ab0d068708 686 // Clear EPBULK_OUT interrupt
samux 1:80ab0d068708 687 LPC_USB->INTSTAT = EP(EP2OUT);
samux 1:80ab0d068708 688 epComplete |= EP(EP2OUT);
samux 1:80ab0d068708 689 //Call callback function. If true, clear epComplete
samux 1:80ab0d068708 690 if (EP2_OUT_callback())
samux 1:80ab0d068708 691 epComplete &= ~EP(EP2OUT);
samux 1:80ab0d068708 692 }
samux 1:80ab0d068708 693
samux 1:80ab0d068708 694 if (LPC_USB->INTSTAT & EP(EP3IN)) {
samux 1:80ab0d068708 695 // Clear EP3_IN interrupt
samux 1:80ab0d068708 696 LPC_USB->INTSTAT = EP(EP3IN);
samux 1:80ab0d068708 697 epComplete |= EP(EP3IN);
samux 1:80ab0d068708 698 if (EP3_IN_callback())
samux 1:80ab0d068708 699 epComplete &= ~EP(EP3IN);
samux 1:80ab0d068708 700 }
samux 1:80ab0d068708 701
samux 1:80ab0d068708 702 if (LPC_USB->INTSTAT & EP(EP3OUT)) {
samux 1:80ab0d068708 703 // Clear EP3_OUT interrupt
samux 1:80ab0d068708 704 LPC_USB->INTSTAT = EP(EP3OUT);
samux 1:80ab0d068708 705 epComplete |= EP(EP3OUT);
samux 1:80ab0d068708 706 //Call callback function. If true, clear epComplete
samux 1:80ab0d068708 707 if (EP3_OUT_callback())
samux 1:80ab0d068708 708 epComplete &= ~EP(EP3OUT);
samux 1:80ab0d068708 709 }
samux 1:80ab0d068708 710 }
samux 1:80ab0d068708 711
samux 1:80ab0d068708 712 #endif