An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a real plunger, button inputs, and feedback device control.

In case you haven't heard of the concept before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to serve as the "backglass" display. A third smaller monitor can serve as the "DMD" (the Dot Matrix Display used for scoring on newer machines), or you can even install a real pinball plasma DMD. A computer is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet hardware.

A few small companies build and sell complete, finished virtual pinball machines, but I think it's more fun as a DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new config tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the config tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentionmeter (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The VirtuaPin kit uses the same KL25Z microcontroller that Pinscape uses, but the rest of its hardware is different and incompatible. In particular, the Pinscape firmware doesn't include support for the IR proximity sensor used in the VirtuaPin plunger kit, so you won't be able to use your plunger device with the Pinscape firmware. In addition, the VirtuaPin setup uses a different set of GPIO pins for the button inputs from the Pinscape defaults, so if you do install the Pinscape firmware, you'll have to go into the Config Tool and reassign all of the buttons to match the VirtuaPin wiring.

Committer:
mjr
Date:
Wed May 04 03:59:44 2016 +0000
Revision:
55:4db125cd11a0
Parent:
54:fd77a6b2f76c
Child:
57:cc03231f676b
More KL25Z USB client cleanup

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 51:57eb311faafa 1 /* Copyright 2014, 2016 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 48:058ace2aed1d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILIT Y, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 35:e959ffba78fd 20 // The Pinscape Controller
mjr 35:e959ffba78fd 21 // A comprehensive input/output controller for virtual pinball machines
mjr 5:a70c0bce770d 22 //
mjr 48:058ace2aed1d 23 // This project implements an I/O controller for virtual pinball cabinets. The
mjr 48:058ace2aed1d 24 // controller's function is to connect Visual Pinball (and other Windows pinball
mjr 48:058ace2aed1d 25 // emulators) with physical devices in the cabinet: buttons, sensors, and
mjr 48:058ace2aed1d 26 // feedback devices that create visual or mechanical effects during play.
mjr 38:091e511ce8a0 27 //
mjr 48:058ace2aed1d 28 // The controller can perform several different functions, which can be used
mjr 38:091e511ce8a0 29 // individually or in any combination:
mjr 5:a70c0bce770d 30 //
mjr 38:091e511ce8a0 31 // - Nudge sensing. This uses the KL25Z's on-board accelerometer to sense the
mjr 38:091e511ce8a0 32 // motion of the cabinet when you nudge it. Visual Pinball and other pinball
mjr 38:091e511ce8a0 33 // emulators on the PC have native handling for this type of input, so that
mjr 38:091e511ce8a0 34 // physical nudges on the cabinet turn into simulated effects on the virtual
mjr 38:091e511ce8a0 35 // ball. The KL25Z measures accelerations as analog readings and is quite
mjr 38:091e511ce8a0 36 // sensitive, so the effect of a nudge on the simulation is proportional
mjr 38:091e511ce8a0 37 // to the strength of the nudge. Accelerations are reported to the PC via a
mjr 38:091e511ce8a0 38 // simulated joystick (using the X and Y axes); you just have to set some
mjr 38:091e511ce8a0 39 // preferences in your pinball software to tell it that an accelerometer
mjr 38:091e511ce8a0 40 // is attached.
mjr 5:a70c0bce770d 41 //
mjr 38:091e511ce8a0 42 // - Plunger position sensing, with mulitple sensor options. To use this feature,
mjr 35:e959ffba78fd 43 // you need to choose a sensor and set it up, connect the sensor electrically to
mjr 35:e959ffba78fd 44 // the KL25Z, and configure the Pinscape software on the KL25Z to let it know how
mjr 35:e959ffba78fd 45 // the sensor is hooked up. The Pinscape software monitors the sensor and sends
mjr 35:e959ffba78fd 46 // readings to Visual Pinball via the joystick Z axis. VP and other PC software
mjr 38:091e511ce8a0 47 // have native support for this type of input; as with the nudge setup, you just
mjr 38:091e511ce8a0 48 // have to set some options in VP to activate the plunger.
mjr 17:ab3cec0c8bf4 49 //
mjr 35:e959ffba78fd 50 // The Pinscape software supports optical sensors (the TAOS TSL1410R and TSL1412R
mjr 35:e959ffba78fd 51 // linear sensor arrays) as well as slide potentiometers. The specific equipment
mjr 35:e959ffba78fd 52 // that's supported, along with physical mounting and wiring details, can be found
mjr 35:e959ffba78fd 53 // in the Build Guide.
mjr 35:e959ffba78fd 54 //
mjr 38:091e511ce8a0 55 // Note VP has built-in support for plunger devices like this one, but some VP
mjr 38:091e511ce8a0 56 // tables can't use it without some additional scripting work. The Build Guide has
mjr 38:091e511ce8a0 57 // advice on adjusting tables to add plunger support when necessary.
mjr 5:a70c0bce770d 58 //
mjr 6:cc35eb643e8f 59 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 60 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 61 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 62 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 17:ab3cec0c8bf4 63 // sensor or the mechanical plunger, since their alignment shift change slightly
mjr 17:ab3cec0c8bf4 64 // when you put everything back together.) You can optionally install a
mjr 17:ab3cec0c8bf4 65 // dedicated momentary switch or pushbutton to activate the calibration mode;
mjr 17:ab3cec0c8bf4 66 // this is describe in the project documentation. If you don't want to bother
mjr 17:ab3cec0c8bf4 67 // with the extra button, you can also trigger calibration using the Windows
mjr 17:ab3cec0c8bf4 68 // setup software, which you can find on the Pinscape project page.
mjr 6:cc35eb643e8f 69 //
mjr 17:ab3cec0c8bf4 70 // The calibration procedure is described in the project documentation. Briefly,
mjr 17:ab3cec0c8bf4 71 // when you trigger calibration mode, the software will scan the CCD for about
mjr 17:ab3cec0c8bf4 72 // 15 seconds, during which you should simply pull the physical plunger back
mjr 17:ab3cec0c8bf4 73 // all the way, hold it for a moment, and then slowly return it to the rest
mjr 17:ab3cec0c8bf4 74 // position. (DON'T just release it from the retracted position, since that
mjr 17:ab3cec0c8bf4 75 // let it shoot forward too far. We want to measure the range from the park
mjr 17:ab3cec0c8bf4 76 // position to the fully retracted position only.)
mjr 5:a70c0bce770d 77 //
mjr 13:72dda449c3c0 78 // - Button input wiring. 24 of the KL25Z's GPIO ports are mapped as digital inputs
mjr 38:091e511ce8a0 79 // for buttons and switches. You can wire each input to a physical pinball-style
mjr 38:091e511ce8a0 80 // button or switch, such as flipper buttons, Start buttons, coin chute switches,
mjr 38:091e511ce8a0 81 // tilt bobs, and service buttons. Each button can be configured to be reported
mjr 38:091e511ce8a0 82 // to the PC as a joystick button or as a keyboard key (you can select which key
mjr 38:091e511ce8a0 83 // is used for each button).
mjr 13:72dda449c3c0 84 //
mjr 53:9b2611964afc 85 // - LedWiz emulation. The KL25Z can pretend to be an LedWiz device. This lets
mjr 53:9b2611964afc 86 // you connect feedback devices (lights, solenoids, motors) to GPIO ports on the
mjr 53:9b2611964afc 87 // KL25Z, and lets PC software (such as Visual Pinball) control them during game
mjr 53:9b2611964afc 88 // play to create a more immersive playing experience. The Pinscape software
mjr 53:9b2611964afc 89 // presents itself to the host as an LedWiz device and accepts the full LedWiz
mjr 53:9b2611964afc 90 // command set, so software on the PC designed for real LedWiz'es can control
mjr 53:9b2611964afc 91 // attached devices without any modifications.
mjr 5:a70c0bce770d 92 //
mjr 53:9b2611964afc 93 // Even though the software provides a very thorough LedWiz emulation, the KL25Z
mjr 53:9b2611964afc 94 // GPIO hardware design imposes some serious limitations. The big one is that
mjr 53:9b2611964afc 95 // the KL25Z only has 10 PWM channels, meaning that only 10 ports can have
mjr 53:9b2611964afc 96 // varying-intensity outputs (e.g., for controlling the brightness level of an
mjr 53:9b2611964afc 97 // LED or the speed or a motor). You can control more than 10 output ports, but
mjr 53:9b2611964afc 98 // only 10 can have PWM control; the rest are simple "digital" ports that can only
mjr 53:9b2611964afc 99 // be switched fully on or fully off. The second limitation is that the KL25Z
mjr 53:9b2611964afc 100 // just doesn't have that many GPIO ports overall. There are enough to populate
mjr 53:9b2611964afc 101 // all 32 button inputs OR all 32 LedWiz outputs, but not both. The default is
mjr 53:9b2611964afc 102 // to assign 24 buttons and 22 LedWiz ports; you can change this balance to trade
mjr 53:9b2611964afc 103 // off more outputs for fewer inputs, or vice versa. The third limitation is that
mjr 53:9b2611964afc 104 // the KL25Z GPIO pins have *very* tiny amperage limits - just 4mA, which isn't
mjr 53:9b2611964afc 105 // even enough to control a small LED. So in order to connect any kind of feedback
mjr 53:9b2611964afc 106 // device to an output, you *must* build some external circuitry to boost the
mjr 53:9b2611964afc 107 // current handing. The Build Guide has a reference circuit design for this
mjr 53:9b2611964afc 108 // purpose that's simple and inexpensive to build.
mjr 6:cc35eb643e8f 109 //
mjr 26:cb71c4af2912 110 // - Enhanced LedWiz emulation with TLC5940 PWM controller chips. You can attach
mjr 26:cb71c4af2912 111 // external PWM controller chips for controlling device outputs, instead of using
mjr 53:9b2611964afc 112 // the on-board GPIO ports as described above. The software can control a set of
mjr 53:9b2611964afc 113 // daisy-chained TLC5940 chips. Each chip provides 16 PWM outputs, so you just
mjr 53:9b2611964afc 114 // need two of them to get the full complement of 32 output ports of a real LedWiz.
mjr 53:9b2611964afc 115 // You can hook up even more, though. Four chips gives you 64 ports, which should
mjr 53:9b2611964afc 116 // be plenty for nearly any virtual pinball project. To accommodate the larger
mjr 53:9b2611964afc 117 // supply of ports possible with the PWM chips, the controller software provides
mjr 53:9b2611964afc 118 // a custom, extended version of the LedWiz protocol that can handle up to 128
mjr 53:9b2611964afc 119 // ports. PC software designed only for the real LedWiz obviously won't know
mjr 53:9b2611964afc 120 // about the extended protocol and won't be able to take advantage of its extra
mjr 53:9b2611964afc 121 // capabilities, but the latest version of DOF (DirectOutput Framework) *does*
mjr 53:9b2611964afc 122 // know the new language and can take full advantage. Older software will still
mjr 53:9b2611964afc 123 // work, though - the new extensions are all backward compatible, so old software
mjr 53:9b2611964afc 124 // that only knows about the original LedWiz protocol will still work, with the
mjr 53:9b2611964afc 125 // obvious limitation that it can only access the first 32 ports.
mjr 53:9b2611964afc 126 //
mjr 53:9b2611964afc 127 // The Pinscape Expansion Board project (which appeared in early 2016) provides
mjr 53:9b2611964afc 128 // a reference hardware design, with EAGLE circuit board layouts, that takes full
mjr 53:9b2611964afc 129 // advantage of the TLC5940 capability. It lets you create a customized set of
mjr 53:9b2611964afc 130 // outputs with full PWM control and power handling for high-current devices
mjr 53:9b2611964afc 131 // built in to the boards.
mjr 26:cb71c4af2912 132 //
mjr 38:091e511ce8a0 133 // - Night Mode control for output devices. You can connect a switch or button
mjr 38:091e511ce8a0 134 // to the controller to activate "Night Mode", which disables feedback devices
mjr 38:091e511ce8a0 135 // that you designate as noisy. You can designate outputs individually as being
mjr 38:091e511ce8a0 136 // included in this set or not. This is useful if you want to play a game on
mjr 38:091e511ce8a0 137 // your cabinet late at night without waking the kids and annoying the neighbors.
mjr 38:091e511ce8a0 138 //
mjr 38:091e511ce8a0 139 // - TV ON switch. The controller can pulse a relay to turn on your TVs after
mjr 38:091e511ce8a0 140 // power to the cabinet comes on, with a configurable delay timer. This feature
mjr 38:091e511ce8a0 141 // is for TVs that don't turn themselves on automatically when first plugged in.
mjr 38:091e511ce8a0 142 // To use this feature, you have to build some external circuitry to allow the
mjr 38:091e511ce8a0 143 // software to sense the power supply status, and you have to run wires to your
mjr 38:091e511ce8a0 144 // TV's on/off button, which requires opening the case on your TV. The Build
mjr 38:091e511ce8a0 145 // Guide has details on the necessary circuitry and connections to the TV.
mjr 38:091e511ce8a0 146 //
mjr 35:e959ffba78fd 147 //
mjr 35:e959ffba78fd 148 //
mjr 33:d832bcab089e 149 // STATUS LIGHTS: The on-board LED on the KL25Z flashes to indicate the current
mjr 33:d832bcab089e 150 // device status. The flash patterns are:
mjr 6:cc35eb643e8f 151 //
mjr 48:058ace2aed1d 152 // short yellow flash = waiting to connect
mjr 6:cc35eb643e8f 153 //
mjr 48:058ace2aed1d 154 // short red flash = the connection is suspended (the host is in sleep
mjr 48:058ace2aed1d 155 // or suspend mode, the USB cable is unplugged after a connection
mjr 48:058ace2aed1d 156 // has been established)
mjr 48:058ace2aed1d 157 //
mjr 48:058ace2aed1d 158 // two short red flashes = connection lost (the device should immediately
mjr 48:058ace2aed1d 159 // go back to short-yellow "waiting to reconnect" mode when a connection
mjr 48:058ace2aed1d 160 // is lost, so this display shouldn't normally appear)
mjr 6:cc35eb643e8f 161 //
mjr 38:091e511ce8a0 162 // long red/yellow = USB connection problem. The device still has a USB
mjr 48:058ace2aed1d 163 // connection to the host (or so it appears to the device), but data
mjr 48:058ace2aed1d 164 // transmissions are failing.
mjr 38:091e511ce8a0 165 //
mjr 6:cc35eb643e8f 166 // long yellow/green = everything's working, but the plunger hasn't
mjr 38:091e511ce8a0 167 // been calibrated. Follow the calibration procedure described in
mjr 38:091e511ce8a0 168 // the project documentation. This flash mode won't appear if there's
mjr 38:091e511ce8a0 169 // no plunger sensor configured.
mjr 6:cc35eb643e8f 170 //
mjr 38:091e511ce8a0 171 // alternating blue/green = everything's working normally, and plunger
mjr 38:091e511ce8a0 172 // calibration has been completed (or there's no plunger attached)
mjr 10:976666ffa4ef 173 //
mjr 48:058ace2aed1d 174 // fast red/purple = out of memory. The controller halts and displays
mjr 48:058ace2aed1d 175 // this diagnostic code until you manually reset it. If this happens,
mjr 48:058ace2aed1d 176 // it's probably because the configuration is too complex, in which
mjr 48:058ace2aed1d 177 // case the same error will occur after the reset. If it's stuck
mjr 48:058ace2aed1d 178 // in this cycle, you'll have to restore the default configuration
mjr 48:058ace2aed1d 179 // by re-installing the controller software (the Pinscape .bin file).
mjr 10:976666ffa4ef 180 //
mjr 48:058ace2aed1d 181 //
mjr 48:058ace2aed1d 182 // USB PROTOCOL: Most of our USB messaging is through standard USB HID
mjr 48:058ace2aed1d 183 // classes (joystick, keyboard). We also accept control messages on our
mjr 48:058ace2aed1d 184 // primary HID interface "OUT endpoint" using a custom protocol that's
mjr 48:058ace2aed1d 185 // not defined in any USB standards (we do have to provide a USB HID
mjr 48:058ace2aed1d 186 // Report Descriptor for it, but this just describes the protocol as
mjr 48:058ace2aed1d 187 // opaque vendor-defined bytes). The control protocol incorporates the
mjr 48:058ace2aed1d 188 // LedWiz protocol as a subset, and adds our own private extensions.
mjr 48:058ace2aed1d 189 // For full details, see USBProtocol.h.
mjr 33:d832bcab089e 190
mjr 33:d832bcab089e 191
mjr 0:5acbbe3f4cf4 192 #include "mbed.h"
mjr 6:cc35eb643e8f 193 #include "math.h"
mjr 48:058ace2aed1d 194 #include "pinscape.h"
mjr 0:5acbbe3f4cf4 195 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 196 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 197 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 198 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 199 #include "crc32.h"
mjr 26:cb71c4af2912 200 #include "TLC5940.h"
mjr 34:6b981a2afab7 201 #include "74HC595.h"
mjr 35:e959ffba78fd 202 #include "nvm.h"
mjr 35:e959ffba78fd 203 #include "plunger.h"
mjr 35:e959ffba78fd 204 #include "ccdSensor.h"
mjr 35:e959ffba78fd 205 #include "potSensor.h"
mjr 35:e959ffba78fd 206 #include "nullSensor.h"
mjr 48:058ace2aed1d 207 #include "TinyDigitalIn.h"
mjr 2:c174f9ee414a 208
mjr 21:5048e16cc9ef 209 #define DECL_EXTERNS
mjr 17:ab3cec0c8bf4 210 #include "config.h"
mjr 17:ab3cec0c8bf4 211
mjr 53:9b2611964afc 212
mjr 53:9b2611964afc 213 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 214 //
mjr 53:9b2611964afc 215 // OpenSDA module identifier. This is for the benefit of the Windows
mjr 53:9b2611964afc 216 // configuration tool. When the config tool installs a .bin file onto
mjr 53:9b2611964afc 217 // the KL25Z, it will first find the sentinel string within the .bin file,
mjr 53:9b2611964afc 218 // and patch the "\0" bytes that follow the sentinel string with the
mjr 53:9b2611964afc 219 // OpenSDA module ID data. This allows us to report the OpenSDA
mjr 53:9b2611964afc 220 // identifiers back to the host system via USB, which in turn allows the
mjr 53:9b2611964afc 221 // config tool to figure out which OpenSDA MSD (mass storage device - a
mjr 53:9b2611964afc 222 // virtual disk drive) correlates to which Pinscape controller USB
mjr 53:9b2611964afc 223 // interface.
mjr 53:9b2611964afc 224 //
mjr 53:9b2611964afc 225 // This is only important if multiple Pinscape devices are attached to
mjr 53:9b2611964afc 226 // the same host. There doesn't seem to be any other way to figure out
mjr 53:9b2611964afc 227 // which OpenSDA MSD corresponds to which KL25Z USB interface; the OpenSDA
mjr 53:9b2611964afc 228 // MSD doesn't report the KL25Z CPU ID anywhere, and the KL25Z doesn't
mjr 53:9b2611964afc 229 // have any way to learn about the OpenSDA module it's connected to. The
mjr 53:9b2611964afc 230 // only way to pass this information to the KL25Z side that I can come up
mjr 53:9b2611964afc 231 // with is to have the Windows host embed it in the .bin file before
mjr 53:9b2611964afc 232 // downloading it to the OpenSDA MSD.
mjr 53:9b2611964afc 233 //
mjr 53:9b2611964afc 234 // We initialize the const data buffer (the part after the sentinel string)
mjr 53:9b2611964afc 235 // with all "\0" bytes, so that's what will be in the executable image that
mjr 53:9b2611964afc 236 // comes out of the mbed compiler. If you manually install the resulting
mjr 53:9b2611964afc 237 // .bin file onto the KL25Z (via the Windows desktop, say), the "\0" bytes
mjr 53:9b2611964afc 238 // will stay this way and read as all 0's at run-time. Since a real TUID
mjr 53:9b2611964afc 239 // would never be all 0's, that tells us that we were never patched and
mjr 53:9b2611964afc 240 // thus don't have any information on the OpenSDA module.
mjr 53:9b2611964afc 241 //
mjr 53:9b2611964afc 242 const char *getOpenSDAID()
mjr 53:9b2611964afc 243 {
mjr 53:9b2611964afc 244 #define OPENSDA_PREFIX "///Pinscape.OpenSDA.TUID///"
mjr 53:9b2611964afc 245 static const char OpenSDA[] = OPENSDA_PREFIX "\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0\0///";
mjr 53:9b2611964afc 246 const size_t OpenSDA_prefix_length = sizeof(OPENSDA_PREFIX) - 1;
mjr 53:9b2611964afc 247
mjr 53:9b2611964afc 248 return OpenSDA + OpenSDA_prefix_length;
mjr 53:9b2611964afc 249 }
mjr 53:9b2611964afc 250
mjr 53:9b2611964afc 251 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 252 //
mjr 53:9b2611964afc 253 // Build ID. We use the date and time of compiling the program as a build
mjr 53:9b2611964afc 254 // identifier. It would be a little nicer to use a simple serial number
mjr 53:9b2611964afc 255 // instead, but the mbed platform doesn't have a way to automate that. The
mjr 53:9b2611964afc 256 // timestamp is a pretty good proxy for a serial number in that it will
mjr 53:9b2611964afc 257 // naturally increase on each new build, which is the primary property we
mjr 53:9b2611964afc 258 // want from this.
mjr 53:9b2611964afc 259 //
mjr 53:9b2611964afc 260 // As with the embedded OpenSDA ID, we store the build timestamp with a
mjr 53:9b2611964afc 261 // sentinel string prefix, to allow automated tools to find the static data
mjr 53:9b2611964afc 262 // in the .bin file by searching for the sentinel string. In contrast to
mjr 53:9b2611964afc 263 // the OpenSDA ID, the value we store here is for tools to extract rather
mjr 53:9b2611964afc 264 // than store, since we automatically populate it via the preprocessor
mjr 53:9b2611964afc 265 // macros.
mjr 53:9b2611964afc 266 //
mjr 53:9b2611964afc 267 const char *getBuildID()
mjr 53:9b2611964afc 268 {
mjr 53:9b2611964afc 269 #define BUILDID_PREFIX "///Pinscape.Build.ID///"
mjr 53:9b2611964afc 270 static const char BuildID[] = BUILDID_PREFIX __DATE__ " " __TIME__ "///";
mjr 53:9b2611964afc 271 const size_t BuildID_prefix_length = sizeof(BUILDID_PREFIX) - 1;
mjr 53:9b2611964afc 272
mjr 53:9b2611964afc 273 return BuildID + BuildID_prefix_length;
mjr 53:9b2611964afc 274 }
mjr 53:9b2611964afc 275
mjr 53:9b2611964afc 276
mjr 48:058ace2aed1d 277 // --------------------------------------------------------------------------
mjr 48:058ace2aed1d 278 //
mjr 48:058ace2aed1d 279 // Custom memory allocator. We use our own version of malloc() to provide
mjr 48:058ace2aed1d 280 // diagnostics if we run out of heap.
mjr 48:058ace2aed1d 281 //
mjr 48:058ace2aed1d 282 void *xmalloc(size_t siz)
mjr 48:058ace2aed1d 283 {
mjr 48:058ace2aed1d 284 // allocate through the normal library malloc; if that succeeds,
mjr 48:058ace2aed1d 285 // simply return the pointer we got from malloc
mjr 48:058ace2aed1d 286 void *ptr = malloc(siz);
mjr 48:058ace2aed1d 287 if (ptr != 0)
mjr 48:058ace2aed1d 288 return ptr;
mjr 48:058ace2aed1d 289
mjr 48:058ace2aed1d 290 // failed - display diagnostics
mjr 48:058ace2aed1d 291 for (;;)
mjr 48:058ace2aed1d 292 {
mjr 48:058ace2aed1d 293 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 294 wait_us(200000);
mjr 48:058ace2aed1d 295 diagLED(1, 0, 1);
mjr 54:fd77a6b2f76c 296 wait_us(200000);
mjr 48:058ace2aed1d 297 }
mjr 48:058ace2aed1d 298 }
mjr 48:058ace2aed1d 299
mjr 48:058ace2aed1d 300 // overload operator new to call our custom malloc
mjr 48:058ace2aed1d 301 void *operator new(size_t siz) { return xmalloc(siz); }
mjr 48:058ace2aed1d 302 void *operator new[](size_t siz) { return xmalloc(siz); }
mjr 5:a70c0bce770d 303
mjr 5:a70c0bce770d 304 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 305 //
mjr 38:091e511ce8a0 306 // Forward declarations
mjr 38:091e511ce8a0 307 //
mjr 38:091e511ce8a0 308 void setNightMode(bool on);
mjr 38:091e511ce8a0 309 void toggleNightMode();
mjr 38:091e511ce8a0 310
mjr 38:091e511ce8a0 311 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 312 // utilities
mjr 17:ab3cec0c8bf4 313
mjr 26:cb71c4af2912 314 // floating point square of a number
mjr 26:cb71c4af2912 315 inline float square(float x) { return x*x; }
mjr 26:cb71c4af2912 316
mjr 26:cb71c4af2912 317 // floating point rounding
mjr 26:cb71c4af2912 318 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 26:cb71c4af2912 319
mjr 17:ab3cec0c8bf4 320
mjr 33:d832bcab089e 321 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 322 //
mjr 40:cc0d9814522b 323 // Extended verison of Timer class. This adds the ability to interrogate
mjr 40:cc0d9814522b 324 // the running state.
mjr 40:cc0d9814522b 325 //
mjr 40:cc0d9814522b 326 class Timer2: public Timer
mjr 40:cc0d9814522b 327 {
mjr 40:cc0d9814522b 328 public:
mjr 40:cc0d9814522b 329 Timer2() : running(false) { }
mjr 40:cc0d9814522b 330
mjr 40:cc0d9814522b 331 void start() { running = true; Timer::start(); }
mjr 40:cc0d9814522b 332 void stop() { running = false; Timer::stop(); }
mjr 40:cc0d9814522b 333
mjr 40:cc0d9814522b 334 bool isRunning() const { return running; }
mjr 40:cc0d9814522b 335
mjr 40:cc0d9814522b 336 private:
mjr 40:cc0d9814522b 337 bool running;
mjr 40:cc0d9814522b 338 };
mjr 40:cc0d9814522b 339
mjr 53:9b2611964afc 340
mjr 53:9b2611964afc 341 // --------------------------------------------------------------------------
mjr 53:9b2611964afc 342 //
mjr 53:9b2611964afc 343 // Reboot timer. When we have a deferred reboot operation pending, we
mjr 53:9b2611964afc 344 // set the target time and start the timer.
mjr 53:9b2611964afc 345 Timer2 rebootTimer;
mjr 53:9b2611964afc 346 long rebootTime_us;
mjr 53:9b2611964afc 347
mjr 40:cc0d9814522b 348 // --------------------------------------------------------------------------
mjr 40:cc0d9814522b 349 //
mjr 33:d832bcab089e 350 // USB product version number
mjr 5:a70c0bce770d 351 //
mjr 47:df7a88cd249c 352 const uint16_t USB_VERSION_NO = 0x000A;
mjr 33:d832bcab089e 353
mjr 33:d832bcab089e 354 // --------------------------------------------------------------------------
mjr 33:d832bcab089e 355 //
mjr 6:cc35eb643e8f 356 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 33:d832bcab089e 357 //
mjr 6:cc35eb643e8f 358 #define JOYMAX 4096
mjr 6:cc35eb643e8f 359
mjr 9:fd65b0a94720 360
mjr 17:ab3cec0c8bf4 361 // ---------------------------------------------------------------------------
mjr 17:ab3cec0c8bf4 362 //
mjr 40:cc0d9814522b 363 // Wire protocol value translations. These translate byte values to and
mjr 40:cc0d9814522b 364 // from the USB protocol to local native format.
mjr 35:e959ffba78fd 365 //
mjr 35:e959ffba78fd 366
mjr 35:e959ffba78fd 367 // unsigned 16-bit integer
mjr 35:e959ffba78fd 368 inline uint16_t wireUI16(const uint8_t *b)
mjr 35:e959ffba78fd 369 {
mjr 35:e959ffba78fd 370 return b[0] | ((uint16_t)b[1] << 8);
mjr 35:e959ffba78fd 371 }
mjr 40:cc0d9814522b 372 inline void ui16Wire(uint8_t *b, uint16_t val)
mjr 40:cc0d9814522b 373 {
mjr 40:cc0d9814522b 374 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 375 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 376 }
mjr 35:e959ffba78fd 377
mjr 35:e959ffba78fd 378 inline int16_t wireI16(const uint8_t *b)
mjr 35:e959ffba78fd 379 {
mjr 35:e959ffba78fd 380 return (int16_t)wireUI16(b);
mjr 35:e959ffba78fd 381 }
mjr 40:cc0d9814522b 382 inline void i16Wire(uint8_t *b, int16_t val)
mjr 40:cc0d9814522b 383 {
mjr 40:cc0d9814522b 384 ui16Wire(b, (uint16_t)val);
mjr 40:cc0d9814522b 385 }
mjr 35:e959ffba78fd 386
mjr 35:e959ffba78fd 387 inline uint32_t wireUI32(const uint8_t *b)
mjr 35:e959ffba78fd 388 {
mjr 35:e959ffba78fd 389 return b[0] | ((uint32_t)b[1] << 8) | ((uint32_t)b[2] << 16) | ((uint32_t)b[3] << 24);
mjr 35:e959ffba78fd 390 }
mjr 40:cc0d9814522b 391 inline void ui32Wire(uint8_t *b, uint32_t val)
mjr 40:cc0d9814522b 392 {
mjr 40:cc0d9814522b 393 b[0] = (uint8_t)(val & 0xff);
mjr 40:cc0d9814522b 394 b[1] = (uint8_t)((val >> 8) & 0xff);
mjr 40:cc0d9814522b 395 b[2] = (uint8_t)((val >> 16) & 0xff);
mjr 40:cc0d9814522b 396 b[3] = (uint8_t)((val >> 24) & 0xff);
mjr 40:cc0d9814522b 397 }
mjr 35:e959ffba78fd 398
mjr 35:e959ffba78fd 399 inline int32_t wireI32(const uint8_t *b)
mjr 35:e959ffba78fd 400 {
mjr 35:e959ffba78fd 401 return (int32_t)wireUI32(b);
mjr 35:e959ffba78fd 402 }
mjr 35:e959ffba78fd 403
mjr 53:9b2611964afc 404 // Convert "wire" (USB) pin codes to/from PinName values.
mjr 53:9b2611964afc 405 //
mjr 53:9b2611964afc 406 // The internal mbed PinName format is
mjr 53:9b2611964afc 407 //
mjr 53:9b2611964afc 408 // ((port) << PORT_SHIFT) | (pin << 2) // MBED FORMAT
mjr 53:9b2611964afc 409 //
mjr 53:9b2611964afc 410 // where 'port' is 0-4 for Port A to Port E, and 'pin' is
mjr 53:9b2611964afc 411 // 0 to 31. E.g., E31 is (4 << PORT_SHIFT) | (31<<2).
mjr 53:9b2611964afc 412 //
mjr 53:9b2611964afc 413 // We remap this to our more compact wire format where each
mjr 53:9b2611964afc 414 // pin name fits in 8 bits:
mjr 53:9b2611964afc 415 //
mjr 53:9b2611964afc 416 // ((port) << 5) | pin) // WIRE FORMAT
mjr 53:9b2611964afc 417 //
mjr 53:9b2611964afc 418 // E.g., E31 is (4 << 5) | 31.
mjr 53:9b2611964afc 419 //
mjr 53:9b2611964afc 420 // Wire code FF corresponds to PinName NC (not connected).
mjr 53:9b2611964afc 421 //
mjr 53:9b2611964afc 422 inline PinName wirePinName(uint8_t c)
mjr 35:e959ffba78fd 423 {
mjr 53:9b2611964afc 424 if (c == 0xFF)
mjr 53:9b2611964afc 425 return NC; // 0xFF -> NC
mjr 53:9b2611964afc 426 else
mjr 53:9b2611964afc 427 return PinName(
mjr 53:9b2611964afc 428 (int(c & 0xE0) << (PORT_SHIFT - 5)) // top three bits are the port
mjr 53:9b2611964afc 429 | (int(c & 0x1F) << 2)); // bottom five bits are pin
mjr 40:cc0d9814522b 430 }
mjr 40:cc0d9814522b 431 inline void pinNameWire(uint8_t *b, PinName n)
mjr 40:cc0d9814522b 432 {
mjr 53:9b2611964afc 433 *b = PINNAME_TO_WIRE(n);
mjr 35:e959ffba78fd 434 }
mjr 35:e959ffba78fd 435
mjr 35:e959ffba78fd 436
mjr 35:e959ffba78fd 437 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 438 //
mjr 38:091e511ce8a0 439 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 38:091e511ce8a0 440 //
mjr 38:091e511ce8a0 441 // Note that LED3 (the blue segment) is hard-wired on the KL25Z to PTD1,
mjr 38:091e511ce8a0 442 // so PTD1 shouldn't be used for any other purpose (e.g., as a keyboard
mjr 38:091e511ce8a0 443 // input or a device output). This is kind of unfortunate in that it's
mjr 38:091e511ce8a0 444 // one of only two ports exposed on the jumper pins that can be muxed to
mjr 38:091e511ce8a0 445 // SPI0 SCLK. This effectively limits us to PTC5 if we want to use the
mjr 38:091e511ce8a0 446 // SPI capability.
mjr 38:091e511ce8a0 447 //
mjr 38:091e511ce8a0 448 DigitalOut *ledR, *ledG, *ledB;
mjr 38:091e511ce8a0 449
mjr 38:091e511ce8a0 450 // Show the indicated pattern on the diagnostic LEDs. 0 is off, 1 is
mjr 38:091e511ce8a0 451 // on, and -1 is no change (leaves the current setting intact).
mjr 38:091e511ce8a0 452 void diagLED(int r, int g, int b)
mjr 38:091e511ce8a0 453 {
mjr 38:091e511ce8a0 454 if (ledR != 0 && r != -1) ledR->write(!r);
mjr 38:091e511ce8a0 455 if (ledG != 0 && g != -1) ledG->write(!g);
mjr 38:091e511ce8a0 456 if (ledB != 0 && b != -1) ledB->write(!b);
mjr 38:091e511ce8a0 457 }
mjr 38:091e511ce8a0 458
mjr 38:091e511ce8a0 459 // check an output port assignment to see if it conflicts with
mjr 38:091e511ce8a0 460 // an on-board LED segment
mjr 38:091e511ce8a0 461 struct LedSeg
mjr 38:091e511ce8a0 462 {
mjr 38:091e511ce8a0 463 bool r, g, b;
mjr 38:091e511ce8a0 464 LedSeg() { r = g = b = false; }
mjr 38:091e511ce8a0 465
mjr 38:091e511ce8a0 466 void check(LedWizPortCfg &pc)
mjr 38:091e511ce8a0 467 {
mjr 38:091e511ce8a0 468 // if it's a GPIO, check to see if it's assigned to one of
mjr 38:091e511ce8a0 469 // our on-board LED segments
mjr 38:091e511ce8a0 470 int t = pc.typ;
mjr 38:091e511ce8a0 471 if (t == PortTypeGPIOPWM || t == PortTypeGPIODig)
mjr 38:091e511ce8a0 472 {
mjr 38:091e511ce8a0 473 // it's a GPIO port - check for a matching pin assignment
mjr 38:091e511ce8a0 474 PinName pin = wirePinName(pc.pin);
mjr 38:091e511ce8a0 475 if (pin == LED1)
mjr 38:091e511ce8a0 476 r = true;
mjr 38:091e511ce8a0 477 else if (pin == LED2)
mjr 38:091e511ce8a0 478 g = true;
mjr 38:091e511ce8a0 479 else if (pin == LED3)
mjr 38:091e511ce8a0 480 b = true;
mjr 38:091e511ce8a0 481 }
mjr 38:091e511ce8a0 482 }
mjr 38:091e511ce8a0 483 };
mjr 38:091e511ce8a0 484
mjr 38:091e511ce8a0 485 // Initialize the diagnostic LEDs. By default, we use the on-board
mjr 38:091e511ce8a0 486 // RGB LED to display the microcontroller status. However, we allow
mjr 38:091e511ce8a0 487 // the user to commandeer the on-board LED as an LedWiz output device,
mjr 38:091e511ce8a0 488 // which can be useful for testing a new installation. So we'll check
mjr 38:091e511ce8a0 489 // for LedWiz outputs assigned to the on-board LED segments, and turn
mjr 38:091e511ce8a0 490 // off the diagnostic use for any so assigned.
mjr 38:091e511ce8a0 491 void initDiagLEDs(Config &cfg)
mjr 38:091e511ce8a0 492 {
mjr 38:091e511ce8a0 493 // run through the configuration list and cross off any of the
mjr 38:091e511ce8a0 494 // LED segments assigned to LedWiz ports
mjr 38:091e511ce8a0 495 LedSeg l;
mjr 38:091e511ce8a0 496 for (int i = 0 ; i < MAX_OUT_PORTS && cfg.outPort[i].typ != PortTypeDisabled ; ++i)
mjr 38:091e511ce8a0 497 l.check(cfg.outPort[i]);
mjr 38:091e511ce8a0 498
mjr 38:091e511ce8a0 499 // We now know which segments are taken for LedWiz use and which
mjr 38:091e511ce8a0 500 // are free. Create diagnostic ports for the ones not claimed for
mjr 38:091e511ce8a0 501 // LedWiz use.
mjr 38:091e511ce8a0 502 if (!l.r) ledR = new DigitalOut(LED1, 1);
mjr 38:091e511ce8a0 503 if (!l.g) ledG = new DigitalOut(LED2, 1);
mjr 38:091e511ce8a0 504 if (!l.b) ledB = new DigitalOut(LED3, 1);
mjr 38:091e511ce8a0 505 }
mjr 38:091e511ce8a0 506
mjr 38:091e511ce8a0 507
mjr 38:091e511ce8a0 508 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 509 //
mjr 29:582472d0bc57 510 // LedWiz emulation, and enhanced TLC5940 output controller
mjr 5:a70c0bce770d 511 //
mjr 26:cb71c4af2912 512 // There are two modes for this feature. The default mode uses the on-board
mjr 26:cb71c4af2912 513 // GPIO ports to implement device outputs - each LedWiz software port is
mjr 26:cb71c4af2912 514 // connected to a physical GPIO pin on the KL25Z. The KL25Z only has 10
mjr 26:cb71c4af2912 515 // PWM channels, so in this mode only 10 LedWiz ports will be dimmable; the
mjr 26:cb71c4af2912 516 // rest are strictly on/off. The KL25Z also has a limited number of GPIO
mjr 26:cb71c4af2912 517 // ports overall - not enough for the full complement of 32 LedWiz ports
mjr 26:cb71c4af2912 518 // and 24 VP joystick inputs, so it's necessary to trade one against the
mjr 26:cb71c4af2912 519 // other if both features are to be used.
mjr 26:cb71c4af2912 520 //
mjr 26:cb71c4af2912 521 // The alternative, enhanced mode uses external TLC5940 PWM controller
mjr 26:cb71c4af2912 522 // chips to control device outputs. In this mode, each LedWiz software
mjr 26:cb71c4af2912 523 // port is mapped to an output on one of the external TLC5940 chips.
mjr 26:cb71c4af2912 524 // Two 5940s is enough for the full set of 32 LedWiz ports, and we can
mjr 26:cb71c4af2912 525 // support even more chips for even more outputs (although doing so requires
mjr 26:cb71c4af2912 526 // breaking LedWiz compatibility, since the LedWiz USB protocol is hardwired
mjr 26:cb71c4af2912 527 // for 32 outputs). Every port in this mode has full PWM support.
mjr 26:cb71c4af2912 528 //
mjr 5:a70c0bce770d 529
mjr 29:582472d0bc57 530
mjr 26:cb71c4af2912 531 // Current starting output index for "PBA" messages from the PC (using
mjr 26:cb71c4af2912 532 // the LedWiz USB protocol). Each PBA message implicitly uses the
mjr 26:cb71c4af2912 533 // current index as the starting point for the ports referenced in
mjr 26:cb71c4af2912 534 // the message, and increases it (by 8) for the next call.
mjr 0:5acbbe3f4cf4 535 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 536
mjr 26:cb71c4af2912 537 // Generic LedWiz output port interface. We create a cover class to
mjr 26:cb71c4af2912 538 // virtualize digital vs PWM outputs, and on-board KL25Z GPIO vs external
mjr 26:cb71c4af2912 539 // TLC5940 outputs, and give them all a common interface.
mjr 6:cc35eb643e8f 540 class LwOut
mjr 6:cc35eb643e8f 541 {
mjr 6:cc35eb643e8f 542 public:
mjr 40:cc0d9814522b 543 // Set the output intensity. 'val' is 0 for fully off, 255 for
mjr 40:cc0d9814522b 544 // fully on, with values in between signifying lower intensity.
mjr 40:cc0d9814522b 545 virtual void set(uint8_t val) = 0;
mjr 6:cc35eb643e8f 546 };
mjr 26:cb71c4af2912 547
mjr 35:e959ffba78fd 548 // LwOut class for virtual ports. This type of port is visible to
mjr 35:e959ffba78fd 549 // the host software, but isn't connected to any physical output.
mjr 35:e959ffba78fd 550 // This can be used for special software-only ports like the ZB
mjr 35:e959ffba78fd 551 // Launch Ball output, or simply for placeholders in the LedWiz port
mjr 35:e959ffba78fd 552 // numbering.
mjr 35:e959ffba78fd 553 class LwVirtualOut: public LwOut
mjr 33:d832bcab089e 554 {
mjr 33:d832bcab089e 555 public:
mjr 35:e959ffba78fd 556 LwVirtualOut() { }
mjr 40:cc0d9814522b 557 virtual void set(uint8_t ) { }
mjr 33:d832bcab089e 558 };
mjr 26:cb71c4af2912 559
mjr 34:6b981a2afab7 560 // Active Low out. For any output marked as active low, we layer this
mjr 34:6b981a2afab7 561 // on top of the physical pin interface. This simply inverts the value of
mjr 40:cc0d9814522b 562 // the output value, so that 255 means fully off and 0 means fully on.
mjr 34:6b981a2afab7 563 class LwInvertedOut: public LwOut
mjr 34:6b981a2afab7 564 {
mjr 34:6b981a2afab7 565 public:
mjr 34:6b981a2afab7 566 LwInvertedOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 567 virtual void set(uint8_t val) { out->set(255 - val); }
mjr 34:6b981a2afab7 568
mjr 34:6b981a2afab7 569 private:
mjr 53:9b2611964afc 570 // underlying physical output
mjr 34:6b981a2afab7 571 LwOut *out;
mjr 34:6b981a2afab7 572 };
mjr 34:6b981a2afab7 573
mjr 53:9b2611964afc 574 // Global ZB Launch Ball state
mjr 53:9b2611964afc 575 bool zbLaunchOn = false;
mjr 53:9b2611964afc 576
mjr 53:9b2611964afc 577 // ZB Launch Ball output. This is layered on a port (physical or virtual)
mjr 53:9b2611964afc 578 // to track the ZB Launch Ball signal.
mjr 53:9b2611964afc 579 class LwZbLaunchOut: public LwOut
mjr 53:9b2611964afc 580 {
mjr 53:9b2611964afc 581 public:
mjr 53:9b2611964afc 582 LwZbLaunchOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 583 virtual void set(uint8_t val)
mjr 53:9b2611964afc 584 {
mjr 53:9b2611964afc 585 // update the global ZB Launch Ball state
mjr 53:9b2611964afc 586 zbLaunchOn = (val != 0);
mjr 53:9b2611964afc 587
mjr 53:9b2611964afc 588 // pass it along to the underlying port, in case it's a physical output
mjr 53:9b2611964afc 589 out->set(val);
mjr 53:9b2611964afc 590 }
mjr 53:9b2611964afc 591
mjr 53:9b2611964afc 592 private:
mjr 53:9b2611964afc 593 // underlying physical or virtual output
mjr 53:9b2611964afc 594 LwOut *out;
mjr 53:9b2611964afc 595 };
mjr 53:9b2611964afc 596
mjr 53:9b2611964afc 597
mjr 40:cc0d9814522b 598 // Gamma correction table for 8-bit input values
mjr 40:cc0d9814522b 599 static const uint8_t gamma[] = {
mjr 40:cc0d9814522b 600 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
mjr 40:cc0d9814522b 601 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1,
mjr 40:cc0d9814522b 602 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2,
mjr 40:cc0d9814522b 603 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5,
mjr 40:cc0d9814522b 604 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 10,
mjr 40:cc0d9814522b 605 10, 10, 11, 11, 11, 12, 12, 13, 13, 13, 14, 14, 15, 15, 16, 16,
mjr 40:cc0d9814522b 606 17, 17, 18, 18, 19, 19, 20, 20, 21, 21, 22, 22, 23, 24, 24, 25,
mjr 40:cc0d9814522b 607 25, 26, 27, 27, 28, 29, 29, 30, 31, 32, 32, 33, 34, 35, 35, 36,
mjr 40:cc0d9814522b 608 37, 38, 39, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50,
mjr 40:cc0d9814522b 609 51, 52, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 66, 67, 68,
mjr 40:cc0d9814522b 610 69, 70, 72, 73, 74, 75, 77, 78, 79, 81, 82, 83, 85, 86, 87, 89,
mjr 40:cc0d9814522b 611 90, 92, 93, 95, 96, 98, 99, 101, 102, 104, 105, 107, 109, 110, 112, 114,
mjr 40:cc0d9814522b 612 115, 117, 119, 120, 122, 124, 126, 127, 129, 131, 133, 135, 137, 138, 140, 142,
mjr 40:cc0d9814522b 613 144, 146, 148, 150, 152, 154, 156, 158, 160, 162, 164, 167, 169, 171, 173, 175,
mjr 40:cc0d9814522b 614 177, 180, 182, 184, 186, 189, 191, 193, 196, 198, 200, 203, 205, 208, 210, 213,
mjr 40:cc0d9814522b 615 215, 218, 220, 223, 225, 228, 231, 233, 236, 239, 241, 244, 247, 249, 252, 255
mjr 40:cc0d9814522b 616 };
mjr 40:cc0d9814522b 617
mjr 40:cc0d9814522b 618 // Gamma-corrected out. This is a filter object that we layer on top
mjr 40:cc0d9814522b 619 // of a physical pin interface. This applies gamma correction to the
mjr 40:cc0d9814522b 620 // input value and then passes it along to the underlying pin object.
mjr 40:cc0d9814522b 621 class LwGammaOut: public LwOut
mjr 40:cc0d9814522b 622 {
mjr 40:cc0d9814522b 623 public:
mjr 40:cc0d9814522b 624 LwGammaOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 625 virtual void set(uint8_t val) { out->set(gamma[val]); }
mjr 40:cc0d9814522b 626
mjr 40:cc0d9814522b 627 private:
mjr 40:cc0d9814522b 628 LwOut *out;
mjr 40:cc0d9814522b 629 };
mjr 40:cc0d9814522b 630
mjr 53:9b2611964afc 631 // global night mode flag
mjr 53:9b2611964afc 632 static bool nightMode = false;
mjr 53:9b2611964afc 633
mjr 40:cc0d9814522b 634 // Noisy output. This is a filter object that we layer on top of
mjr 40:cc0d9814522b 635 // a physical pin output. This filter disables the port when night
mjr 40:cc0d9814522b 636 // mode is engaged.
mjr 40:cc0d9814522b 637 class LwNoisyOut: public LwOut
mjr 40:cc0d9814522b 638 {
mjr 40:cc0d9814522b 639 public:
mjr 40:cc0d9814522b 640 LwNoisyOut(LwOut *o) : out(o) { }
mjr 40:cc0d9814522b 641 virtual void set(uint8_t val) { out->set(nightMode ? 0 : val); }
mjr 40:cc0d9814522b 642
mjr 53:9b2611964afc 643 private:
mjr 53:9b2611964afc 644 LwOut *out;
mjr 53:9b2611964afc 645 };
mjr 53:9b2611964afc 646
mjr 53:9b2611964afc 647 // Night Mode indicator output. This is a filter object that we
mjr 53:9b2611964afc 648 // layer on top of a physical pin output. This filter ignores the
mjr 53:9b2611964afc 649 // host value and simply shows the night mode status.
mjr 53:9b2611964afc 650 class LwNightModeIndicatorOut: public LwOut
mjr 53:9b2611964afc 651 {
mjr 53:9b2611964afc 652 public:
mjr 53:9b2611964afc 653 LwNightModeIndicatorOut(LwOut *o) : out(o) { }
mjr 53:9b2611964afc 654 virtual void set(uint8_t)
mjr 53:9b2611964afc 655 {
mjr 53:9b2611964afc 656 // ignore the host value and simply show the current
mjr 53:9b2611964afc 657 // night mode setting
mjr 53:9b2611964afc 658 out->set(nightMode ? 255 : 0);
mjr 53:9b2611964afc 659 }
mjr 40:cc0d9814522b 660
mjr 40:cc0d9814522b 661 private:
mjr 40:cc0d9814522b 662 LwOut *out;
mjr 40:cc0d9814522b 663 };
mjr 40:cc0d9814522b 664
mjr 26:cb71c4af2912 665
mjr 35:e959ffba78fd 666 //
mjr 35:e959ffba78fd 667 // The TLC5940 interface object. We'll set this up with the port
mjr 35:e959ffba78fd 668 // assignments set in config.h.
mjr 33:d832bcab089e 669 //
mjr 35:e959ffba78fd 670 TLC5940 *tlc5940 = 0;
mjr 35:e959ffba78fd 671 void init_tlc5940(Config &cfg)
mjr 35:e959ffba78fd 672 {
mjr 35:e959ffba78fd 673 if (cfg.tlc5940.nchips != 0)
mjr 35:e959ffba78fd 674 {
mjr 53:9b2611964afc 675 tlc5940 = new TLC5940(
mjr 53:9b2611964afc 676 wirePinName(cfg.tlc5940.sclk),
mjr 53:9b2611964afc 677 wirePinName(cfg.tlc5940.sin),
mjr 53:9b2611964afc 678 wirePinName(cfg.tlc5940.gsclk),
mjr 53:9b2611964afc 679 wirePinName(cfg.tlc5940.blank),
mjr 53:9b2611964afc 680 wirePinName(cfg.tlc5940.xlat),
mjr 53:9b2611964afc 681 cfg.tlc5940.nchips);
mjr 35:e959ffba78fd 682 }
mjr 35:e959ffba78fd 683 }
mjr 26:cb71c4af2912 684
mjr 40:cc0d9814522b 685 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level
mjr 40:cc0d9814522b 686 static const uint16_t dof_to_tlc[] = {
mjr 40:cc0d9814522b 687 0, 16, 32, 48, 64, 80, 96, 112, 128, 145, 161, 177, 193, 209, 225, 241,
mjr 40:cc0d9814522b 688 257, 273, 289, 305, 321, 337, 353, 369, 385, 401, 418, 434, 450, 466, 482, 498,
mjr 40:cc0d9814522b 689 514, 530, 546, 562, 578, 594, 610, 626, 642, 658, 674, 691, 707, 723, 739, 755,
mjr 40:cc0d9814522b 690 771, 787, 803, 819, 835, 851, 867, 883, 899, 915, 931, 947, 964, 980, 996, 1012,
mjr 40:cc0d9814522b 691 1028, 1044, 1060, 1076, 1092, 1108, 1124, 1140, 1156, 1172, 1188, 1204, 1220, 1237, 1253, 1269,
mjr 40:cc0d9814522b 692 1285, 1301, 1317, 1333, 1349, 1365, 1381, 1397, 1413, 1429, 1445, 1461, 1477, 1493, 1510, 1526,
mjr 40:cc0d9814522b 693 1542, 1558, 1574, 1590, 1606, 1622, 1638, 1654, 1670, 1686, 1702, 1718, 1734, 1750, 1766, 1783,
mjr 40:cc0d9814522b 694 1799, 1815, 1831, 1847, 1863, 1879, 1895, 1911, 1927, 1943, 1959, 1975, 1991, 2007, 2023, 2039,
mjr 40:cc0d9814522b 695 2056, 2072, 2088, 2104, 2120, 2136, 2152, 2168, 2184, 2200, 2216, 2232, 2248, 2264, 2280, 2296,
mjr 40:cc0d9814522b 696 2312, 2329, 2345, 2361, 2377, 2393, 2409, 2425, 2441, 2457, 2473, 2489, 2505, 2521, 2537, 2553,
mjr 40:cc0d9814522b 697 2569, 2585, 2602, 2618, 2634, 2650, 2666, 2682, 2698, 2714, 2730, 2746, 2762, 2778, 2794, 2810,
mjr 40:cc0d9814522b 698 2826, 2842, 2858, 2875, 2891, 2907, 2923, 2939, 2955, 2971, 2987, 3003, 3019, 3035, 3051, 3067,
mjr 40:cc0d9814522b 699 3083, 3099, 3115, 3131, 3148, 3164, 3180, 3196, 3212, 3228, 3244, 3260, 3276, 3292, 3308, 3324,
mjr 40:cc0d9814522b 700 3340, 3356, 3372, 3388, 3404, 3421, 3437, 3453, 3469, 3485, 3501, 3517, 3533, 3549, 3565, 3581,
mjr 40:cc0d9814522b 701 3597, 3613, 3629, 3645, 3661, 3677, 3694, 3710, 3726, 3742, 3758, 3774, 3790, 3806, 3822, 3838,
mjr 40:cc0d9814522b 702 3854, 3870, 3886, 3902, 3918, 3934, 3950, 3967, 3983, 3999, 4015, 4031, 4047, 4063, 4079, 4095
mjr 40:cc0d9814522b 703 };
mjr 40:cc0d9814522b 704
mjr 40:cc0d9814522b 705 // Conversion table for 8-bit DOF level to 12-bit TLC5940 level, with
mjr 40:cc0d9814522b 706 // gamma correction. Note that the output layering scheme can handle
mjr 40:cc0d9814522b 707 // this without a separate table, by first applying gamma to the DOF
mjr 40:cc0d9814522b 708 // level to produce an 8-bit gamma-corrected value, then convert that
mjr 40:cc0d9814522b 709 // to the 12-bit TLC5940 value. But we get better precision by doing
mjr 40:cc0d9814522b 710 // the gamma correction in the 12-bit TLC5940 domain. We can only
mjr 40:cc0d9814522b 711 // get the 12-bit domain by combining both steps into one layering
mjr 40:cc0d9814522b 712 // object, though, since the intermediate values in the layering system
mjr 40:cc0d9814522b 713 // are always 8 bits.
mjr 40:cc0d9814522b 714 static const uint16_t dof_to_gamma_tlc[] = {
mjr 40:cc0d9814522b 715 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
mjr 40:cc0d9814522b 716 2, 2, 2, 3, 3, 4, 4, 5, 5, 6, 7, 8, 8, 9, 10, 11,
mjr 40:cc0d9814522b 717 12, 13, 15, 16, 17, 18, 20, 21, 23, 25, 26, 28, 30, 32, 34, 36,
mjr 40:cc0d9814522b 718 38, 40, 43, 45, 48, 50, 53, 56, 59, 62, 65, 68, 71, 75, 78, 82,
mjr 40:cc0d9814522b 719 85, 89, 93, 97, 101, 105, 110, 114, 119, 123, 128, 133, 138, 143, 149, 154,
mjr 40:cc0d9814522b 720 159, 165, 171, 177, 183, 189, 195, 202, 208, 215, 222, 229, 236, 243, 250, 258,
mjr 40:cc0d9814522b 721 266, 273, 281, 290, 298, 306, 315, 324, 332, 341, 351, 360, 369, 379, 389, 399,
mjr 40:cc0d9814522b 722 409, 419, 430, 440, 451, 462, 473, 485, 496, 508, 520, 532, 544, 556, 569, 582,
mjr 40:cc0d9814522b 723 594, 608, 621, 634, 648, 662, 676, 690, 704, 719, 734, 749, 764, 779, 795, 811,
mjr 40:cc0d9814522b 724 827, 843, 859, 876, 893, 910, 927, 944, 962, 980, 998, 1016, 1034, 1053, 1072, 1091,
mjr 40:cc0d9814522b 725 1110, 1130, 1150, 1170, 1190, 1210, 1231, 1252, 1273, 1294, 1316, 1338, 1360, 1382, 1404, 1427,
mjr 40:cc0d9814522b 726 1450, 1473, 1497, 1520, 1544, 1568, 1593, 1617, 1642, 1667, 1693, 1718, 1744, 1770, 1797, 1823,
mjr 40:cc0d9814522b 727 1850, 1877, 1905, 1932, 1960, 1988, 2017, 2045, 2074, 2103, 2133, 2162, 2192, 2223, 2253, 2284,
mjr 40:cc0d9814522b 728 2315, 2346, 2378, 2410, 2442, 2474, 2507, 2540, 2573, 2606, 2640, 2674, 2708, 2743, 2778, 2813,
mjr 40:cc0d9814522b 729 2849, 2884, 2920, 2957, 2993, 3030, 3067, 3105, 3143, 3181, 3219, 3258, 3297, 3336, 3376, 3416,
mjr 40:cc0d9814522b 730 3456, 3496, 3537, 3578, 3619, 3661, 3703, 3745, 3788, 3831, 3874, 3918, 3962, 4006, 4050, 4095
mjr 40:cc0d9814522b 731 };
mjr 40:cc0d9814522b 732
mjr 40:cc0d9814522b 733
mjr 26:cb71c4af2912 734 // LwOut class for TLC5940 outputs. These are fully PWM capable.
mjr 26:cb71c4af2912 735 // The 'idx' value in the constructor is the output index in the
mjr 26:cb71c4af2912 736 // daisy-chained TLC5940 array. 0 is output #0 on the first chip,
mjr 26:cb71c4af2912 737 // 1 is #1 on the first chip, 15 is #15 on the first chip, 16 is
mjr 26:cb71c4af2912 738 // #0 on the second chip, 32 is #0 on the third chip, etc.
mjr 26:cb71c4af2912 739 class Lw5940Out: public LwOut
mjr 26:cb71c4af2912 740 {
mjr 26:cb71c4af2912 741 public:
mjr 40:cc0d9814522b 742 Lw5940Out(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 743 virtual void set(uint8_t val)
mjr 26:cb71c4af2912 744 {
mjr 26:cb71c4af2912 745 if (val != prv)
mjr 40:cc0d9814522b 746 tlc5940->set(idx, dof_to_tlc[prv = val]);
mjr 26:cb71c4af2912 747 }
mjr 26:cb71c4af2912 748 int idx;
mjr 40:cc0d9814522b 749 uint8_t prv;
mjr 26:cb71c4af2912 750 };
mjr 26:cb71c4af2912 751
mjr 40:cc0d9814522b 752 // LwOut class for TLC5940 gamma-corrected outputs.
mjr 40:cc0d9814522b 753 class Lw5940GammaOut: public LwOut
mjr 40:cc0d9814522b 754 {
mjr 40:cc0d9814522b 755 public:
mjr 40:cc0d9814522b 756 Lw5940GammaOut(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 757 virtual void set(uint8_t val)
mjr 40:cc0d9814522b 758 {
mjr 40:cc0d9814522b 759 if (val != prv)
mjr 40:cc0d9814522b 760 tlc5940->set(idx, dof_to_gamma_tlc[prv = val]);
mjr 40:cc0d9814522b 761 }
mjr 40:cc0d9814522b 762 int idx;
mjr 40:cc0d9814522b 763 uint8_t prv;
mjr 40:cc0d9814522b 764 };
mjr 40:cc0d9814522b 765
mjr 40:cc0d9814522b 766
mjr 33:d832bcab089e 767
mjr 34:6b981a2afab7 768 // 74HC595 interface object. Set this up with the port assignments in
mjr 34:6b981a2afab7 769 // config.h.
mjr 35:e959ffba78fd 770 HC595 *hc595 = 0;
mjr 35:e959ffba78fd 771
mjr 35:e959ffba78fd 772 // initialize the 74HC595 interface
mjr 35:e959ffba78fd 773 void init_hc595(Config &cfg)
mjr 35:e959ffba78fd 774 {
mjr 35:e959ffba78fd 775 if (cfg.hc595.nchips != 0)
mjr 35:e959ffba78fd 776 {
mjr 53:9b2611964afc 777 hc595 = new HC595(
mjr 53:9b2611964afc 778 wirePinName(cfg.hc595.nchips),
mjr 53:9b2611964afc 779 wirePinName(cfg.hc595.sin),
mjr 53:9b2611964afc 780 wirePinName(cfg.hc595.sclk),
mjr 53:9b2611964afc 781 wirePinName(cfg.hc595.latch),
mjr 53:9b2611964afc 782 wirePinName(cfg.hc595.ena));
mjr 35:e959ffba78fd 783 hc595->init();
mjr 35:e959ffba78fd 784 hc595->update();
mjr 35:e959ffba78fd 785 }
mjr 35:e959ffba78fd 786 }
mjr 34:6b981a2afab7 787
mjr 34:6b981a2afab7 788 // LwOut class for 74HC595 outputs. These are simple digial outs.
mjr 34:6b981a2afab7 789 // The 'idx' value in the constructor is the output index in the
mjr 34:6b981a2afab7 790 // daisy-chained 74HC595 array. 0 is output #0 on the first chip,
mjr 34:6b981a2afab7 791 // 1 is #1 on the first chip, 7 is #7 on the first chip, 8 is
mjr 34:6b981a2afab7 792 // #0 on the second chip, etc.
mjr 34:6b981a2afab7 793 class Lw595Out: public LwOut
mjr 33:d832bcab089e 794 {
mjr 33:d832bcab089e 795 public:
mjr 40:cc0d9814522b 796 Lw595Out(int idx) : idx(idx) { prv = 0; }
mjr 40:cc0d9814522b 797 virtual void set(uint8_t val)
mjr 34:6b981a2afab7 798 {
mjr 34:6b981a2afab7 799 if (val != prv)
mjr 40:cc0d9814522b 800 hc595->set(idx, (prv = val) == 0 ? 0 : 1);
mjr 34:6b981a2afab7 801 }
mjr 34:6b981a2afab7 802 int idx;
mjr 40:cc0d9814522b 803 uint8_t prv;
mjr 33:d832bcab089e 804 };
mjr 33:d832bcab089e 805
mjr 26:cb71c4af2912 806
mjr 40:cc0d9814522b 807
mjr 40:cc0d9814522b 808 // Conversion table - 8-bit DOF output level to PWM float level
mjr 40:cc0d9814522b 809 // (normalized to 0.0..1.0 scale)
mjr 40:cc0d9814522b 810 static const float pwm_level[] = {
mjr 40:cc0d9814522b 811 0.000000, 0.003922, 0.007843, 0.011765, 0.015686, 0.019608, 0.023529, 0.027451,
mjr 40:cc0d9814522b 812 0.031373, 0.035294, 0.039216, 0.043137, 0.047059, 0.050980, 0.054902, 0.058824,
mjr 40:cc0d9814522b 813 0.062745, 0.066667, 0.070588, 0.074510, 0.078431, 0.082353, 0.086275, 0.090196,
mjr 40:cc0d9814522b 814 0.094118, 0.098039, 0.101961, 0.105882, 0.109804, 0.113725, 0.117647, 0.121569,
mjr 40:cc0d9814522b 815 0.125490, 0.129412, 0.133333, 0.137255, 0.141176, 0.145098, 0.149020, 0.152941,
mjr 40:cc0d9814522b 816 0.156863, 0.160784, 0.164706, 0.168627, 0.172549, 0.176471, 0.180392, 0.184314,
mjr 40:cc0d9814522b 817 0.188235, 0.192157, 0.196078, 0.200000, 0.203922, 0.207843, 0.211765, 0.215686,
mjr 40:cc0d9814522b 818 0.219608, 0.223529, 0.227451, 0.231373, 0.235294, 0.239216, 0.243137, 0.247059,
mjr 40:cc0d9814522b 819 0.250980, 0.254902, 0.258824, 0.262745, 0.266667, 0.270588, 0.274510, 0.278431,
mjr 40:cc0d9814522b 820 0.282353, 0.286275, 0.290196, 0.294118, 0.298039, 0.301961, 0.305882, 0.309804,
mjr 40:cc0d9814522b 821 0.313725, 0.317647, 0.321569, 0.325490, 0.329412, 0.333333, 0.337255, 0.341176,
mjr 40:cc0d9814522b 822 0.345098, 0.349020, 0.352941, 0.356863, 0.360784, 0.364706, 0.368627, 0.372549,
mjr 40:cc0d9814522b 823 0.376471, 0.380392, 0.384314, 0.388235, 0.392157, 0.396078, 0.400000, 0.403922,
mjr 40:cc0d9814522b 824 0.407843, 0.411765, 0.415686, 0.419608, 0.423529, 0.427451, 0.431373, 0.435294,
mjr 40:cc0d9814522b 825 0.439216, 0.443137, 0.447059, 0.450980, 0.454902, 0.458824, 0.462745, 0.466667,
mjr 40:cc0d9814522b 826 0.470588, 0.474510, 0.478431, 0.482353, 0.486275, 0.490196, 0.494118, 0.498039,
mjr 40:cc0d9814522b 827 0.501961, 0.505882, 0.509804, 0.513725, 0.517647, 0.521569, 0.525490, 0.529412,
mjr 40:cc0d9814522b 828 0.533333, 0.537255, 0.541176, 0.545098, 0.549020, 0.552941, 0.556863, 0.560784,
mjr 40:cc0d9814522b 829 0.564706, 0.568627, 0.572549, 0.576471, 0.580392, 0.584314, 0.588235, 0.592157,
mjr 40:cc0d9814522b 830 0.596078, 0.600000, 0.603922, 0.607843, 0.611765, 0.615686, 0.619608, 0.623529,
mjr 40:cc0d9814522b 831 0.627451, 0.631373, 0.635294, 0.639216, 0.643137, 0.647059, 0.650980, 0.654902,
mjr 40:cc0d9814522b 832 0.658824, 0.662745, 0.666667, 0.670588, 0.674510, 0.678431, 0.682353, 0.686275,
mjr 40:cc0d9814522b 833 0.690196, 0.694118, 0.698039, 0.701961, 0.705882, 0.709804, 0.713725, 0.717647,
mjr 40:cc0d9814522b 834 0.721569, 0.725490, 0.729412, 0.733333, 0.737255, 0.741176, 0.745098, 0.749020,
mjr 40:cc0d9814522b 835 0.752941, 0.756863, 0.760784, 0.764706, 0.768627, 0.772549, 0.776471, 0.780392,
mjr 40:cc0d9814522b 836 0.784314, 0.788235, 0.792157, 0.796078, 0.800000, 0.803922, 0.807843, 0.811765,
mjr 40:cc0d9814522b 837 0.815686, 0.819608, 0.823529, 0.827451, 0.831373, 0.835294, 0.839216, 0.843137,
mjr 40:cc0d9814522b 838 0.847059, 0.850980, 0.854902, 0.858824, 0.862745, 0.866667, 0.870588, 0.874510,
mjr 40:cc0d9814522b 839 0.878431, 0.882353, 0.886275, 0.890196, 0.894118, 0.898039, 0.901961, 0.905882,
mjr 40:cc0d9814522b 840 0.909804, 0.913725, 0.917647, 0.921569, 0.925490, 0.929412, 0.933333, 0.937255,
mjr 40:cc0d9814522b 841 0.941176, 0.945098, 0.949020, 0.952941, 0.956863, 0.960784, 0.964706, 0.968627,
mjr 40:cc0d9814522b 842 0.972549, 0.976471, 0.980392, 0.984314, 0.988235, 0.992157, 0.996078, 1.000000
mjr 40:cc0d9814522b 843 };
mjr 26:cb71c4af2912 844
mjr 26:cb71c4af2912 845 // LwOut class for a PWM-capable GPIO port
mjr 6:cc35eb643e8f 846 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 847 {
mjr 6:cc35eb643e8f 848 public:
mjr 43:7a6364d82a41 849 LwPwmOut(PinName pin, uint8_t initVal) : p(pin)
mjr 43:7a6364d82a41 850 {
mjr 43:7a6364d82a41 851 prv = initVal ^ 0xFF;
mjr 43:7a6364d82a41 852 set(initVal);
mjr 43:7a6364d82a41 853 }
mjr 40:cc0d9814522b 854 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 855 {
mjr 13:72dda449c3c0 856 if (val != prv)
mjr 40:cc0d9814522b 857 p.write(pwm_level[prv = val]);
mjr 13:72dda449c3c0 858 }
mjr 6:cc35eb643e8f 859 PwmOut p;
mjr 40:cc0d9814522b 860 uint8_t prv;
mjr 6:cc35eb643e8f 861 };
mjr 26:cb71c4af2912 862
mjr 26:cb71c4af2912 863 // LwOut class for a Digital-Only (Non-PWM) GPIO port
mjr 6:cc35eb643e8f 864 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 865 {
mjr 6:cc35eb643e8f 866 public:
mjr 43:7a6364d82a41 867 LwDigOut(PinName pin, uint8_t initVal) : p(pin, initVal ? 1 : 0) { prv = initVal; }
mjr 40:cc0d9814522b 868 virtual void set(uint8_t val)
mjr 13:72dda449c3c0 869 {
mjr 13:72dda449c3c0 870 if (val != prv)
mjr 40:cc0d9814522b 871 p.write((prv = val) == 0 ? 0 : 1);
mjr 13:72dda449c3c0 872 }
mjr 6:cc35eb643e8f 873 DigitalOut p;
mjr 40:cc0d9814522b 874 uint8_t prv;
mjr 6:cc35eb643e8f 875 };
mjr 26:cb71c4af2912 876
mjr 29:582472d0bc57 877 // Array of output physical pin assignments. This array is indexed
mjr 29:582472d0bc57 878 // by LedWiz logical port number - lwPin[n] is the maping for LedWiz
mjr 35:e959ffba78fd 879 // port n (0-based).
mjr 35:e959ffba78fd 880 //
mjr 35:e959ffba78fd 881 // Each pin is handled by an interface object for the physical output
mjr 35:e959ffba78fd 882 // type for the port, as set in the configuration. The interface
mjr 35:e959ffba78fd 883 // objects handle the specifics of addressing the different hardware
mjr 35:e959ffba78fd 884 // types (GPIO PWM ports, GPIO digital ports, TLC5940 ports, and
mjr 35:e959ffba78fd 885 // 74HC595 ports).
mjr 33:d832bcab089e 886 static int numOutputs;
mjr 33:d832bcab089e 887 static LwOut **lwPin;
mjr 33:d832bcab089e 888
mjr 38:091e511ce8a0 889
mjr 35:e959ffba78fd 890 // Number of LedWiz emulation outputs. This is the number of ports
mjr 35:e959ffba78fd 891 // accessible through the standard (non-extended) LedWiz protocol
mjr 35:e959ffba78fd 892 // messages. The protocol has a fixed set of 32 outputs, but we
mjr 35:e959ffba78fd 893 // might have fewer actual outputs. This is therefore set to the
mjr 35:e959ffba78fd 894 // lower of 32 or the actual number of outputs.
mjr 35:e959ffba78fd 895 static int numLwOutputs;
mjr 35:e959ffba78fd 896
mjr 40:cc0d9814522b 897 // Current absolute brightness level for an output. This is a DOF
mjr 40:cc0d9814522b 898 // brightness level value, from 0 for fully off to 255 for fully on.
mjr 40:cc0d9814522b 899 // This is used for all extended ports (33 and above), and for any
mjr 40:cc0d9814522b 900 // LedWiz port with wizVal == 255.
mjr 40:cc0d9814522b 901 static uint8_t *outLevel;
mjr 38:091e511ce8a0 902
mjr 38:091e511ce8a0 903 // create a single output pin
mjr 53:9b2611964afc 904 LwOut *createLwPin(int portno, LedWizPortCfg &pc, Config &cfg)
mjr 38:091e511ce8a0 905 {
mjr 38:091e511ce8a0 906 // get this item's values
mjr 38:091e511ce8a0 907 int typ = pc.typ;
mjr 38:091e511ce8a0 908 int pin = pc.pin;
mjr 38:091e511ce8a0 909 int flags = pc.flags;
mjr 40:cc0d9814522b 910 int noisy = flags & PortFlagNoisemaker;
mjr 38:091e511ce8a0 911 int activeLow = flags & PortFlagActiveLow;
mjr 40:cc0d9814522b 912 int gamma = flags & PortFlagGamma;
mjr 38:091e511ce8a0 913
mjr 38:091e511ce8a0 914 // create the pin interface object according to the port type
mjr 38:091e511ce8a0 915 LwOut *lwp;
mjr 38:091e511ce8a0 916 switch (typ)
mjr 38:091e511ce8a0 917 {
mjr 38:091e511ce8a0 918 case PortTypeGPIOPWM:
mjr 48:058ace2aed1d 919 // PWM GPIO port - assign if we have a valid pin
mjr 48:058ace2aed1d 920 if (pin != 0)
mjr 48:058ace2aed1d 921 lwp = new LwPwmOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 922 else
mjr 48:058ace2aed1d 923 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 924 break;
mjr 38:091e511ce8a0 925
mjr 38:091e511ce8a0 926 case PortTypeGPIODig:
mjr 38:091e511ce8a0 927 // Digital GPIO port
mjr 48:058ace2aed1d 928 if (pin != 0)
mjr 48:058ace2aed1d 929 lwp = new LwDigOut(wirePinName(pin), activeLow ? 255 : 0);
mjr 48:058ace2aed1d 930 else
mjr 48:058ace2aed1d 931 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 932 break;
mjr 38:091e511ce8a0 933
mjr 38:091e511ce8a0 934 case PortTypeTLC5940:
mjr 38:091e511ce8a0 935 // TLC5940 port (if we don't have a TLC controller object, or it's not a valid
mjr 38:091e511ce8a0 936 // output port number on the chips we have, create a virtual port)
mjr 38:091e511ce8a0 937 if (tlc5940 != 0 && pin < cfg.tlc5940.nchips*16)
mjr 40:cc0d9814522b 938 {
mjr 40:cc0d9814522b 939 // If gamma correction is to be used, and we're not inverting the output,
mjr 40:cc0d9814522b 940 // use the combined TLC4950 + Gamma output class. Otherwise use the plain
mjr 40:cc0d9814522b 941 // TLC5940 output. We skip the combined class if the output is inverted
mjr 40:cc0d9814522b 942 // because we need to apply gamma BEFORE the inversion to get the right
mjr 40:cc0d9814522b 943 // results, but the combined class would apply it after because of the
mjr 40:cc0d9814522b 944 // layering scheme - the combined class is a physical device output class,
mjr 40:cc0d9814522b 945 // and a physical device output class is necessarily at the bottom of
mjr 40:cc0d9814522b 946 // the stack. We don't have a combined inverted+gamma+TLC class, because
mjr 40:cc0d9814522b 947 // inversion isn't recommended for TLC5940 chips in the first place, so
mjr 40:cc0d9814522b 948 // it's not worth the extra memory footprint to have a dedicated table
mjr 40:cc0d9814522b 949 // for this unlikely case.
mjr 40:cc0d9814522b 950 if (gamma && !activeLow)
mjr 40:cc0d9814522b 951 {
mjr 40:cc0d9814522b 952 // use the gamma-corrected 5940 output mapper
mjr 40:cc0d9814522b 953 lwp = new Lw5940GammaOut(pin);
mjr 40:cc0d9814522b 954
mjr 40:cc0d9814522b 955 // DON'T apply further gamma correction to this output
mjr 40:cc0d9814522b 956 gamma = false;
mjr 40:cc0d9814522b 957 }
mjr 40:cc0d9814522b 958 else
mjr 40:cc0d9814522b 959 {
mjr 40:cc0d9814522b 960 // no gamma - use the plain (linear) 5940 output class
mjr 40:cc0d9814522b 961 lwp = new Lw5940Out(pin);
mjr 40:cc0d9814522b 962 }
mjr 40:cc0d9814522b 963 }
mjr 38:091e511ce8a0 964 else
mjr 40:cc0d9814522b 965 {
mjr 40:cc0d9814522b 966 // no TLC5940 chips, or invalid port number - use a virtual out
mjr 38:091e511ce8a0 967 lwp = new LwVirtualOut();
mjr 40:cc0d9814522b 968 }
mjr 38:091e511ce8a0 969 break;
mjr 38:091e511ce8a0 970
mjr 38:091e511ce8a0 971 case PortType74HC595:
mjr 38:091e511ce8a0 972 // 74HC595 port (if we don't have an HC595 controller object, or it's not a valid
mjr 38:091e511ce8a0 973 // output number, create a virtual port)
mjr 38:091e511ce8a0 974 if (hc595 != 0 && pin < cfg.hc595.nchips*8)
mjr 38:091e511ce8a0 975 lwp = new Lw595Out(pin);
mjr 38:091e511ce8a0 976 else
mjr 38:091e511ce8a0 977 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 978 break;
mjr 38:091e511ce8a0 979
mjr 38:091e511ce8a0 980 case PortTypeVirtual:
mjr 43:7a6364d82a41 981 case PortTypeDisabled:
mjr 38:091e511ce8a0 982 default:
mjr 38:091e511ce8a0 983 // virtual or unknown
mjr 38:091e511ce8a0 984 lwp = new LwVirtualOut();
mjr 38:091e511ce8a0 985 break;
mjr 38:091e511ce8a0 986 }
mjr 38:091e511ce8a0 987
mjr 40:cc0d9814522b 988 // If it's Active Low, layer on an inverter. Note that an inverter
mjr 40:cc0d9814522b 989 // needs to be the bottom-most layer, since all of the other filters
mjr 40:cc0d9814522b 990 // assume that they're working with normal (non-inverted) values.
mjr 38:091e511ce8a0 991 if (activeLow)
mjr 38:091e511ce8a0 992 lwp = new LwInvertedOut(lwp);
mjr 40:cc0d9814522b 993
mjr 40:cc0d9814522b 994 // If it's a noisemaker, layer on a night mode switch. Note that this
mjr 40:cc0d9814522b 995 // needs to be
mjr 40:cc0d9814522b 996 if (noisy)
mjr 40:cc0d9814522b 997 lwp = new LwNoisyOut(lwp);
mjr 40:cc0d9814522b 998
mjr 40:cc0d9814522b 999 // If it's gamma-corrected, layer on a gamma corrector
mjr 40:cc0d9814522b 1000 if (gamma)
mjr 40:cc0d9814522b 1001 lwp = new LwGammaOut(lwp);
mjr 53:9b2611964afc 1002
mjr 53:9b2611964afc 1003 // If this is the ZB Launch Ball port, layer a monitor object. Note
mjr 53:9b2611964afc 1004 // that the nominal port numbering in the cofnig starts at 1, but we're
mjr 53:9b2611964afc 1005 // using an array index, so test against portno+1.
mjr 53:9b2611964afc 1006 if (portno + 1 == cfg.plunger.zbLaunchBall.port)
mjr 53:9b2611964afc 1007 lwp = new LwZbLaunchOut(lwp);
mjr 53:9b2611964afc 1008
mjr 53:9b2611964afc 1009 // If this is the Night Mode indicator port, layer a night mode object.
mjr 53:9b2611964afc 1010 if (portno + 1 == cfg.nightMode.port)
mjr 53:9b2611964afc 1011 lwp = new LwNightModeIndicatorOut(lwp);
mjr 38:091e511ce8a0 1012
mjr 38:091e511ce8a0 1013 // turn it off initially
mjr 38:091e511ce8a0 1014 lwp->set(0);
mjr 38:091e511ce8a0 1015
mjr 38:091e511ce8a0 1016 // return the pin
mjr 38:091e511ce8a0 1017 return lwp;
mjr 38:091e511ce8a0 1018 }
mjr 38:091e511ce8a0 1019
mjr 6:cc35eb643e8f 1020 // initialize the output pin array
mjr 35:e959ffba78fd 1021 void initLwOut(Config &cfg)
mjr 6:cc35eb643e8f 1022 {
mjr 35:e959ffba78fd 1023 // Count the outputs. The first disabled output determines the
mjr 35:e959ffba78fd 1024 // total number of ports.
mjr 35:e959ffba78fd 1025 numOutputs = MAX_OUT_PORTS;
mjr 33:d832bcab089e 1026 int i;
mjr 35:e959ffba78fd 1027 for (i = 0 ; i < MAX_OUT_PORTS ; ++i)
mjr 6:cc35eb643e8f 1028 {
mjr 35:e959ffba78fd 1029 if (cfg.outPort[i].typ == PortTypeDisabled)
mjr 34:6b981a2afab7 1030 {
mjr 35:e959ffba78fd 1031 numOutputs = i;
mjr 34:6b981a2afab7 1032 break;
mjr 34:6b981a2afab7 1033 }
mjr 33:d832bcab089e 1034 }
mjr 33:d832bcab089e 1035
mjr 35:e959ffba78fd 1036 // the real LedWiz protocol can access at most 32 ports, or the
mjr 35:e959ffba78fd 1037 // actual number of outputs, whichever is lower
mjr 35:e959ffba78fd 1038 numLwOutputs = (numOutputs < 32 ? numOutputs : 32);
mjr 35:e959ffba78fd 1039
mjr 33:d832bcab089e 1040 // allocate the pin array
mjr 33:d832bcab089e 1041 lwPin = new LwOut*[numOutputs];
mjr 33:d832bcab089e 1042
mjr 38:091e511ce8a0 1043 // Allocate the current brightness array. For these, allocate at
mjr 38:091e511ce8a0 1044 // least 32, so that we have enough for all LedWiz messages, but
mjr 38:091e511ce8a0 1045 // allocate the full set of actual ports if we have more than the
mjr 38:091e511ce8a0 1046 // LedWiz complement.
mjr 38:091e511ce8a0 1047 int minOuts = numOutputs < 32 ? 32 : numOutputs;
mjr 40:cc0d9814522b 1048 outLevel = new uint8_t[minOuts];
mjr 33:d832bcab089e 1049
mjr 35:e959ffba78fd 1050 // create the pin interface object for each port
mjr 35:e959ffba78fd 1051 for (i = 0 ; i < numOutputs ; ++i)
mjr 53:9b2611964afc 1052 lwPin[i] = createLwPin(i, cfg.outPort[i], cfg);
mjr 6:cc35eb643e8f 1053 }
mjr 6:cc35eb643e8f 1054
mjr 29:582472d0bc57 1055 // LedWiz output states.
mjr 29:582472d0bc57 1056 //
mjr 29:582472d0bc57 1057 // The LedWiz protocol has two separate control axes for each output.
mjr 29:582472d0bc57 1058 // One axis is its on/off state; the other is its "profile" state, which
mjr 29:582472d0bc57 1059 // is either a fixed brightness or a blinking pattern for the light.
mjr 29:582472d0bc57 1060 // The two axes are independent.
mjr 29:582472d0bc57 1061 //
mjr 29:582472d0bc57 1062 // Note that the LedWiz protocol can only address 32 outputs, so the
mjr 29:582472d0bc57 1063 // wizOn and wizVal arrays have fixed sizes of 32 elements no matter
mjr 29:582472d0bc57 1064 // how many physical outputs we're using.
mjr 29:582472d0bc57 1065
mjr 0:5acbbe3f4cf4 1066 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 1067 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 1068
mjr 40:cc0d9814522b 1069 // LedWiz "Profile State" (the LedWiz brightness level or blink mode)
mjr 40:cc0d9814522b 1070 // for each LedWiz output. If the output was last updated through an
mjr 40:cc0d9814522b 1071 // LedWiz protocol message, it will have one of these values:
mjr 29:582472d0bc57 1072 //
mjr 29:582472d0bc57 1073 // 0-48 = fixed brightness 0% to 100%
mjr 40:cc0d9814522b 1074 // 49 = fixed brightness 100% (equivalent to 48)
mjr 29:582472d0bc57 1075 // 129 = ramp up / ramp down
mjr 29:582472d0bc57 1076 // 130 = flash on / off
mjr 29:582472d0bc57 1077 // 131 = on / ramp down
mjr 29:582472d0bc57 1078 // 132 = ramp up / on
mjr 29:582472d0bc57 1079 //
mjr 40:cc0d9814522b 1080 // If the output was last updated through an extended protocol message,
mjr 40:cc0d9814522b 1081 // it will have the special value 255. This means that we use the
mjr 40:cc0d9814522b 1082 // outLevel[] value for the port instead of an LedWiz setting.
mjr 29:582472d0bc57 1083 //
mjr 40:cc0d9814522b 1084 // (Note that value 49 isn't documented in the LedWiz spec, but real
mjr 40:cc0d9814522b 1085 // LedWiz units treat it as equivalent to 48, and some PC software uses
mjr 40:cc0d9814522b 1086 // it, so we need to accept it for compatibility.)
mjr 1:d913e0afb2ac 1087 static uint8_t wizVal[32] = {
mjr 13:72dda449c3c0 1088 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1089 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1090 48, 48, 48, 48, 48, 48, 48, 48,
mjr 13:72dda449c3c0 1091 48, 48, 48, 48, 48, 48, 48, 48
mjr 0:5acbbe3f4cf4 1092 };
mjr 0:5acbbe3f4cf4 1093
mjr 29:582472d0bc57 1094 // LedWiz flash speed. This is a value from 1 to 7 giving the pulse
mjr 29:582472d0bc57 1095 // rate for lights in blinking states.
mjr 29:582472d0bc57 1096 static uint8_t wizSpeed = 2;
mjr 29:582472d0bc57 1097
mjr 40:cc0d9814522b 1098 // Current LedWiz flash cycle counter. This runs from 0 to 255
mjr 40:cc0d9814522b 1099 // during each cycle.
mjr 29:582472d0bc57 1100 static uint8_t wizFlashCounter = 0;
mjr 29:582472d0bc57 1101
mjr 40:cc0d9814522b 1102 // translate an LedWiz brightness level (0-49) to a DOF brightness
mjr 40:cc0d9814522b 1103 // level (0-255)
mjr 40:cc0d9814522b 1104 static const uint8_t lw_to_dof[] = {
mjr 40:cc0d9814522b 1105 0, 5, 11, 16, 21, 27, 32, 37,
mjr 40:cc0d9814522b 1106 43, 48, 53, 58, 64, 69, 74, 80,
mjr 40:cc0d9814522b 1107 85, 90, 96, 101, 106, 112, 117, 122,
mjr 40:cc0d9814522b 1108 128, 133, 138, 143, 149, 154, 159, 165,
mjr 40:cc0d9814522b 1109 170, 175, 181, 186, 191, 197, 202, 207,
mjr 40:cc0d9814522b 1110 213, 218, 223, 228, 234, 239, 244, 250,
mjr 40:cc0d9814522b 1111 255, 255
mjr 40:cc0d9814522b 1112 };
mjr 40:cc0d9814522b 1113
mjr 40:cc0d9814522b 1114 // Translate an LedWiz output (ports 1-32) to a DOF brightness level.
mjr 40:cc0d9814522b 1115 static uint8_t wizState(int idx)
mjr 0:5acbbe3f4cf4 1116 {
mjr 29:582472d0bc57 1117 // if the output was last set with an extended protocol message,
mjr 29:582472d0bc57 1118 // use the value set there, ignoring the output's LedWiz state
mjr 29:582472d0bc57 1119 if (wizVal[idx] == 255)
mjr 29:582472d0bc57 1120 return outLevel[idx];
mjr 29:582472d0bc57 1121
mjr 29:582472d0bc57 1122 // if it's off, show at zero intensity
mjr 29:582472d0bc57 1123 if (!wizOn[idx])
mjr 29:582472d0bc57 1124 return 0;
mjr 29:582472d0bc57 1125
mjr 29:582472d0bc57 1126 // check the state
mjr 29:582472d0bc57 1127 uint8_t val = wizVal[idx];
mjr 40:cc0d9814522b 1128 if (val <= 49)
mjr 29:582472d0bc57 1129 {
mjr 29:582472d0bc57 1130 // PWM brightness/intensity level. Rescale from the LedWiz
mjr 29:582472d0bc57 1131 // 0..48 integer range to our internal PwmOut 0..1 float range.
mjr 29:582472d0bc57 1132 // Note that on the actual LedWiz, level 48 is actually about
mjr 29:582472d0bc57 1133 // 98% on - contrary to the LedWiz documentation, level 49 is
mjr 29:582472d0bc57 1134 // the true 100% level. (In the documentation, level 49 is
mjr 29:582472d0bc57 1135 // simply not a valid setting.) Even so, we treat level 48 as
mjr 29:582472d0bc57 1136 // 100% on to match the documentation. This won't be perfectly
mjr 29:582472d0bc57 1137 // ocmpatible with the actual LedWiz, but it makes for such a
mjr 29:582472d0bc57 1138 // small difference in brightness (if the output device is an
mjr 29:582472d0bc57 1139 // LED, say) that no one should notice. It seems better to
mjr 29:582472d0bc57 1140 // err in this direction, because while the difference in
mjr 29:582472d0bc57 1141 // brightness when attached to an LED won't be noticeable, the
mjr 29:582472d0bc57 1142 // difference in duty cycle when attached to something like a
mjr 29:582472d0bc57 1143 // contactor *can* be noticeable - anything less than 100%
mjr 29:582472d0bc57 1144 // can cause a contactor or relay to chatter. There's almost
mjr 29:582472d0bc57 1145 // never a situation where you'd want values other than 0% and
mjr 29:582472d0bc57 1146 // 100% for a contactor or relay, so treating level 48 as 100%
mjr 29:582472d0bc57 1147 // makes us work properly with software that's expecting the
mjr 29:582472d0bc57 1148 // documented LedWiz behavior and therefore uses level 48 to
mjr 29:582472d0bc57 1149 // turn a contactor or relay fully on.
mjr 40:cc0d9814522b 1150 //
mjr 40:cc0d9814522b 1151 // Note that value 49 is undefined in the LedWiz documentation,
mjr 40:cc0d9814522b 1152 // but real LedWiz units treat it as 100%, equivalent to 48.
mjr 40:cc0d9814522b 1153 // Some software on the PC side uses this, so we need to treat
mjr 40:cc0d9814522b 1154 // it the same way for compatibility.
mjr 40:cc0d9814522b 1155 return lw_to_dof[val];
mjr 29:582472d0bc57 1156 }
mjr 29:582472d0bc57 1157 else if (val == 129)
mjr 29:582472d0bc57 1158 {
mjr 40:cc0d9814522b 1159 // 129 = ramp up / ramp down
mjr 30:6e9902f06f48 1160 return wizFlashCounter < 128
mjr 40:cc0d9814522b 1161 ? wizFlashCounter*2 + 1
mjr 40:cc0d9814522b 1162 : (255 - wizFlashCounter)*2;
mjr 29:582472d0bc57 1163 }
mjr 29:582472d0bc57 1164 else if (val == 130)
mjr 29:582472d0bc57 1165 {
mjr 40:cc0d9814522b 1166 // 130 = flash on / off
mjr 40:cc0d9814522b 1167 return wizFlashCounter < 128 ? 255 : 0;
mjr 29:582472d0bc57 1168 }
mjr 29:582472d0bc57 1169 else if (val == 131)
mjr 29:582472d0bc57 1170 {
mjr 40:cc0d9814522b 1171 // 131 = on / ramp down
mjr 40:cc0d9814522b 1172 return wizFlashCounter < 128 ? 255 : (255 - wizFlashCounter)*2;
mjr 0:5acbbe3f4cf4 1173 }
mjr 29:582472d0bc57 1174 else if (val == 132)
mjr 29:582472d0bc57 1175 {
mjr 40:cc0d9814522b 1176 // 132 = ramp up / on
mjr 40:cc0d9814522b 1177 return wizFlashCounter < 128 ? wizFlashCounter*2 : 255;
mjr 29:582472d0bc57 1178 }
mjr 29:582472d0bc57 1179 else
mjr 13:72dda449c3c0 1180 {
mjr 29:582472d0bc57 1181 // Other values are undefined in the LedWiz documentation. Hosts
mjr 29:582472d0bc57 1182 // *should* never send undefined values, since whatever behavior an
mjr 29:582472d0bc57 1183 // LedWiz unit exhibits in response is accidental and could change
mjr 29:582472d0bc57 1184 // in a future version. We'll treat all undefined values as equivalent
mjr 29:582472d0bc57 1185 // to 48 (fully on).
mjr 40:cc0d9814522b 1186 return 255;
mjr 0:5acbbe3f4cf4 1187 }
mjr 0:5acbbe3f4cf4 1188 }
mjr 0:5acbbe3f4cf4 1189
mjr 29:582472d0bc57 1190 // LedWiz flash timer pulse. This fires periodically to update
mjr 29:582472d0bc57 1191 // LedWiz flashing outputs. At the slowest pulse speed set via
mjr 29:582472d0bc57 1192 // the SBA command, each waveform cycle has 256 steps, so we
mjr 29:582472d0bc57 1193 // choose the pulse time base so that the slowest cycle completes
mjr 29:582472d0bc57 1194 // in 2 seconds. This seems to roughly match the real LedWiz
mjr 29:582472d0bc57 1195 // behavior. We run the pulse timer at the same rate regardless
mjr 29:582472d0bc57 1196 // of the pulse speed; at higher pulse speeds, we simply use
mjr 29:582472d0bc57 1197 // larger steps through the cycle on each interrupt. Running
mjr 29:582472d0bc57 1198 // every 1/127 of a second = 8ms seems to be a pretty light load.
mjr 29:582472d0bc57 1199 Timeout wizPulseTimer;
mjr 38:091e511ce8a0 1200 #define WIZ_PULSE_TIME_BASE (1.0f/127.0f)
mjr 29:582472d0bc57 1201 static void wizPulse()
mjr 29:582472d0bc57 1202 {
mjr 29:582472d0bc57 1203 // increase the counter by the speed increment, and wrap at 256
mjr 29:582472d0bc57 1204 wizFlashCounter += wizSpeed;
mjr 29:582472d0bc57 1205 wizFlashCounter &= 0xff;
mjr 29:582472d0bc57 1206
mjr 29:582472d0bc57 1207 // if we have any flashing lights, update them
mjr 29:582472d0bc57 1208 int ena = false;
mjr 35:e959ffba78fd 1209 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1210 {
mjr 29:582472d0bc57 1211 if (wizOn[i])
mjr 29:582472d0bc57 1212 {
mjr 29:582472d0bc57 1213 uint8_t s = wizVal[i];
mjr 29:582472d0bc57 1214 if (s >= 129 && s <= 132)
mjr 29:582472d0bc57 1215 {
mjr 40:cc0d9814522b 1216 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1217 ena = true;
mjr 29:582472d0bc57 1218 }
mjr 29:582472d0bc57 1219 }
mjr 29:582472d0bc57 1220 }
mjr 29:582472d0bc57 1221
mjr 29:582472d0bc57 1222 // Set up the next timer pulse only if we found anything flashing.
mjr 29:582472d0bc57 1223 // To minimize overhead from this feature, we only enable the interrupt
mjr 29:582472d0bc57 1224 // when we need it. This eliminates any performance penalty to other
mjr 29:582472d0bc57 1225 // features when the host software doesn't care about the flashing
mjr 29:582472d0bc57 1226 // modes. For example, DOF never uses these modes, so there's no
mjr 29:582472d0bc57 1227 // need for them when running Visual Pinball.
mjr 29:582472d0bc57 1228 if (ena)
mjr 29:582472d0bc57 1229 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 29:582472d0bc57 1230 }
mjr 29:582472d0bc57 1231
mjr 29:582472d0bc57 1232 // Update the physical outputs connected to the LedWiz ports. This is
mjr 29:582472d0bc57 1233 // called after any update from an LedWiz protocol message.
mjr 1:d913e0afb2ac 1234 static void updateWizOuts()
mjr 1:d913e0afb2ac 1235 {
mjr 29:582472d0bc57 1236 // update each output
mjr 29:582472d0bc57 1237 int pulse = false;
mjr 35:e959ffba78fd 1238 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 29:582472d0bc57 1239 {
mjr 29:582472d0bc57 1240 pulse |= (wizVal[i] >= 129 && wizVal[i] <= 132);
mjr 40:cc0d9814522b 1241 lwPin[i]->set(wizState(i));
mjr 29:582472d0bc57 1242 }
mjr 29:582472d0bc57 1243
mjr 29:582472d0bc57 1244 // if any outputs are set to flashing mode, and the pulse timer
mjr 29:582472d0bc57 1245 // isn't running, turn it on
mjr 29:582472d0bc57 1246 if (pulse)
mjr 29:582472d0bc57 1247 wizPulseTimer.attach(wizPulse, WIZ_PULSE_TIME_BASE);
mjr 34:6b981a2afab7 1248
mjr 34:6b981a2afab7 1249 // flush changes to 74HC595 chips, if attached
mjr 35:e959ffba78fd 1250 if (hc595 != 0)
mjr 35:e959ffba78fd 1251 hc595->update();
mjr 1:d913e0afb2ac 1252 }
mjr 38:091e511ce8a0 1253
mjr 38:091e511ce8a0 1254 // Update all physical outputs. This is called after a change to a global
mjr 38:091e511ce8a0 1255 // setting that affects all outputs, such as engaging or canceling Night Mode.
mjr 38:091e511ce8a0 1256 static void updateAllOuts()
mjr 38:091e511ce8a0 1257 {
mjr 38:091e511ce8a0 1258 // uddate each LedWiz output
mjr 38:091e511ce8a0 1259 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 40:cc0d9814522b 1260 lwPin[i]->set(wizState(i));
mjr 34:6b981a2afab7 1261
mjr 38:091e511ce8a0 1262 // update each extended output
mjr 38:091e511ce8a0 1263 for (int i = 33 ; i < numOutputs ; ++i)
mjr 40:cc0d9814522b 1264 lwPin[i]->set(outLevel[i]);
mjr 38:091e511ce8a0 1265
mjr 38:091e511ce8a0 1266 // flush 74HC595 changes, if necessary
mjr 38:091e511ce8a0 1267 if (hc595 != 0)
mjr 38:091e511ce8a0 1268 hc595->update();
mjr 38:091e511ce8a0 1269 }
mjr 38:091e511ce8a0 1270
mjr 11:bd9da7088e6e 1271 // ---------------------------------------------------------------------------
mjr 11:bd9da7088e6e 1272 //
mjr 11:bd9da7088e6e 1273 // Button input
mjr 11:bd9da7088e6e 1274 //
mjr 11:bd9da7088e6e 1275
mjr 18:5e890ebd0023 1276 // button state
mjr 18:5e890ebd0023 1277 struct ButtonState
mjr 18:5e890ebd0023 1278 {
mjr 38:091e511ce8a0 1279 ButtonState()
mjr 38:091e511ce8a0 1280 {
mjr 38:091e511ce8a0 1281 di = NULL;
mjr 53:9b2611964afc 1282 physState = logState = prevLogState = 0;
mjr 53:9b2611964afc 1283 virtState = 0;
mjr 53:9b2611964afc 1284 dbState = 0;
mjr 38:091e511ce8a0 1285 pulseState = 0;
mjr 53:9b2611964afc 1286 pulseTime = 0;
mjr 38:091e511ce8a0 1287 }
mjr 35:e959ffba78fd 1288
mjr 53:9b2611964afc 1289 // "Virtually" press or un-press the button. This can be used to
mjr 53:9b2611964afc 1290 // control the button state via a software (virtual) source, such as
mjr 53:9b2611964afc 1291 // the ZB Launch Ball feature.
mjr 53:9b2611964afc 1292 //
mjr 53:9b2611964afc 1293 // To allow sharing of one button by multiple virtual sources, each
mjr 53:9b2611964afc 1294 // virtual source must keep track of its own state internally, and
mjr 53:9b2611964afc 1295 // only call this routine to CHANGE the state. This is because calls
mjr 53:9b2611964afc 1296 // to this routine are additive: turning the button ON twice will
mjr 53:9b2611964afc 1297 // require turning it OFF twice before it actually turns off.
mjr 53:9b2611964afc 1298 void virtPress(bool on)
mjr 53:9b2611964afc 1299 {
mjr 53:9b2611964afc 1300 // Increment or decrement the current state
mjr 53:9b2611964afc 1301 virtState += on ? 1 : -1;
mjr 53:9b2611964afc 1302 }
mjr 53:9b2611964afc 1303
mjr 53:9b2611964afc 1304 // DigitalIn for the button, if connected to a physical input
mjr 48:058ace2aed1d 1305 TinyDigitalIn *di;
mjr 38:091e511ce8a0 1306
mjr 38:091e511ce8a0 1307 // current PHYSICAL on/off state, after debouncing
mjr 53:9b2611964afc 1308 uint8_t physState : 1;
mjr 18:5e890ebd0023 1309
mjr 38:091e511ce8a0 1310 // current LOGICAL on/off state as reported to the host.
mjr 53:9b2611964afc 1311 uint8_t logState : 1;
mjr 38:091e511ce8a0 1312
mjr 38:091e511ce8a0 1313 // previous logical on/off state, when keys were last processed for USB
mjr 38:091e511ce8a0 1314 // reports and local effects
mjr 53:9b2611964afc 1315 uint8_t prevLogState : 1;
mjr 53:9b2611964afc 1316
mjr 53:9b2611964afc 1317 // Virtual press state. This is used to simulate pressing the button via
mjr 53:9b2611964afc 1318 // software inputs rather than physical inputs. To allow one button to be
mjr 53:9b2611964afc 1319 // controlled by mulitple software sources, each source should keep track
mjr 53:9b2611964afc 1320 // of its own virtual state for the button independently, and then INCREMENT
mjr 53:9b2611964afc 1321 // this variable when the source's state transitions from off to on, and
mjr 53:9b2611964afc 1322 // DECREMENT it when the source's state transitions from on to off. That
mjr 53:9b2611964afc 1323 // will make the button's pressed state the logical OR of all of the virtual
mjr 53:9b2611964afc 1324 // and physical source states.
mjr 53:9b2611964afc 1325 uint8_t virtState;
mjr 38:091e511ce8a0 1326
mjr 38:091e511ce8a0 1327 // Debounce history. On each scan, we shift in a 1 bit to the lsb if
mjr 38:091e511ce8a0 1328 // the physical key is reporting ON, and shift in a 0 bit if the physical
mjr 38:091e511ce8a0 1329 // key is reporting OFF. We consider the key to have a new stable state
mjr 38:091e511ce8a0 1330 // if we have N consecutive 0's or 1's in the low N bits (where N is
mjr 38:091e511ce8a0 1331 // a parameter that determines how long we wait for transients to settle).
mjr 53:9b2611964afc 1332 uint8_t dbState;
mjr 38:091e511ce8a0 1333
mjr 38:091e511ce8a0 1334 // Pulse mode: a button in pulse mode transmits a brief logical button press and
mjr 38:091e511ce8a0 1335 // release each time the attached physical switch changes state. This is useful
mjr 38:091e511ce8a0 1336 // for cases where the host expects a key press for each change in the state of
mjr 38:091e511ce8a0 1337 // the physical switch. The canonical example is the Coin Door switch in VPinMAME,
mjr 38:091e511ce8a0 1338 // which requires pressing the END key to toggle the open/closed state. This
mjr 38:091e511ce8a0 1339 // software design isn't easily implemented in a physical coin door, though -
mjr 38:091e511ce8a0 1340 // the easiest way to sense a physical coin door's state is with a simple on/off
mjr 38:091e511ce8a0 1341 // switch. Pulse mode bridges that divide by converting a physical switch state
mjr 38:091e511ce8a0 1342 // to on/off toggle key reports to the host.
mjr 38:091e511ce8a0 1343 //
mjr 38:091e511ce8a0 1344 // Pulse state:
mjr 38:091e511ce8a0 1345 // 0 -> not a pulse switch - logical key state equals physical switch state
mjr 38:091e511ce8a0 1346 // 1 -> off
mjr 38:091e511ce8a0 1347 // 2 -> transitioning off-on
mjr 38:091e511ce8a0 1348 // 3 -> on
mjr 38:091e511ce8a0 1349 // 4 -> transitioning on-off
mjr 38:091e511ce8a0 1350 //
mjr 38:091e511ce8a0 1351 // Each state change sticks for a minimum period; when the timer expires,
mjr 38:091e511ce8a0 1352 // if the underlying physical switch is in a different state, we switch
mjr 53:9b2611964afc 1353 // to the next state and restart the timer. pulseTime is the time remaining
mjr 53:9b2611964afc 1354 // remaining before we can make another state transition, in microseconds.
mjr 53:9b2611964afc 1355 // The state transitions require a complete cycle, 1 -> 2 -> 3 -> 4 -> 1...;
mjr 53:9b2611964afc 1356 // this guarantees that the parity of the pulse count always matches the
mjr 38:091e511ce8a0 1357 // current physical switch state when the latter is stable, which makes
mjr 38:091e511ce8a0 1358 // it impossible to "trick" the host by rapidly toggling the switch state.
mjr 38:091e511ce8a0 1359 // (On my original Pinscape cabinet, I had a hardware pulse generator
mjr 38:091e511ce8a0 1360 // for coin door, and that *was* possible to trick by rapid toggling.
mjr 38:091e511ce8a0 1361 // This software system can't be fooled that way.)
mjr 38:091e511ce8a0 1362 uint8_t pulseState;
mjr 53:9b2611964afc 1363 uint32_t pulseTime;
mjr 38:091e511ce8a0 1364
mjr 48:058ace2aed1d 1365 } __attribute__((packed)) buttonState[MAX_BUTTONS];
mjr 18:5e890ebd0023 1366
mjr 38:091e511ce8a0 1367
mjr 38:091e511ce8a0 1368 // Button data
mjr 38:091e511ce8a0 1369 uint32_t jsButtons = 0;
mjr 38:091e511ce8a0 1370
mjr 38:091e511ce8a0 1371 // Keyboard report state. This tracks the USB keyboard state. We can
mjr 38:091e511ce8a0 1372 // report at most 6 simultaneous non-modifier keys here, plus the 8
mjr 38:091e511ce8a0 1373 // modifier keys.
mjr 38:091e511ce8a0 1374 struct
mjr 38:091e511ce8a0 1375 {
mjr 38:091e511ce8a0 1376 bool changed; // flag: changed since last report sent
mjr 48:058ace2aed1d 1377 uint8_t nkeys; // number of active keys in the list
mjr 38:091e511ce8a0 1378 uint8_t data[8]; // key state, in USB report format: byte 0 is the modifier key mask,
mjr 38:091e511ce8a0 1379 // byte 1 is reserved, and bytes 2-7 are the currently pressed key codes
mjr 38:091e511ce8a0 1380 } kbState = { false, 0, { 0, 0, 0, 0, 0, 0, 0, 0 } };
mjr 38:091e511ce8a0 1381
mjr 38:091e511ce8a0 1382 // Media key state
mjr 38:091e511ce8a0 1383 struct
mjr 38:091e511ce8a0 1384 {
mjr 38:091e511ce8a0 1385 bool changed; // flag: changed since last report sent
mjr 38:091e511ce8a0 1386 uint8_t data; // key state byte for USB reports
mjr 38:091e511ce8a0 1387 } mediaState = { false, 0 };
mjr 38:091e511ce8a0 1388
mjr 38:091e511ce8a0 1389 // button scan interrupt ticker
mjr 38:091e511ce8a0 1390 Ticker buttonTicker;
mjr 38:091e511ce8a0 1391
mjr 38:091e511ce8a0 1392 // Button scan interrupt handler. We call this periodically via
mjr 38:091e511ce8a0 1393 // a timer interrupt to scan the physical button states.
mjr 38:091e511ce8a0 1394 void scanButtons()
mjr 38:091e511ce8a0 1395 {
mjr 38:091e511ce8a0 1396 // scan all button input pins
mjr 38:091e511ce8a0 1397 ButtonState *bs = buttonState;
mjr 38:091e511ce8a0 1398 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 38:091e511ce8a0 1399 {
mjr 53:9b2611964afc 1400 // if this logical button is connected to a physical input, check
mjr 53:9b2611964afc 1401 // the GPIO pin state
mjr 38:091e511ce8a0 1402 if (bs->di != NULL)
mjr 38:091e511ce8a0 1403 {
mjr 38:091e511ce8a0 1404 // Shift the new state into the debounce history. Note that
mjr 38:091e511ce8a0 1405 // the physical pin inputs are active low (0V/GND = ON), so invert
mjr 38:091e511ce8a0 1406 // the reading by XOR'ing the low bit with 1. And of course we
mjr 38:091e511ce8a0 1407 // only want the low bit (since the history is effectively a bit
mjr 38:091e511ce8a0 1408 // vector), so mask the whole thing with 0x01 as well.
mjr 53:9b2611964afc 1409 uint8_t db = bs->dbState;
mjr 38:091e511ce8a0 1410 db <<= 1;
mjr 38:091e511ce8a0 1411 db |= (bs->di->read() & 0x01) ^ 0x01;
mjr 53:9b2611964afc 1412 bs->dbState = db;
mjr 38:091e511ce8a0 1413
mjr 38:091e511ce8a0 1414 // if we have all 0's or 1's in the history for the required
mjr 38:091e511ce8a0 1415 // debounce period, the key state is stable - check for a change
mjr 38:091e511ce8a0 1416 // to the last stable state
mjr 38:091e511ce8a0 1417 const uint8_t stable = 0x1F; // 00011111b -> 5 stable readings
mjr 38:091e511ce8a0 1418 db &= stable;
mjr 38:091e511ce8a0 1419 if (db == 0 || db == stable)
mjr 53:9b2611964afc 1420 bs->physState = db & 1;
mjr 38:091e511ce8a0 1421 }
mjr 38:091e511ce8a0 1422 }
mjr 38:091e511ce8a0 1423 }
mjr 38:091e511ce8a0 1424
mjr 38:091e511ce8a0 1425 // Button state transition timer. This is used for pulse buttons, to
mjr 38:091e511ce8a0 1426 // control the timing of the logical key presses generated by transitions
mjr 38:091e511ce8a0 1427 // in the physical button state.
mjr 38:091e511ce8a0 1428 Timer buttonTimer;
mjr 12:669df364a565 1429
mjr 11:bd9da7088e6e 1430 // initialize the button inputs
mjr 35:e959ffba78fd 1431 void initButtons(Config &cfg, bool &kbKeys)
mjr 11:bd9da7088e6e 1432 {
mjr 35:e959ffba78fd 1433 // presume we'll find no keyboard keys
mjr 35:e959ffba78fd 1434 kbKeys = false;
mjr 35:e959ffba78fd 1435
mjr 53:9b2611964afc 1436 // Configure the virtual buttons. These are buttons controlled via
mjr 53:9b2611964afc 1437 // software triggers rather than physical GPIO inputs. The virtual
mjr 53:9b2611964afc 1438 // buttons have the same control structures as regular buttons, but
mjr 53:9b2611964afc 1439 // they get their configuration data from other config variables.
mjr 53:9b2611964afc 1440
mjr 53:9b2611964afc 1441 // ZB Launch Ball button
mjr 53:9b2611964afc 1442 cfg.button[ZBL_BUTTON].set(
mjr 53:9b2611964afc 1443 PINNAME_TO_WIRE(NC),
mjr 53:9b2611964afc 1444 cfg.plunger.zbLaunchBall.keytype,
mjr 53:9b2611964afc 1445 cfg.plunger.zbLaunchBall.keycode);
mjr 53:9b2611964afc 1446
mjr 11:bd9da7088e6e 1447 // create the digital inputs
mjr 35:e959ffba78fd 1448 ButtonState *bs = buttonState;
mjr 35:e959ffba78fd 1449 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs)
mjr 11:bd9da7088e6e 1450 {
mjr 35:e959ffba78fd 1451 PinName pin = wirePinName(cfg.button[i].pin);
mjr 35:e959ffba78fd 1452 if (pin != NC)
mjr 35:e959ffba78fd 1453 {
mjr 35:e959ffba78fd 1454 // set up the GPIO input pin for this button
mjr 48:058ace2aed1d 1455 bs->di = new TinyDigitalIn(pin);
mjr 35:e959ffba78fd 1456
mjr 38:091e511ce8a0 1457 // if it's a pulse mode button, set the initial pulse state to Off
mjr 38:091e511ce8a0 1458 if (cfg.button[i].flags & BtnFlagPulse)
mjr 38:091e511ce8a0 1459 bs->pulseState = 1;
mjr 38:091e511ce8a0 1460
mjr 53:9b2611964afc 1461 // Note if it's a keyboard key of some kind. If we find any keyboard
mjr 53:9b2611964afc 1462 // mappings, we'll declare a keyboard interface when we send our HID
mjr 53:9b2611964afc 1463 // configuration to the host during USB connection setup.
mjr 35:e959ffba78fd 1464 switch (cfg.button[i].typ)
mjr 35:e959ffba78fd 1465 {
mjr 35:e959ffba78fd 1466 case BtnTypeKey:
mjr 53:9b2611964afc 1467 // note that we have at least one keyboard key
mjr 35:e959ffba78fd 1468 kbKeys = true;
mjr 35:e959ffba78fd 1469 break;
mjr 35:e959ffba78fd 1470
mjr 53:9b2611964afc 1471 default:
mjr 53:9b2611964afc 1472 // not a keyboard key
mjr 39:b3815a1c3802 1473 break;
mjr 35:e959ffba78fd 1474 }
mjr 35:e959ffba78fd 1475 }
mjr 11:bd9da7088e6e 1476 }
mjr 12:669df364a565 1477
mjr 53:9b2611964afc 1478 // If the ZB Launch Ball feature is enabled, and it uses a keyboard
mjr 53:9b2611964afc 1479 // key, this requires setting up a USB keyboard interface.
mjr 53:9b2611964afc 1480 if (cfg.plunger.zbLaunchBall.port != 0
mjr 53:9b2611964afc 1481 && cfg.plunger.zbLaunchBall.keytype == BtnTypeKey)
mjr 53:9b2611964afc 1482 kbKeys = true;
mjr 53:9b2611964afc 1483
mjr 38:091e511ce8a0 1484 // start the button scan thread
mjr 38:091e511ce8a0 1485 buttonTicker.attach_us(scanButtons, 1000);
mjr 38:091e511ce8a0 1486
mjr 38:091e511ce8a0 1487 // start the button state transition timer
mjr 12:669df364a565 1488 buttonTimer.start();
mjr 11:bd9da7088e6e 1489 }
mjr 11:bd9da7088e6e 1490
mjr 38:091e511ce8a0 1491 // Process the button state. This sets up the joystick, keyboard, and
mjr 38:091e511ce8a0 1492 // media control descriptors with the current state of keys mapped to
mjr 38:091e511ce8a0 1493 // those HID interfaces, and executes the local effects for any keys
mjr 38:091e511ce8a0 1494 // mapped to special device functions (e.g., Night Mode).
mjr 53:9b2611964afc 1495 void processButtons(Config &cfg)
mjr 35:e959ffba78fd 1496 {
mjr 35:e959ffba78fd 1497 // start with an empty list of USB key codes
mjr 35:e959ffba78fd 1498 uint8_t modkeys = 0;
mjr 35:e959ffba78fd 1499 uint8_t keys[7] = { 0, 0, 0, 0, 0, 0, 0 };
mjr 35:e959ffba78fd 1500 int nkeys = 0;
mjr 11:bd9da7088e6e 1501
mjr 35:e959ffba78fd 1502 // clear the joystick buttons
mjr 36:b9747461331e 1503 uint32_t newjs = 0;
mjr 35:e959ffba78fd 1504
mjr 35:e959ffba78fd 1505 // start with no media keys pressed
mjr 35:e959ffba78fd 1506 uint8_t mediakeys = 0;
mjr 38:091e511ce8a0 1507
mjr 38:091e511ce8a0 1508 // calculate the time since the last run
mjr 53:9b2611964afc 1509 uint32_t dt = buttonTimer.read_us();
mjr 18:5e890ebd0023 1510 buttonTimer.reset();
mjr 38:091e511ce8a0 1511
mjr 11:bd9da7088e6e 1512 // scan the button list
mjr 18:5e890ebd0023 1513 ButtonState *bs = buttonState;
mjr 53:9b2611964afc 1514 ButtonCfg *bc = cfg.button;
mjr 53:9b2611964afc 1515 for (int i = 0 ; i < MAX_BUTTONS ; ++i, ++bs, ++bc)
mjr 11:bd9da7088e6e 1516 {
mjr 38:091e511ce8a0 1517 // if it's a pulse-mode switch, get the virtual pressed state
mjr 38:091e511ce8a0 1518 if (bs->pulseState != 0)
mjr 18:5e890ebd0023 1519 {
mjr 38:091e511ce8a0 1520 // if the timer has expired, check for state changes
mjr 53:9b2611964afc 1521 if (bs->pulseTime > dt)
mjr 18:5e890ebd0023 1522 {
mjr 53:9b2611964afc 1523 // not expired yet - deduct the last interval
mjr 53:9b2611964afc 1524 bs->pulseTime -= dt;
mjr 53:9b2611964afc 1525 }
mjr 53:9b2611964afc 1526 else
mjr 53:9b2611964afc 1527 {
mjr 53:9b2611964afc 1528 // pulse time expired - check for a state change
mjr 53:9b2611964afc 1529 const uint32_t pulseLength = 200000UL; // 200 milliseconds
mjr 38:091e511ce8a0 1530 switch (bs->pulseState)
mjr 18:5e890ebd0023 1531 {
mjr 38:091e511ce8a0 1532 case 1:
mjr 38:091e511ce8a0 1533 // off - if the physical switch is now on, start a button pulse
mjr 53:9b2611964afc 1534 if (bs->physState)
mjr 53:9b2611964afc 1535 {
mjr 38:091e511ce8a0 1536 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1537 bs->pulseState = 2;
mjr 53:9b2611964afc 1538 bs->logState = 1;
mjr 38:091e511ce8a0 1539 }
mjr 38:091e511ce8a0 1540 break;
mjr 18:5e890ebd0023 1541
mjr 38:091e511ce8a0 1542 case 2:
mjr 38:091e511ce8a0 1543 // transitioning off to on - end the pulse, and start a gap
mjr 38:091e511ce8a0 1544 // equal to the pulse time so that the host can observe the
mjr 38:091e511ce8a0 1545 // change in state in the logical button
mjr 38:091e511ce8a0 1546 bs->pulseState = 3;
mjr 38:091e511ce8a0 1547 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 1548 bs->logState = 0;
mjr 38:091e511ce8a0 1549 break;
mjr 38:091e511ce8a0 1550
mjr 38:091e511ce8a0 1551 case 3:
mjr 38:091e511ce8a0 1552 // on - if the physical switch is now off, start a button pulse
mjr 53:9b2611964afc 1553 if (!bs->physState)
mjr 53:9b2611964afc 1554 {
mjr 38:091e511ce8a0 1555 bs->pulseTime = pulseLength;
mjr 38:091e511ce8a0 1556 bs->pulseState = 4;
mjr 53:9b2611964afc 1557 bs->logState = 1;
mjr 38:091e511ce8a0 1558 }
mjr 38:091e511ce8a0 1559 break;
mjr 38:091e511ce8a0 1560
mjr 38:091e511ce8a0 1561 case 4:
mjr 38:091e511ce8a0 1562 // transitioning on to off - end the pulse, and start a gap
mjr 38:091e511ce8a0 1563 bs->pulseState = 1;
mjr 38:091e511ce8a0 1564 bs->pulseTime = pulseLength;
mjr 53:9b2611964afc 1565 bs->logState = 0;
mjr 38:091e511ce8a0 1566 break;
mjr 18:5e890ebd0023 1567 }
mjr 18:5e890ebd0023 1568 }
mjr 38:091e511ce8a0 1569 }
mjr 38:091e511ce8a0 1570 else
mjr 38:091e511ce8a0 1571 {
mjr 38:091e511ce8a0 1572 // not a pulse switch - the logical state is the same as the physical state
mjr 53:9b2611964afc 1573 bs->logState = bs->physState;
mjr 38:091e511ce8a0 1574 }
mjr 35:e959ffba78fd 1575
mjr 38:091e511ce8a0 1576 // carry out any edge effects from buttons changing states
mjr 53:9b2611964afc 1577 if (bs->logState != bs->prevLogState)
mjr 38:091e511ce8a0 1578 {
mjr 38:091e511ce8a0 1579 // check for special key transitions
mjr 53:9b2611964afc 1580 if (cfg.nightMode.btn == i + 1)
mjr 35:e959ffba78fd 1581 {
mjr 53:9b2611964afc 1582 // Check the switch type in the config flags. If flag 0x01 is set,
mjr 53:9b2611964afc 1583 // it's a persistent on/off switch, so the night mode state simply
mjr 53:9b2611964afc 1584 // follows the current state of the switch. Otherwise, it's a
mjr 53:9b2611964afc 1585 // momentary button, so each button push (i.e., each transition from
mjr 53:9b2611964afc 1586 // logical state OFF to ON) toggles the current night mode state.
mjr 53:9b2611964afc 1587 if (cfg.nightMode.flags & 0x01)
mjr 53:9b2611964afc 1588 {
mjr 53:9b2611964afc 1589 // toggle switch - when the button changes state, change
mjr 53:9b2611964afc 1590 // night mode to match the new state
mjr 53:9b2611964afc 1591 setNightMode(bs->logState);
mjr 53:9b2611964afc 1592 }
mjr 53:9b2611964afc 1593 else
mjr 53:9b2611964afc 1594 {
mjr 53:9b2611964afc 1595 // momentary switch - toggle the night mode state when the
mjr 53:9b2611964afc 1596 // physical button is pushed (i.e., when its logical state
mjr 53:9b2611964afc 1597 // transitions from OFF to ON)
mjr 53:9b2611964afc 1598 if (bs->logState)
mjr 53:9b2611964afc 1599 toggleNightMode();
mjr 53:9b2611964afc 1600 }
mjr 35:e959ffba78fd 1601 }
mjr 38:091e511ce8a0 1602
mjr 38:091e511ce8a0 1603 // remember the new state for comparison on the next run
mjr 53:9b2611964afc 1604 bs->prevLogState = bs->logState;
mjr 38:091e511ce8a0 1605 }
mjr 38:091e511ce8a0 1606
mjr 53:9b2611964afc 1607 // if it's pressed, physically or virtually, add it to the appropriate
mjr 53:9b2611964afc 1608 // key state list
mjr 53:9b2611964afc 1609 if (bs->logState || bs->virtState)
mjr 38:091e511ce8a0 1610 {
mjr 38:091e511ce8a0 1611 // OR in the joystick button bit, mod key bits, and media key bits
mjr 53:9b2611964afc 1612 uint8_t val = bc->val;
mjr 53:9b2611964afc 1613 switch (bc->typ)
mjr 53:9b2611964afc 1614 {
mjr 53:9b2611964afc 1615 case BtnTypeJoystick:
mjr 53:9b2611964afc 1616 // joystick button
mjr 53:9b2611964afc 1617 newjs |= (1 << (val - 1));
mjr 53:9b2611964afc 1618 break;
mjr 53:9b2611964afc 1619
mjr 53:9b2611964afc 1620 case BtnTypeKey:
mjr 53:9b2611964afc 1621 // Keyboard key. This could be a modifier key (shift, control,
mjr 53:9b2611964afc 1622 // alt, GUI), a media key (mute, volume up, volume down), or a
mjr 53:9b2611964afc 1623 // regular key. Check which one.
mjr 53:9b2611964afc 1624 if (val >= 0x7F && val <= 0x81)
mjr 53:9b2611964afc 1625 {
mjr 53:9b2611964afc 1626 // It's a media key. OR the key into the media key mask.
mjr 53:9b2611964afc 1627 // The media mask bits are mapped in the HID report descriptor
mjr 53:9b2611964afc 1628 // in USBJoystick.cpp. For simplicity, we arrange the mask so
mjr 53:9b2611964afc 1629 // that the ones with regular keyboard equivalents that we catch
mjr 53:9b2611964afc 1630 // here are in the same order as the key scan codes:
mjr 53:9b2611964afc 1631 //
mjr 53:9b2611964afc 1632 // Mute = scan 0x7F = mask bit 0x01
mjr 53:9b2611964afc 1633 // Vol Up = scan 0x80 = mask bit 0x02
mjr 53:9b2611964afc 1634 // Vol Down = scan 0x81 = mask bit 0x04
mjr 53:9b2611964afc 1635 //
mjr 53:9b2611964afc 1636 // So we can translate from scan code to bit mask with some
mjr 53:9b2611964afc 1637 // simple bit shifting:
mjr 53:9b2611964afc 1638 mediakeys |= (1 << (val - 0x7f));
mjr 53:9b2611964afc 1639 }
mjr 53:9b2611964afc 1640 else if (val >= 0xE0 && val <= 0xE7)
mjr 53:9b2611964afc 1641 {
mjr 53:9b2611964afc 1642 // It's a modifier key. Like the media keys, these are represented
mjr 53:9b2611964afc 1643 // in the USB reports with a bit mask, and like the media keys, we
mjr 53:9b2611964afc 1644 // arrange the mask bits in the same order as the scan codes. This
mjr 53:9b2611964afc 1645 // makes figuring the mask a simple bit shift:
mjr 53:9b2611964afc 1646 modkeys |= (1 << (val - 0xE0));
mjr 53:9b2611964afc 1647 }
mjr 53:9b2611964afc 1648 else
mjr 53:9b2611964afc 1649 {
mjr 53:9b2611964afc 1650 // It's a regular key. Make sure it's not already in the list, and
mjr 53:9b2611964afc 1651 // that the list isn't full. If neither of these apply, add the key.
mjr 53:9b2611964afc 1652 if (nkeys < 7)
mjr 53:9b2611964afc 1653 {
mjr 53:9b2611964afc 1654 bool found;
mjr 53:9b2611964afc 1655 for (int j = 0 ; j < nkeys ; ++j)
mjr 53:9b2611964afc 1656 {
mjr 53:9b2611964afc 1657 if (keys[j] == val)
mjr 53:9b2611964afc 1658 {
mjr 53:9b2611964afc 1659 found = true;
mjr 53:9b2611964afc 1660 break;
mjr 53:9b2611964afc 1661 }
mjr 53:9b2611964afc 1662 }
mjr 53:9b2611964afc 1663 if (!found)
mjr 53:9b2611964afc 1664 keys[nkeys++] = val;
mjr 53:9b2611964afc 1665 }
mjr 53:9b2611964afc 1666 }
mjr 53:9b2611964afc 1667 break;
mjr 53:9b2611964afc 1668 }
mjr 18:5e890ebd0023 1669 }
mjr 11:bd9da7088e6e 1670 }
mjr 36:b9747461331e 1671
mjr 36:b9747461331e 1672 // check for joystick button changes
mjr 36:b9747461331e 1673 if (jsButtons != newjs)
mjr 36:b9747461331e 1674 jsButtons = newjs;
mjr 11:bd9da7088e6e 1675
mjr 35:e959ffba78fd 1676 // Check for changes to the keyboard keys
mjr 35:e959ffba78fd 1677 if (kbState.data[0] != modkeys
mjr 35:e959ffba78fd 1678 || kbState.nkeys != nkeys
mjr 35:e959ffba78fd 1679 || memcmp(keys, &kbState.data[2], 6) != 0)
mjr 35:e959ffba78fd 1680 {
mjr 35:e959ffba78fd 1681 // we have changes - set the change flag and store the new key data
mjr 35:e959ffba78fd 1682 kbState.changed = true;
mjr 35:e959ffba78fd 1683 kbState.data[0] = modkeys;
mjr 35:e959ffba78fd 1684 if (nkeys <= 6) {
mjr 35:e959ffba78fd 1685 // 6 or fewer simultaneous keys - report the key codes
mjr 35:e959ffba78fd 1686 kbState.nkeys = nkeys;
mjr 35:e959ffba78fd 1687 memcpy(&kbState.data[2], keys, 6);
mjr 35:e959ffba78fd 1688 }
mjr 35:e959ffba78fd 1689 else {
mjr 35:e959ffba78fd 1690 // more than 6 simultaneous keys - report rollover (all '1' key codes)
mjr 35:e959ffba78fd 1691 kbState.nkeys = 6;
mjr 35:e959ffba78fd 1692 memset(&kbState.data[2], 1, 6);
mjr 35:e959ffba78fd 1693 }
mjr 35:e959ffba78fd 1694 }
mjr 35:e959ffba78fd 1695
mjr 35:e959ffba78fd 1696 // Check for changes to media keys
mjr 35:e959ffba78fd 1697 if (mediaState.data != mediakeys)
mjr 35:e959ffba78fd 1698 {
mjr 35:e959ffba78fd 1699 mediaState.changed = true;
mjr 35:e959ffba78fd 1700 mediaState.data = mediakeys;
mjr 35:e959ffba78fd 1701 }
mjr 11:bd9da7088e6e 1702 }
mjr 11:bd9da7088e6e 1703
mjr 5:a70c0bce770d 1704 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1705 //
mjr 5:a70c0bce770d 1706 // Customization joystick subbclass
mjr 5:a70c0bce770d 1707 //
mjr 5:a70c0bce770d 1708
mjr 5:a70c0bce770d 1709 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 1710 {
mjr 5:a70c0bce770d 1711 public:
mjr 35:e959ffba78fd 1712 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release,
mjr 35:e959ffba78fd 1713 bool waitForConnect, bool enableJoystick, bool useKB)
mjr 35:e959ffba78fd 1714 : USBJoystick(vendor_id, product_id, product_release, waitForConnect, enableJoystick, useKB)
mjr 5:a70c0bce770d 1715 {
mjr 54:fd77a6b2f76c 1716 sleeping_ = false;
mjr 54:fd77a6b2f76c 1717 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 1718 timer_.start();
mjr 54:fd77a6b2f76c 1719 }
mjr 54:fd77a6b2f76c 1720
mjr 54:fd77a6b2f76c 1721 // show diagnostic LED feedback for connect state
mjr 54:fd77a6b2f76c 1722 void diagFlash()
mjr 54:fd77a6b2f76c 1723 {
mjr 54:fd77a6b2f76c 1724 if (!configured() || sleeping_)
mjr 54:fd77a6b2f76c 1725 {
mjr 54:fd77a6b2f76c 1726 // flash once if sleeping or twice if disconnected
mjr 54:fd77a6b2f76c 1727 for (int j = isConnected() ? 1 : 2 ; j > 0 ; --j)
mjr 54:fd77a6b2f76c 1728 {
mjr 54:fd77a6b2f76c 1729 // short red flash
mjr 54:fd77a6b2f76c 1730 diagLED(1, 0, 0);
mjr 54:fd77a6b2f76c 1731 wait_us(50000);
mjr 54:fd77a6b2f76c 1732 diagLED(0, 0, 0);
mjr 54:fd77a6b2f76c 1733 wait_us(50000);
mjr 54:fd77a6b2f76c 1734 }
mjr 54:fd77a6b2f76c 1735 }
mjr 5:a70c0bce770d 1736 }
mjr 5:a70c0bce770d 1737
mjr 5:a70c0bce770d 1738 // are we connected?
mjr 5:a70c0bce770d 1739 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 1740
mjr 54:fd77a6b2f76c 1741 // Are we in sleep mode? If true, this means that the hardware has
mjr 54:fd77a6b2f76c 1742 // detected no activity on the bus for 3ms. This happens when the
mjr 54:fd77a6b2f76c 1743 // cable is physically disconnected, the computer is turned off, or
mjr 54:fd77a6b2f76c 1744 // the connection is otherwise disabled.
mjr 54:fd77a6b2f76c 1745 bool isSleeping() const { return sleeping_; }
mjr 54:fd77a6b2f76c 1746
mjr 54:fd77a6b2f76c 1747 // If necessary, attempt to recover from a broken connection.
mjr 54:fd77a6b2f76c 1748 //
mjr 54:fd77a6b2f76c 1749 // This is a hack, to work around an apparent timing bug in the
mjr 54:fd77a6b2f76c 1750 // KL25Z USB implementation that I haven't been able to solve any
mjr 54:fd77a6b2f76c 1751 // other way.
mjr 54:fd77a6b2f76c 1752 //
mjr 54:fd77a6b2f76c 1753 // The issue: when we have an established connection, and the
mjr 54:fd77a6b2f76c 1754 // connection is broken by physically unplugging the cable or by
mjr 54:fd77a6b2f76c 1755 // rebooting the PC, the KL25Z sometimes fails to reconnect when
mjr 54:fd77a6b2f76c 1756 // the physical connection is re-established. The failure is
mjr 54:fd77a6b2f76c 1757 // sporadic; I'd guess it happens about 25% of the time, but I
mjr 54:fd77a6b2f76c 1758 // haven't collected any real statistics on it.
mjr 54:fd77a6b2f76c 1759 //
mjr 54:fd77a6b2f76c 1760 // The proximate cause of the failure is a deadlock in the SETUP
mjr 54:fd77a6b2f76c 1761 // protocol between the host and device that happens around the
mjr 54:fd77a6b2f76c 1762 // point where the PC is requesting the configuration descriptor.
mjr 54:fd77a6b2f76c 1763 // The exact point in the protocol where this occurs varies slightly;
mjr 54:fd77a6b2f76c 1764 // it can occur a message or two before or after the Get Config
mjr 54:fd77a6b2f76c 1765 // Descriptor packet. No matter where it happens, the nature of
mjr 54:fd77a6b2f76c 1766 // the deadlock is the same: the PC thinks it sees a STALL on EP0
mjr 54:fd77a6b2f76c 1767 // from the device, so it terminates the connection attempt, which
mjr 54:fd77a6b2f76c 1768 // stops further traffic on the cable. The KL25Z USB hardware sees
mjr 54:fd77a6b2f76c 1769 // the lack of traffic and triggers a SLEEP interrupt (a misnomer
mjr 54:fd77a6b2f76c 1770 // for what should have been called a BROKEN CONNECTION interrupt).
mjr 54:fd77a6b2f76c 1771 // Both sides simply stop talking at this point, so the connection
mjr 54:fd77a6b2f76c 1772 // is effectively dead.
mjr 54:fd77a6b2f76c 1773 //
mjr 54:fd77a6b2f76c 1774 // The strange thing is that, as far as I can tell, the KL25Z isn't
mjr 54:fd77a6b2f76c 1775 // doing anything to trigger the STALL on its end. Both the PC
mjr 54:fd77a6b2f76c 1776 // and the KL25Z are happy up until the very point of the failure
mjr 54:fd77a6b2f76c 1777 // and show no signs of anything wrong in the protocol exchange.
mjr 54:fd77a6b2f76c 1778 // In fact, every detail of the protocol exchange up to this point
mjr 54:fd77a6b2f76c 1779 // is identical to every successful exchange that does finish the
mjr 54:fd77a6b2f76c 1780 // whole setup process successfully, on both the KL25Z and Windows
mjr 54:fd77a6b2f76c 1781 // sides of the connection. I can't find any point of difference
mjr 54:fd77a6b2f76c 1782 // between successful and unsuccessful sequences that suggests why
mjr 54:fd77a6b2f76c 1783 // the fateful message fails. This makes me suspect that whatever
mjr 54:fd77a6b2f76c 1784 // is going wrong is inside the KL25Z USB hardware module, which
mjr 54:fd77a6b2f76c 1785 // is a pretty substantial black box - it has a lot of internal
mjr 54:fd77a6b2f76c 1786 // state that's inaccessible to the software. Further bolstering
mjr 54:fd77a6b2f76c 1787 // this theory is a little experiment where I found that I could
mjr 54:fd77a6b2f76c 1788 // reproduce the exact sequence of events of a failed reconnect
mjr 54:fd77a6b2f76c 1789 // attempt in an *initial* connection, which is otherwise 100%
mjr 54:fd77a6b2f76c 1790 // reliable, by inserting a little bit of artifical time padding
mjr 54:fd77a6b2f76c 1791 // (200us per event) into the SETUP interrupt handler. My
mjr 54:fd77a6b2f76c 1792 // hypothesis is that the STALL event happens because the KL25Z
mjr 54:fd77a6b2f76c 1793 // USB hardware is too slow to respond to a message. I'm not
mjr 54:fd77a6b2f76c 1794 // sure why this would only happen after a disconnect and not
mjr 54:fd77a6b2f76c 1795 // during the initial connection; maybe there's some reset work
mjr 54:fd77a6b2f76c 1796 // in the hardware that takes a substantial amount of time after
mjr 54:fd77a6b2f76c 1797 // a disconnect.
mjr 54:fd77a6b2f76c 1798 //
mjr 54:fd77a6b2f76c 1799 // The solution: the problem happens during the SETUP exchange,
mjr 54:fd77a6b2f76c 1800 // after we've been assigned a bus address. It only happens on
mjr 54:fd77a6b2f76c 1801 // some percentage of connection requests, so if we can simply
mjr 54:fd77a6b2f76c 1802 // start over when the failure occurs, we'll eventually succeed
mjr 54:fd77a6b2f76c 1803 // simply because not every attempt fails. The ideal would be
mjr 54:fd77a6b2f76c 1804 // to get the success rate up to 100%, but I can't figure out how
mjr 54:fd77a6b2f76c 1805 // to fix the underlying problem, so this is the next best thing.
mjr 54:fd77a6b2f76c 1806 //
mjr 54:fd77a6b2f76c 1807 // We can detect when the failure occurs by noticing when a SLEEP
mjr 54:fd77a6b2f76c 1808 // interrupt happens while we have an assigned bus address.
mjr 54:fd77a6b2f76c 1809 //
mjr 54:fd77a6b2f76c 1810 // To start a new connection attempt, we have to make the *host*
mjr 54:fd77a6b2f76c 1811 // try again. The logical connection is initiated solely by the
mjr 54:fd77a6b2f76c 1812 // host. Fortunately, it's easy to get the host to initiate the
mjr 54:fd77a6b2f76c 1813 // process: if we disconnect on the device side, it effectively
mjr 54:fd77a6b2f76c 1814 // makes the device look to the PC like it's electrically unplugged.
mjr 54:fd77a6b2f76c 1815 // When we reconnect on the device side, the PC thinks a new device
mjr 54:fd77a6b2f76c 1816 // has been plugged in and initiates the logical connection setup.
mjr 54:fd77a6b2f76c 1817 // We have to remain disconnected for a macroscopic interval for
mjr 54:fd77a6b2f76c 1818 // this to happen - 5ms seems to do the trick.
mjr 54:fd77a6b2f76c 1819 //
mjr 54:fd77a6b2f76c 1820 // Here's the full algorithm:
mjr 54:fd77a6b2f76c 1821 //
mjr 54:fd77a6b2f76c 1822 // 1. In the SLEEP interrupt handler, if we have a bus address,
mjr 54:fd77a6b2f76c 1823 // we disconnect the device. This happens in ISR context, so we
mjr 54:fd77a6b2f76c 1824 // can't wait around for 5ms. Instead, we simply set a flag noting
mjr 54:fd77a6b2f76c 1825 // that the connection has been broken, and we note the time and
mjr 54:fd77a6b2f76c 1826 // return.
mjr 54:fd77a6b2f76c 1827 //
mjr 54:fd77a6b2f76c 1828 // 2. In our main loop, whenever we find that we're disconnected,
mjr 54:fd77a6b2f76c 1829 // we call recoverConnection(). The main loop's job is basically a
mjr 54:fd77a6b2f76c 1830 // bunch of device polling. We're just one more device to poll, so
mjr 54:fd77a6b2f76c 1831 // recoverConnection() will be called soon after a disconnect, and
mjr 54:fd77a6b2f76c 1832 // then will be called in a loop for as long as we're disconnected.
mjr 54:fd77a6b2f76c 1833 //
mjr 54:fd77a6b2f76c 1834 // 3. In recoverConnection(), we check the flag we set in the SLEEP
mjr 54:fd77a6b2f76c 1835 // handler. If set, we wait until 5ms has elapsed from the SLEEP
mjr 54:fd77a6b2f76c 1836 // event time that we noted, then we'll reconnect and clear the flag.
mjr 54:fd77a6b2f76c 1837 // This gives us the required 5ms (or longer) delay between the
mjr 54:fd77a6b2f76c 1838 // disconnect and reconnect, ensuring that the PC will notice and
mjr 54:fd77a6b2f76c 1839 // will start over with the connection protocol.
mjr 54:fd77a6b2f76c 1840 //
mjr 54:fd77a6b2f76c 1841 // 4. The main loop keeps calling recoverConnection() in a loop for
mjr 54:fd77a6b2f76c 1842 // as long as we're disconnected, so if the new connection attempt
mjr 54:fd77a6b2f76c 1843 // triggered in step 3 fails, the SLEEP interrupt will happen again,
mjr 54:fd77a6b2f76c 1844 // we'll disconnect again, the flag will get set again, and
mjr 54:fd77a6b2f76c 1845 // recoverConnection() will reconnect again after another suitable
mjr 54:fd77a6b2f76c 1846 // delay. This will repeat until the connection succeeds or hell
mjr 54:fd77a6b2f76c 1847 // freezes over.
mjr 54:fd77a6b2f76c 1848 //
mjr 54:fd77a6b2f76c 1849 // Each disconnect happens immediately when a reconnect attempt
mjr 54:fd77a6b2f76c 1850 // fails, and an entire successful connection only takes about 25ms,
mjr 54:fd77a6b2f76c 1851 // so our loop can retry at more than 30 attempts per second.
mjr 54:fd77a6b2f76c 1852 // In my testing, lost connections almost always reconnect in
mjr 54:fd77a6b2f76c 1853 // less than second with this code in place.
mjr 54:fd77a6b2f76c 1854 void recoverConnection()
mjr 54:fd77a6b2f76c 1855 {
mjr 54:fd77a6b2f76c 1856 // if a reconnect is pending, reconnect
mjr 54:fd77a6b2f76c 1857 if (reconnectPending_)
mjr 54:fd77a6b2f76c 1858 {
mjr 54:fd77a6b2f76c 1859 // Loop until we reach 5ms after the last sleep event.
mjr 54:fd77a6b2f76c 1860 for (bool done = false ; !done ; )
mjr 54:fd77a6b2f76c 1861 {
mjr 54:fd77a6b2f76c 1862 // If we've reached the target time, reconnect. Do the
mjr 54:fd77a6b2f76c 1863 // time check and flag reset atomically, so that we can't
mjr 54:fd77a6b2f76c 1864 // have another sleep event sneak in after we've verified
mjr 54:fd77a6b2f76c 1865 // the time. If another event occurs, it has to happen
mjr 54:fd77a6b2f76c 1866 // before we check, in which case it'll update the time
mjr 54:fd77a6b2f76c 1867 // before we check it, or after we clear the flag, in
mjr 54:fd77a6b2f76c 1868 // which case it will reset the flag and we'll do another
mjr 54:fd77a6b2f76c 1869 // round the next time we call this routine.
mjr 54:fd77a6b2f76c 1870 __disable_irq();
mjr 54:fd77a6b2f76c 1871 if (uint32_t(timer_.read_us() - lastSleepTime_) > 5000)
mjr 54:fd77a6b2f76c 1872 {
mjr 54:fd77a6b2f76c 1873 connect(false);
mjr 54:fd77a6b2f76c 1874 reconnectPending_ = false;
mjr 54:fd77a6b2f76c 1875 done = true;
mjr 54:fd77a6b2f76c 1876 }
mjr 54:fd77a6b2f76c 1877 __enable_irq();
mjr 54:fd77a6b2f76c 1878 }
mjr 54:fd77a6b2f76c 1879 }
mjr 54:fd77a6b2f76c 1880 }
mjr 5:a70c0bce770d 1881
mjr 5:a70c0bce770d 1882 protected:
mjr 54:fd77a6b2f76c 1883 // Handle a USB SLEEP interrupt. This interrupt signifies that the
mjr 54:fd77a6b2f76c 1884 // USB hardware module hasn't seen any token traffic for 3ms, which
mjr 54:fd77a6b2f76c 1885 // means that we're either physically or logically disconnected.
mjr 54:fd77a6b2f76c 1886 //
mjr 54:fd77a6b2f76c 1887 // Important: this runs in ISR context.
mjr 54:fd77a6b2f76c 1888 //
mjr 54:fd77a6b2f76c 1889 // Note that this is a specialized sense of "sleep" that's unrelated
mjr 54:fd77a6b2f76c 1890 // to the similarly named power modes on the PC. This has nothing
mjr 54:fd77a6b2f76c 1891 // to do with suspend/sleep mode on the PC, and it's not a low-power
mjr 54:fd77a6b2f76c 1892 // mode on the KL25Z. They really should have called this interrupt
mjr 54:fd77a6b2f76c 1893 // DISCONNECT or BROKEN CONNECTION.)
mjr 54:fd77a6b2f76c 1894 virtual void sleepStateChanged(unsigned int sleeping)
mjr 54:fd77a6b2f76c 1895 {
mjr 54:fd77a6b2f76c 1896 // note the new state
mjr 54:fd77a6b2f76c 1897 sleeping_ = sleeping;
mjr 54:fd77a6b2f76c 1898
mjr 54:fd77a6b2f76c 1899 // If we have a non-zero bus address, we have at least a partial
mjr 54:fd77a6b2f76c 1900 // connection to the host (we've made it at least as far as the
mjr 54:fd77a6b2f76c 1901 // SETUP stage). Explicitly disconnect, and the pending reconnect
mjr 54:fd77a6b2f76c 1902 // flag, and remember the time of the sleep event.
mjr 54:fd77a6b2f76c 1903 if (USB0->ADDR != 0x00)
mjr 54:fd77a6b2f76c 1904 {
mjr 54:fd77a6b2f76c 1905 disconnect();
mjr 54:fd77a6b2f76c 1906 lastSleepTime_ = timer_.read_us();
mjr 54:fd77a6b2f76c 1907 reconnectPending_ = true;
mjr 54:fd77a6b2f76c 1908 }
mjr 54:fd77a6b2f76c 1909 }
mjr 54:fd77a6b2f76c 1910
mjr 54:fd77a6b2f76c 1911 // is the USB connection asleep?
mjr 54:fd77a6b2f76c 1912 volatile bool sleeping_;
mjr 54:fd77a6b2f76c 1913
mjr 54:fd77a6b2f76c 1914 // flag: reconnect pending after sleep event
mjr 54:fd77a6b2f76c 1915 volatile bool reconnectPending_;
mjr 54:fd77a6b2f76c 1916
mjr 54:fd77a6b2f76c 1917 // time of last sleep event while connected
mjr 54:fd77a6b2f76c 1918 volatile uint32_t lastSleepTime_;
mjr 54:fd77a6b2f76c 1919
mjr 54:fd77a6b2f76c 1920 // timer to keep track of interval since last sleep event
mjr 54:fd77a6b2f76c 1921 Timer timer_;
mjr 5:a70c0bce770d 1922 };
mjr 5:a70c0bce770d 1923
mjr 5:a70c0bce770d 1924 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 1925 //
mjr 5:a70c0bce770d 1926 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 1927 //
mjr 5:a70c0bce770d 1928
mjr 5:a70c0bce770d 1929 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 1930 //
mjr 5:a70c0bce770d 1931 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 1932 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 1933 // automatic calibration.
mjr 5:a70c0bce770d 1934 //
mjr 5:a70c0bce770d 1935 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 1936 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 1937 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 1938 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 1939 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 1940 // every sample.
mjr 5:a70c0bce770d 1941 //
mjr 6:cc35eb643e8f 1942 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 1943 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 1944 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 1945 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 1946 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 1947 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 1948 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 1949 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 1950 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 1951 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 1952 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 1953 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 1954 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 1955 // of nudging, say).
mjr 5:a70c0bce770d 1956 //
mjr 5:a70c0bce770d 1957
mjr 17:ab3cec0c8bf4 1958 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 17:ab3cec0c8bf4 1959 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 17:ab3cec0c8bf4 1960
mjr 17:ab3cec0c8bf4 1961 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 17:ab3cec0c8bf4 1962 #define MMA8451_SCL_PIN PTE25
mjr 17:ab3cec0c8bf4 1963 #define MMA8451_SDA_PIN PTE24
mjr 17:ab3cec0c8bf4 1964
mjr 17:ab3cec0c8bf4 1965 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 17:ab3cec0c8bf4 1966 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 17:ab3cec0c8bf4 1967 // wired on this board to the MMA8451 interrupt controller.
mjr 17:ab3cec0c8bf4 1968 #define MMA8451_INT_PIN PTA15
mjr 17:ab3cec0c8bf4 1969
mjr 17:ab3cec0c8bf4 1970
mjr 6:cc35eb643e8f 1971 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 1972 struct AccHist
mjr 5:a70c0bce770d 1973 {
mjr 6:cc35eb643e8f 1974 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1975 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 1976 {
mjr 6:cc35eb643e8f 1977 // save the raw position
mjr 6:cc35eb643e8f 1978 this->x = x;
mjr 6:cc35eb643e8f 1979 this->y = y;
mjr 6:cc35eb643e8f 1980 this->d = distance(prv);
mjr 6:cc35eb643e8f 1981 }
mjr 6:cc35eb643e8f 1982
mjr 6:cc35eb643e8f 1983 // reading for this entry
mjr 5:a70c0bce770d 1984 float x, y;
mjr 5:a70c0bce770d 1985
mjr 6:cc35eb643e8f 1986 // distance from previous entry
mjr 6:cc35eb643e8f 1987 float d;
mjr 5:a70c0bce770d 1988
mjr 6:cc35eb643e8f 1989 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 1990 float xtot, ytot;
mjr 6:cc35eb643e8f 1991 int cnt;
mjr 6:cc35eb643e8f 1992
mjr 6:cc35eb643e8f 1993 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 1994 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 1995 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 1996 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 1997
mjr 6:cc35eb643e8f 1998 float distance(AccHist *p)
mjr 6:cc35eb643e8f 1999 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 2000 };
mjr 5:a70c0bce770d 2001
mjr 5:a70c0bce770d 2002 // accelerometer wrapper class
mjr 3:3514575d4f86 2003 class Accel
mjr 3:3514575d4f86 2004 {
mjr 3:3514575d4f86 2005 public:
mjr 3:3514575d4f86 2006 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 2007 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 2008 {
mjr 5:a70c0bce770d 2009 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 2010 irqPin_ = irqPin;
mjr 5:a70c0bce770d 2011
mjr 5:a70c0bce770d 2012 // reset and initialize
mjr 5:a70c0bce770d 2013 reset();
mjr 5:a70c0bce770d 2014 }
mjr 5:a70c0bce770d 2015
mjr 5:a70c0bce770d 2016 void reset()
mjr 5:a70c0bce770d 2017 {
mjr 6:cc35eb643e8f 2018 // clear the center point
mjr 6:cc35eb643e8f 2019 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 2020
mjr 6:cc35eb643e8f 2021 // start the calibration timer
mjr 5:a70c0bce770d 2022 tCenter_.start();
mjr 5:a70c0bce770d 2023 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 2024
mjr 5:a70c0bce770d 2025 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 2026 mma_.init();
mjr 6:cc35eb643e8f 2027
mjr 6:cc35eb643e8f 2028 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 2029 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2030
mjr 6:cc35eb643e8f 2031 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 2032 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 2033 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 2034
mjr 3:3514575d4f86 2035 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 2036 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 2037
mjr 3:3514575d4f86 2038 // start our timers
mjr 3:3514575d4f86 2039 tGet_.start();
mjr 3:3514575d4f86 2040 tInt_.start();
mjr 3:3514575d4f86 2041 }
mjr 3:3514575d4f86 2042
mjr 9:fd65b0a94720 2043 void get(int &x, int &y)
mjr 3:3514575d4f86 2044 {
mjr 3:3514575d4f86 2045 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 2046 __disable_irq();
mjr 3:3514575d4f86 2047
mjr 3:3514575d4f86 2048 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 2049 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 2050 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 2051
mjr 6:cc35eb643e8f 2052 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 2053 vx_ = vy_ = 0;
mjr 3:3514575d4f86 2054
mjr 3:3514575d4f86 2055 // get the time since the last get() sample
mjr 38:091e511ce8a0 2056 float dt = tGet_.read_us()/1.0e6f;
mjr 3:3514575d4f86 2057 tGet_.reset();
mjr 3:3514575d4f86 2058
mjr 3:3514575d4f86 2059 // done manipulating the shared data
mjr 3:3514575d4f86 2060 __enable_irq();
mjr 3:3514575d4f86 2061
mjr 6:cc35eb643e8f 2062 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 2063 vx /= dt;
mjr 6:cc35eb643e8f 2064 vy /= dt;
mjr 6:cc35eb643e8f 2065
mjr 6:cc35eb643e8f 2066 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 2067 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 2068 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 2069
mjr 5:a70c0bce770d 2070 // check for auto-centering every so often
mjr 48:058ace2aed1d 2071 if (tCenter_.read_us() > 1000000)
mjr 5:a70c0bce770d 2072 {
mjr 5:a70c0bce770d 2073 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 2074 AccHist *prv = p;
mjr 5:a70c0bce770d 2075 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 2076 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 2077 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 2078
mjr 5:a70c0bce770d 2079 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 2080 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 2081 {
mjr 5:a70c0bce770d 2082 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 2083 static const float accTol = .01;
mjr 6:cc35eb643e8f 2084 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 2085 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 2086 && p0[1].d < accTol
mjr 6:cc35eb643e8f 2087 && p0[2].d < accTol
mjr 6:cc35eb643e8f 2088 && p0[3].d < accTol
mjr 6:cc35eb643e8f 2089 && p0[4].d < accTol)
mjr 5:a70c0bce770d 2090 {
mjr 6:cc35eb643e8f 2091 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 2092 // the samples over the rest period
mjr 6:cc35eb643e8f 2093 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 2094 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 2095 }
mjr 5:a70c0bce770d 2096 }
mjr 5:a70c0bce770d 2097 else
mjr 5:a70c0bce770d 2098 {
mjr 5:a70c0bce770d 2099 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 2100 ++nAccPrv_;
mjr 5:a70c0bce770d 2101 }
mjr 6:cc35eb643e8f 2102
mjr 6:cc35eb643e8f 2103 // clear the new item's running totals
mjr 6:cc35eb643e8f 2104 p->clearAvg();
mjr 5:a70c0bce770d 2105
mjr 5:a70c0bce770d 2106 // reset the timer
mjr 5:a70c0bce770d 2107 tCenter_.reset();
mjr 39:b3815a1c3802 2108
mjr 39:b3815a1c3802 2109 // If we haven't seen an interrupt in a while, do an explicit read to
mjr 39:b3815a1c3802 2110 // "unstick" the device. The device can become stuck - which is to say,
mjr 39:b3815a1c3802 2111 // it will stop delivering data-ready interrupts - if we fail to service
mjr 39:b3815a1c3802 2112 // one data-ready interrupt before the next one occurs. Reading a sample
mjr 39:b3815a1c3802 2113 // will clear up this overrun condition and allow normal interrupt
mjr 39:b3815a1c3802 2114 // generation to continue.
mjr 39:b3815a1c3802 2115 //
mjr 39:b3815a1c3802 2116 // Note that this stuck condition *shouldn't* ever occur - if it does,
mjr 39:b3815a1c3802 2117 // it means that we're spending a long period with interrupts disabled
mjr 39:b3815a1c3802 2118 // (either in a critical section or in another interrupt handler), which
mjr 39:b3815a1c3802 2119 // will likely cause other worse problems beyond the sticky accelerometer.
mjr 39:b3815a1c3802 2120 // Even so, it's easy to detect and correct, so we'll do so for the sake
mjr 39:b3815a1c3802 2121 // of making the system more fault-tolerant.
mjr 39:b3815a1c3802 2122 if (tInt_.read() > 1.0f)
mjr 39:b3815a1c3802 2123 {
mjr 39:b3815a1c3802 2124 float x, y, z;
mjr 39:b3815a1c3802 2125 mma_.getAccXYZ(x, y, z);
mjr 39:b3815a1c3802 2126 }
mjr 5:a70c0bce770d 2127 }
mjr 5:a70c0bce770d 2128
mjr 6:cc35eb643e8f 2129 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 2130 x = rawToReport(vx);
mjr 6:cc35eb643e8f 2131 y = rawToReport(vy);
mjr 5:a70c0bce770d 2132
mjr 6:cc35eb643e8f 2133 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 2134 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 2135 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 2136 #endif
mjr 3:3514575d4f86 2137 }
mjr 29:582472d0bc57 2138
mjr 3:3514575d4f86 2139 private:
mjr 6:cc35eb643e8f 2140 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 2141 int rawToReport(float v)
mjr 5:a70c0bce770d 2142 {
mjr 6:cc35eb643e8f 2143 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 2144 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 2145
mjr 6:cc35eb643e8f 2146 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 2147 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 2148 static const int filter[] = {
mjr 6:cc35eb643e8f 2149 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 2150 0,
mjr 6:cc35eb643e8f 2151 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 2152 };
mjr 6:cc35eb643e8f 2153 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 2154 }
mjr 5:a70c0bce770d 2155
mjr 3:3514575d4f86 2156 // interrupt handler
mjr 3:3514575d4f86 2157 void isr()
mjr 3:3514575d4f86 2158 {
mjr 3:3514575d4f86 2159 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 2160 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 2161 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 2162 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 2163 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 2164 float x, y, z;
mjr 5:a70c0bce770d 2165 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 2166
mjr 3:3514575d4f86 2167 // calculate the time since the last interrupt
mjr 39:b3815a1c3802 2168 float dt = tInt_.read();
mjr 3:3514575d4f86 2169 tInt_.reset();
mjr 6:cc35eb643e8f 2170
mjr 6:cc35eb643e8f 2171 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 2172 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 2173 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 2174
mjr 6:cc35eb643e8f 2175 // store the updates
mjr 6:cc35eb643e8f 2176 ax_ = x;
mjr 6:cc35eb643e8f 2177 ay_ = y;
mjr 6:cc35eb643e8f 2178 az_ = z;
mjr 3:3514575d4f86 2179 }
mjr 3:3514575d4f86 2180
mjr 3:3514575d4f86 2181 // underlying accelerometer object
mjr 3:3514575d4f86 2182 MMA8451Q mma_;
mjr 3:3514575d4f86 2183
mjr 5:a70c0bce770d 2184 // last raw acceleration readings
mjr 6:cc35eb643e8f 2185 float ax_, ay_, az_;
mjr 5:a70c0bce770d 2186
mjr 6:cc35eb643e8f 2187 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 2188 float vx_, vy_;
mjr 6:cc35eb643e8f 2189
mjr 3:3514575d4f86 2190 // timer for measuring time between get() samples
mjr 3:3514575d4f86 2191 Timer tGet_;
mjr 3:3514575d4f86 2192
mjr 3:3514575d4f86 2193 // timer for measuring time between interrupts
mjr 3:3514575d4f86 2194 Timer tInt_;
mjr 5:a70c0bce770d 2195
mjr 6:cc35eb643e8f 2196 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 2197 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 2198 // at rest.
mjr 6:cc35eb643e8f 2199 float cx_, cy_;
mjr 5:a70c0bce770d 2200
mjr 5:a70c0bce770d 2201 // timer for atuo-centering
mjr 5:a70c0bce770d 2202 Timer tCenter_;
mjr 6:cc35eb643e8f 2203
mjr 6:cc35eb643e8f 2204 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 2205 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 2206 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 2207 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 2208 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 2209 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 2210 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 2211 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 2212 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 2213 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 2214 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 2215 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 2216 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 2217 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 2218 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 2219
mjr 5:a70c0bce770d 2220 // interurupt pin name
mjr 5:a70c0bce770d 2221 PinName irqPin_;
mjr 5:a70c0bce770d 2222
mjr 5:a70c0bce770d 2223 // interrupt router
mjr 5:a70c0bce770d 2224 InterruptIn intIn_;
mjr 3:3514575d4f86 2225 };
mjr 3:3514575d4f86 2226
mjr 5:a70c0bce770d 2227
mjr 5:a70c0bce770d 2228 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 2229 //
mjr 14:df700b22ca08 2230 // Clear the I2C bus for the MMA8451Q. This seems necessary some of the time
mjr 5:a70c0bce770d 2231 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 2232 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 2233 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 14:df700b22ca08 2234 // the SCL line is supposed to clear this condition. I'm not convinced this
mjr 14:df700b22ca08 2235 // actually works with the way this component is wired on the KL25Z, but it
mjr 14:df700b22ca08 2236 // seems harmless, so we'll do it on reset in case it does some good. What
mjr 14:df700b22ca08 2237 // we really seem to need is a way to power cycle the MMA8451Q if it ever
mjr 14:df700b22ca08 2238 // gets stuck, but this is simply not possible in software on the KL25Z.
mjr 14:df700b22ca08 2239 //
mjr 14:df700b22ca08 2240 // If the accelerometer does get stuck, and a software reboot doesn't reset
mjr 14:df700b22ca08 2241 // it, the only workaround is to manually power cycle the whole KL25Z by
mjr 14:df700b22ca08 2242 // unplugging both of its USB connections.
mjr 5:a70c0bce770d 2243 //
mjr 5:a70c0bce770d 2244 void clear_i2c()
mjr 5:a70c0bce770d 2245 {
mjr 38:091e511ce8a0 2246 // set up general-purpose output pins to the I2C lines
mjr 5:a70c0bce770d 2247 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 2248 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 2249
mjr 5:a70c0bce770d 2250 // clock the SCL 9 times
mjr 5:a70c0bce770d 2251 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 2252 {
mjr 5:a70c0bce770d 2253 scl = 1;
mjr 5:a70c0bce770d 2254 wait_us(20);
mjr 5:a70c0bce770d 2255 scl = 0;
mjr 5:a70c0bce770d 2256 wait_us(20);
mjr 5:a70c0bce770d 2257 }
mjr 5:a70c0bce770d 2258 }
mjr 14:df700b22ca08 2259
mjr 14:df700b22ca08 2260 // ---------------------------------------------------------------------------
mjr 14:df700b22ca08 2261 //
mjr 33:d832bcab089e 2262 // Simple binary (on/off) input debouncer. Requires an input to be stable
mjr 33:d832bcab089e 2263 // for a given interval before allowing an update.
mjr 33:d832bcab089e 2264 //
mjr 33:d832bcab089e 2265 class Debouncer
mjr 33:d832bcab089e 2266 {
mjr 33:d832bcab089e 2267 public:
mjr 33:d832bcab089e 2268 Debouncer(bool initVal, float tmin)
mjr 33:d832bcab089e 2269 {
mjr 33:d832bcab089e 2270 t.start();
mjr 33:d832bcab089e 2271 this->stable = this->prv = initVal;
mjr 33:d832bcab089e 2272 this->tmin = tmin;
mjr 33:d832bcab089e 2273 }
mjr 33:d832bcab089e 2274
mjr 33:d832bcab089e 2275 // Get the current stable value
mjr 33:d832bcab089e 2276 bool val() const { return stable; }
mjr 33:d832bcab089e 2277
mjr 33:d832bcab089e 2278 // Apply a new sample. This tells us the new raw reading from the
mjr 33:d832bcab089e 2279 // input device.
mjr 33:d832bcab089e 2280 void sampleIn(bool val)
mjr 33:d832bcab089e 2281 {
mjr 33:d832bcab089e 2282 // If the new raw reading is different from the previous
mjr 33:d832bcab089e 2283 // raw reading, we've detected an edge - start the clock
mjr 33:d832bcab089e 2284 // on the sample reader.
mjr 33:d832bcab089e 2285 if (val != prv)
mjr 33:d832bcab089e 2286 {
mjr 33:d832bcab089e 2287 // we have an edge - reset the sample clock
mjr 33:d832bcab089e 2288 t.reset();
mjr 33:d832bcab089e 2289
mjr 33:d832bcab089e 2290 // this is now the previous raw sample for nxt time
mjr 33:d832bcab089e 2291 prv = val;
mjr 33:d832bcab089e 2292 }
mjr 33:d832bcab089e 2293 else if (val != stable)
mjr 33:d832bcab089e 2294 {
mjr 33:d832bcab089e 2295 // The new raw sample is the same as the last raw sample,
mjr 33:d832bcab089e 2296 // and different from the stable value. This means that
mjr 33:d832bcab089e 2297 // the sample value has been the same for the time currently
mjr 33:d832bcab089e 2298 // indicated by our timer. If enough time has elapsed to
mjr 33:d832bcab089e 2299 // consider the value stable, apply the new value.
mjr 33:d832bcab089e 2300 if (t.read() > tmin)
mjr 33:d832bcab089e 2301 stable = val;
mjr 33:d832bcab089e 2302 }
mjr 33:d832bcab089e 2303 }
mjr 33:d832bcab089e 2304
mjr 33:d832bcab089e 2305 private:
mjr 33:d832bcab089e 2306 // current stable value
mjr 33:d832bcab089e 2307 bool stable;
mjr 33:d832bcab089e 2308
mjr 33:d832bcab089e 2309 // last raw sample value
mjr 33:d832bcab089e 2310 bool prv;
mjr 33:d832bcab089e 2311
mjr 33:d832bcab089e 2312 // elapsed time since last raw input change
mjr 33:d832bcab089e 2313 Timer t;
mjr 33:d832bcab089e 2314
mjr 33:d832bcab089e 2315 // Minimum time interval for stability, in seconds. Input readings
mjr 33:d832bcab089e 2316 // must be stable for this long before the stable value is updated.
mjr 33:d832bcab089e 2317 float tmin;
mjr 33:d832bcab089e 2318 };
mjr 33:d832bcab089e 2319
mjr 33:d832bcab089e 2320
mjr 33:d832bcab089e 2321 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 2322 //
mjr 33:d832bcab089e 2323 // Turn off all outputs and restore everything to the default LedWiz
mjr 33:d832bcab089e 2324 // state. This sets outputs #1-32 to LedWiz profile value 48 (full
mjr 33:d832bcab089e 2325 // brightness) and switch state Off, sets all extended outputs (#33
mjr 33:d832bcab089e 2326 // and above) to zero brightness, and sets the LedWiz flash rate to 2.
mjr 33:d832bcab089e 2327 // This effectively restores the power-on conditions.
mjr 33:d832bcab089e 2328 //
mjr 33:d832bcab089e 2329 void allOutputsOff()
mjr 33:d832bcab089e 2330 {
mjr 33:d832bcab089e 2331 // reset all LedWiz outputs to OFF/48
mjr 35:e959ffba78fd 2332 for (int i = 0 ; i < numLwOutputs ; ++i)
mjr 33:d832bcab089e 2333 {
mjr 33:d832bcab089e 2334 outLevel[i] = 0;
mjr 33:d832bcab089e 2335 wizOn[i] = 0;
mjr 33:d832bcab089e 2336 wizVal[i] = 48;
mjr 33:d832bcab089e 2337 lwPin[i]->set(0);
mjr 33:d832bcab089e 2338 }
mjr 33:d832bcab089e 2339
mjr 33:d832bcab089e 2340 // reset all extended outputs (ports >32) to full off (brightness 0)
mjr 40:cc0d9814522b 2341 for (int i = numLwOutputs ; i < numOutputs ; ++i)
mjr 33:d832bcab089e 2342 {
mjr 33:d832bcab089e 2343 outLevel[i] = 0;
mjr 33:d832bcab089e 2344 lwPin[i]->set(0);
mjr 33:d832bcab089e 2345 }
mjr 33:d832bcab089e 2346
mjr 33:d832bcab089e 2347 // restore default LedWiz flash rate
mjr 33:d832bcab089e 2348 wizSpeed = 2;
mjr 34:6b981a2afab7 2349
mjr 34:6b981a2afab7 2350 // flush changes to hc595, if applicable
mjr 35:e959ffba78fd 2351 if (hc595 != 0)
mjr 35:e959ffba78fd 2352 hc595->update();
mjr 33:d832bcab089e 2353 }
mjr 33:d832bcab089e 2354
mjr 33:d832bcab089e 2355 // ---------------------------------------------------------------------------
mjr 33:d832bcab089e 2356 //
mjr 33:d832bcab089e 2357 // TV ON timer. If this feature is enabled, we toggle a TV power switch
mjr 33:d832bcab089e 2358 // relay (connected to a GPIO pin) to turn on the cab's TV monitors shortly
mjr 33:d832bcab089e 2359 // after the system is powered. This is useful for TVs that don't remember
mjr 33:d832bcab089e 2360 // their power state and don't turn back on automatically after being
mjr 33:d832bcab089e 2361 // unplugged and plugged in again. This feature requires external
mjr 33:d832bcab089e 2362 // circuitry, which is built in to the expansion board and can also be
mjr 33:d832bcab089e 2363 // built separately - see the Build Guide for the circuit plan.
mjr 33:d832bcab089e 2364 //
mjr 33:d832bcab089e 2365 // Theory of operation: to use this feature, the cabinet must have a
mjr 33:d832bcab089e 2366 // secondary PC-style power supply (PSU2) for the feedback devices, and
mjr 33:d832bcab089e 2367 // this secondary supply must be plugged in to the same power strip or
mjr 33:d832bcab089e 2368 // switched outlet that controls power to the TVs. This lets us use PSU2
mjr 33:d832bcab089e 2369 // as a proxy for the TV power state - when PSU2 is on, the TV outlet is
mjr 33:d832bcab089e 2370 // powered, and when PSU2 is off, the TV outlet is off. We use a little
mjr 33:d832bcab089e 2371 // latch circuit powered by PSU2 to monitor the status. The latch has a
mjr 33:d832bcab089e 2372 // current state, ON or OFF, that we can read via a GPIO input pin, and
mjr 33:d832bcab089e 2373 // we can set the state to ON by pulsing a separate GPIO output pin. As
mjr 33:d832bcab089e 2374 // long as PSU2 is powered off, the latch stays in the OFF state, even if
mjr 33:d832bcab089e 2375 // we try to set it by pulsing the SET pin. When PSU2 is turned on after
mjr 33:d832bcab089e 2376 // being off, the latch starts receiving power but stays in the OFF state,
mjr 33:d832bcab089e 2377 // since this is the initial condition when the power first comes on. So
mjr 33:d832bcab089e 2378 // if our latch state pin is reading OFF, we know that PSU2 is either off
mjr 33:d832bcab089e 2379 // now or *was* off some time since we last checked. We use a timer to
mjr 33:d832bcab089e 2380 // check the state periodically. Each time we see the state is OFF, we
mjr 33:d832bcab089e 2381 // try pulsing the SET pin. If the state still reads as OFF, we know
mjr 33:d832bcab089e 2382 // that PSU2 is currently off; if the state changes to ON, though, we
mjr 33:d832bcab089e 2383 // know that PSU2 has gone from OFF to ON some time between now and the
mjr 33:d832bcab089e 2384 // previous check. When we see this condition, we start a countdown
mjr 33:d832bcab089e 2385 // timer, and pulse the TV switch relay when the countdown ends.
mjr 33:d832bcab089e 2386 //
mjr 40:cc0d9814522b 2387 // This scheme might seem a little convoluted, but it handles a number
mjr 40:cc0d9814522b 2388 // of tricky but likely scenarios:
mjr 33:d832bcab089e 2389 //
mjr 33:d832bcab089e 2390 // - Most cabinets systems are set up with "soft" PC power switches,
mjr 40:cc0d9814522b 2391 // so that the PC goes into "Soft Off" mode when the user turns off
mjr 40:cc0d9814522b 2392 // the cabinet by pushing the power button or using the Shut Down
mjr 40:cc0d9814522b 2393 // command from within Windows. In Windows parlance, this "soft off"
mjr 40:cc0d9814522b 2394 // condition is called ACPI State S5. In this state, the main CPU
mjr 40:cc0d9814522b 2395 // power is turned off, but the motherboard still provides power to
mjr 40:cc0d9814522b 2396 // USB devices. This means that the KL25Z keeps running. Without
mjr 40:cc0d9814522b 2397 // the external power sensing circuit, the only hint that we're in
mjr 40:cc0d9814522b 2398 // this state is that the USB connection to the host goes into Suspend
mjr 40:cc0d9814522b 2399 // mode, but that could mean other things as well. The latch circuit
mjr 40:cc0d9814522b 2400 // lets us tell for sure that we're in this state.
mjr 33:d832bcab089e 2401 //
mjr 33:d832bcab089e 2402 // - Some cabinet builders might prefer to use "hard" power switches,
mjr 33:d832bcab089e 2403 // cutting all power to the cabinet, including the PC motherboard (and
mjr 33:d832bcab089e 2404 // thus the KL25Z) every time the machine is turned off. This also
mjr 33:d832bcab089e 2405 // applies to the "soft" switch case above when the cabinet is unplugged,
mjr 33:d832bcab089e 2406 // a power outage occurs, etc. In these cases, the KL25Z will do a cold
mjr 33:d832bcab089e 2407 // boot when the PC is turned on. We don't know whether the KL25Z
mjr 33:d832bcab089e 2408 // will power up before or after PSU2, so it's not good enough to
mjr 40:cc0d9814522b 2409 // observe the current state of PSU2 when we first check. If PSU2
mjr 40:cc0d9814522b 2410 // were to come on first, checking only the current state would fool
mjr 40:cc0d9814522b 2411 // us into thinking that no action is required, because we'd only see
mjr 40:cc0d9814522b 2412 // that PSU2 is turned on any time we check. The latch handles this
mjr 40:cc0d9814522b 2413 // case by letting us see that PSU2 was indeed off some time before our
mjr 40:cc0d9814522b 2414 // first check.
mjr 33:d832bcab089e 2415 //
mjr 33:d832bcab089e 2416 // - If the KL25Z is rebooted while the main system is running, or the
mjr 40:cc0d9814522b 2417 // KL25Z is unplugged and plugged back in, we'll correctly leave the
mjr 33:d832bcab089e 2418 // TVs as they are. The latch state is independent of the KL25Z's
mjr 33:d832bcab089e 2419 // power or software state, so it's won't affect the latch state when
mjr 33:d832bcab089e 2420 // the KL25Z is unplugged or rebooted; when we boot, we'll see that
mjr 33:d832bcab089e 2421 // the latch is already on and that we don't have to turn on the TVs.
mjr 33:d832bcab089e 2422 // This is important because TV ON buttons are usually on/off toggles,
mjr 33:d832bcab089e 2423 // so we don't want to push the button on a TV that's already on.
mjr 33:d832bcab089e 2424 //
mjr 33:d832bcab089e 2425
mjr 33:d832bcab089e 2426 // Current PSU2 state:
mjr 33:d832bcab089e 2427 // 1 -> default: latch was on at last check, or we haven't checked yet
mjr 33:d832bcab089e 2428 // 2 -> latch was off at last check, SET pulsed high
mjr 33:d832bcab089e 2429 // 3 -> SET pulsed low, ready to check status
mjr 33:d832bcab089e 2430 // 4 -> TV timer countdown in progress
mjr 33:d832bcab089e 2431 // 5 -> TV relay on
mjr 33:d832bcab089e 2432 int psu2_state = 1;
mjr 35:e959ffba78fd 2433
mjr 35:e959ffba78fd 2434 // PSU2 power sensing circuit connections
mjr 35:e959ffba78fd 2435 DigitalIn *psu2_status_sense;
mjr 35:e959ffba78fd 2436 DigitalOut *psu2_status_set;
mjr 35:e959ffba78fd 2437
mjr 35:e959ffba78fd 2438 // TV ON switch relay control
mjr 35:e959ffba78fd 2439 DigitalOut *tv_relay;
mjr 35:e959ffba78fd 2440
mjr 35:e959ffba78fd 2441 // Timer interrupt
mjr 35:e959ffba78fd 2442 Ticker tv_ticker;
mjr 35:e959ffba78fd 2443 float tv_delay_time;
mjr 33:d832bcab089e 2444 void TVTimerInt()
mjr 33:d832bcab089e 2445 {
mjr 35:e959ffba78fd 2446 // time since last state change
mjr 35:e959ffba78fd 2447 static Timer tv_timer;
mjr 35:e959ffba78fd 2448
mjr 33:d832bcab089e 2449 // Check our internal state
mjr 33:d832bcab089e 2450 switch (psu2_state)
mjr 33:d832bcab089e 2451 {
mjr 33:d832bcab089e 2452 case 1:
mjr 33:d832bcab089e 2453 // Default state. This means that the latch was on last
mjr 33:d832bcab089e 2454 // time we checked or that this is the first check. In
mjr 33:d832bcab089e 2455 // either case, if the latch is off, switch to state 2 and
mjr 33:d832bcab089e 2456 // try pulsing the latch. Next time we check, if the latch
mjr 33:d832bcab089e 2457 // stuck, it means that PSU2 is now on after being off.
mjr 35:e959ffba78fd 2458 if (!psu2_status_sense->read())
mjr 33:d832bcab089e 2459 {
mjr 33:d832bcab089e 2460 // switch to OFF state
mjr 33:d832bcab089e 2461 psu2_state = 2;
mjr 33:d832bcab089e 2462
mjr 33:d832bcab089e 2463 // try setting the latch
mjr 35:e959ffba78fd 2464 psu2_status_set->write(1);
mjr 33:d832bcab089e 2465 }
mjr 33:d832bcab089e 2466 break;
mjr 33:d832bcab089e 2467
mjr 33:d832bcab089e 2468 case 2:
mjr 33:d832bcab089e 2469 // PSU2 was off last time we checked, and we tried setting
mjr 33:d832bcab089e 2470 // the latch. Drop the SET signal and go to CHECK state.
mjr 35:e959ffba78fd 2471 psu2_status_set->write(0);
mjr 33:d832bcab089e 2472 psu2_state = 3;
mjr 33:d832bcab089e 2473 break;
mjr 33:d832bcab089e 2474
mjr 33:d832bcab089e 2475 case 3:
mjr 33:d832bcab089e 2476 // CHECK state: we pulsed SET, and we're now ready to see
mjr 40:cc0d9814522b 2477 // if it stuck. If the latch is now on, PSU2 has transitioned
mjr 33:d832bcab089e 2478 // from OFF to ON, so start the TV countdown. If the latch is
mjr 33:d832bcab089e 2479 // off, our SET command didn't stick, so PSU2 is still off.
mjr 35:e959ffba78fd 2480 if (psu2_status_sense->read())
mjr 33:d832bcab089e 2481 {
mjr 33:d832bcab089e 2482 // The latch stuck, so PSU2 has transitioned from OFF
mjr 33:d832bcab089e 2483 // to ON. Start the TV countdown timer.
mjr 33:d832bcab089e 2484 tv_timer.reset();
mjr 33:d832bcab089e 2485 tv_timer.start();
mjr 33:d832bcab089e 2486 psu2_state = 4;
mjr 33:d832bcab089e 2487 }
mjr 33:d832bcab089e 2488 else
mjr 33:d832bcab089e 2489 {
mjr 33:d832bcab089e 2490 // The latch didn't stick, so PSU2 was still off at
mjr 33:d832bcab089e 2491 // our last check. Try pulsing it again in case PSU2
mjr 33:d832bcab089e 2492 // was turned on since the last check.
mjr 35:e959ffba78fd 2493 psu2_status_set->write(1);
mjr 33:d832bcab089e 2494 psu2_state = 2;
mjr 33:d832bcab089e 2495 }
mjr 33:d832bcab089e 2496 break;
mjr 33:d832bcab089e 2497
mjr 33:d832bcab089e 2498 case 4:
mjr 33:d832bcab089e 2499 // TV timer countdown in progress. If we've reached the
mjr 33:d832bcab089e 2500 // delay time, pulse the relay.
mjr 35:e959ffba78fd 2501 if (tv_timer.read() >= tv_delay_time)
mjr 33:d832bcab089e 2502 {
mjr 33:d832bcab089e 2503 // turn on the relay for one timer interval
mjr 35:e959ffba78fd 2504 tv_relay->write(1);
mjr 33:d832bcab089e 2505 psu2_state = 5;
mjr 33:d832bcab089e 2506 }
mjr 33:d832bcab089e 2507 break;
mjr 33:d832bcab089e 2508
mjr 33:d832bcab089e 2509 case 5:
mjr 33:d832bcab089e 2510 // TV timer relay on. We pulse this for one interval, so
mjr 33:d832bcab089e 2511 // it's now time to turn it off and return to the default state.
mjr 35:e959ffba78fd 2512 tv_relay->write(0);
mjr 33:d832bcab089e 2513 psu2_state = 1;
mjr 33:d832bcab089e 2514 break;
mjr 33:d832bcab089e 2515 }
mjr 33:d832bcab089e 2516 }
mjr 33:d832bcab089e 2517
mjr 35:e959ffba78fd 2518 // Start the TV ON checker. If the status sense circuit is enabled in
mjr 35:e959ffba78fd 2519 // the configuration, we'll set up the pin connections and start the
mjr 35:e959ffba78fd 2520 // interrupt handler that periodically checks the status. Does nothing
mjr 35:e959ffba78fd 2521 // if any of the pins are configured as NC.
mjr 35:e959ffba78fd 2522 void startTVTimer(Config &cfg)
mjr 35:e959ffba78fd 2523 {
mjr 55:4db125cd11a0 2524 // only start the timer if the pins are configured and the delay
mjr 55:4db125cd11a0 2525 // time is nonzero
mjr 55:4db125cd11a0 2526 if (cfg.TVON.delayTime != 0
mjr 55:4db125cd11a0 2527 && cfg.TVON.statusPin != 0xFF
mjr 53:9b2611964afc 2528 && cfg.TVON.latchPin != 0xFF
mjr 53:9b2611964afc 2529 && cfg.TVON.relayPin != 0xFF)
mjr 35:e959ffba78fd 2530 {
mjr 53:9b2611964afc 2531 psu2_status_sense = new DigitalIn(wirePinName(cfg.TVON.statusPin));
mjr 53:9b2611964afc 2532 psu2_status_set = new DigitalOut(wirePinName(cfg.TVON.latchPin));
mjr 53:9b2611964afc 2533 tv_relay = new DigitalOut(wirePinName(cfg.TVON.relayPin));
mjr 40:cc0d9814522b 2534 tv_delay_time = cfg.TVON.delayTime/100.0;
mjr 35:e959ffba78fd 2535
mjr 35:e959ffba78fd 2536 // Set up our time routine to run every 1/4 second.
mjr 35:e959ffba78fd 2537 tv_ticker.attach(&TVTimerInt, 0.25);
mjr 35:e959ffba78fd 2538 }
mjr 35:e959ffba78fd 2539 }
mjr 35:e959ffba78fd 2540
mjr 35:e959ffba78fd 2541 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2542 //
mjr 35:e959ffba78fd 2543 // In-memory configuration data structure. This is the live version in RAM
mjr 35:e959ffba78fd 2544 // that we use to determine how things are set up.
mjr 35:e959ffba78fd 2545 //
mjr 35:e959ffba78fd 2546 // When we save the configuration settings, we copy this structure to
mjr 35:e959ffba78fd 2547 // non-volatile flash memory. At startup, we check the flash location where
mjr 35:e959ffba78fd 2548 // we might have saved settings on a previous run, and it's valid, we copy
mjr 35:e959ffba78fd 2549 // the flash data to this structure. Firmware updates wipe the flash
mjr 35:e959ffba78fd 2550 // memory area, so you have to use the PC config tool to send the settings
mjr 35:e959ffba78fd 2551 // again each time the firmware is updated.
mjr 35:e959ffba78fd 2552 //
mjr 35:e959ffba78fd 2553 NVM nvm;
mjr 35:e959ffba78fd 2554
mjr 35:e959ffba78fd 2555 // For convenience, a macro for the Config part of the NVM structure
mjr 35:e959ffba78fd 2556 #define cfg (nvm.d.c)
mjr 35:e959ffba78fd 2557
mjr 35:e959ffba78fd 2558 // flash memory controller interface
mjr 35:e959ffba78fd 2559 FreescaleIAP iap;
mjr 35:e959ffba78fd 2560
mjr 35:e959ffba78fd 2561 // figure the flash address as a pointer along with the number of sectors
mjr 35:e959ffba78fd 2562 // required to store the structure
mjr 35:e959ffba78fd 2563 NVM *configFlashAddr(int &addr, int &numSectors)
mjr 35:e959ffba78fd 2564 {
mjr 35:e959ffba78fd 2565 // figure how many flash sectors we span, rounding up to whole sectors
mjr 35:e959ffba78fd 2566 numSectors = (sizeof(NVM) + SECTOR_SIZE - 1)/SECTOR_SIZE;
mjr 35:e959ffba78fd 2567
mjr 35:e959ffba78fd 2568 // figure the address - this is the highest flash address where the
mjr 35:e959ffba78fd 2569 // structure will fit with the start aligned on a sector boundary
mjr 35:e959ffba78fd 2570 addr = iap.flash_size() - (numSectors * SECTOR_SIZE);
mjr 35:e959ffba78fd 2571
mjr 35:e959ffba78fd 2572 // return the address as a pointer
mjr 35:e959ffba78fd 2573 return (NVM *)addr;
mjr 35:e959ffba78fd 2574 }
mjr 35:e959ffba78fd 2575
mjr 35:e959ffba78fd 2576 // figure the flash address as a pointer
mjr 35:e959ffba78fd 2577 NVM *configFlashAddr()
mjr 35:e959ffba78fd 2578 {
mjr 35:e959ffba78fd 2579 int addr, numSectors;
mjr 35:e959ffba78fd 2580 return configFlashAddr(addr, numSectors);
mjr 35:e959ffba78fd 2581 }
mjr 35:e959ffba78fd 2582
mjr 35:e959ffba78fd 2583 // Load the config from flash
mjr 35:e959ffba78fd 2584 void loadConfigFromFlash()
mjr 35:e959ffba78fd 2585 {
mjr 35:e959ffba78fd 2586 // We want to use the KL25Z's on-board flash to store our configuration
mjr 35:e959ffba78fd 2587 // data persistently, so that we can restore it across power cycles.
mjr 35:e959ffba78fd 2588 // Unfortunatly, the mbed platform doesn't explicitly support this.
mjr 35:e959ffba78fd 2589 // mbed treats the on-board flash as a raw storage device for linker
mjr 35:e959ffba78fd 2590 // output, and assumes that the linker output is the only thing
mjr 35:e959ffba78fd 2591 // stored there. There's no file system and no allowance for shared
mjr 35:e959ffba78fd 2592 // use for other purposes. Fortunately, the linker ues the space in
mjr 35:e959ffba78fd 2593 // the obvious way, storing the entire linked program in a contiguous
mjr 35:e959ffba78fd 2594 // block starting at the lowest flash address. This means that the
mjr 35:e959ffba78fd 2595 // rest of flash - from the end of the linked program to the highest
mjr 35:e959ffba78fd 2596 // flash address - is all unused free space. Writing our data there
mjr 35:e959ffba78fd 2597 // won't conflict with anything else. Since the linker doesn't give
mjr 35:e959ffba78fd 2598 // us any programmatic access to the total linker output size, it's
mjr 35:e959ffba78fd 2599 // safest to just store our config data at the very end of the flash
mjr 35:e959ffba78fd 2600 // region (i.e., the highest address). As long as it's smaller than
mjr 35:e959ffba78fd 2601 // the free space, it won't collide with the linker area.
mjr 35:e959ffba78fd 2602
mjr 35:e959ffba78fd 2603 // Figure how many sectors we need for our structure
mjr 35:e959ffba78fd 2604 NVM *flash = configFlashAddr();
mjr 35:e959ffba78fd 2605
mjr 35:e959ffba78fd 2606 // if the flash is valid, load it; otherwise initialize to defaults
mjr 35:e959ffba78fd 2607 if (flash->valid())
mjr 35:e959ffba78fd 2608 {
mjr 35:e959ffba78fd 2609 // flash is valid - load it into the RAM copy of the structure
mjr 35:e959ffba78fd 2610 memcpy(&nvm, flash, sizeof(NVM));
mjr 35:e959ffba78fd 2611 }
mjr 35:e959ffba78fd 2612 else
mjr 35:e959ffba78fd 2613 {
mjr 35:e959ffba78fd 2614 // flash is invalid - load factory settings nito RAM structure
mjr 35:e959ffba78fd 2615 cfg.setFactoryDefaults();
mjr 35:e959ffba78fd 2616 }
mjr 35:e959ffba78fd 2617 }
mjr 35:e959ffba78fd 2618
mjr 35:e959ffba78fd 2619 void saveConfigToFlash()
mjr 33:d832bcab089e 2620 {
mjr 35:e959ffba78fd 2621 int addr, sectors;
mjr 35:e959ffba78fd 2622 configFlashAddr(addr, sectors);
mjr 35:e959ffba78fd 2623 nvm.save(iap, addr);
mjr 35:e959ffba78fd 2624 }
mjr 35:e959ffba78fd 2625
mjr 35:e959ffba78fd 2626 // ---------------------------------------------------------------------------
mjr 35:e959ffba78fd 2627 //
mjr 55:4db125cd11a0 2628 // Pixel dump mode - the host requested a dump of image sensor pixels
mjr 55:4db125cd11a0 2629 // (helpful for installing and setting up the sensor and light source)
mjr 55:4db125cd11a0 2630 //
mjr 55:4db125cd11a0 2631 bool reportPlungerStat = false;
mjr 55:4db125cd11a0 2632 uint8_t reportPlungerStatFlags; // plunger pixel report flag bits (see ccdSensor.h)
mjr 55:4db125cd11a0 2633 uint8_t reportPlungerStatTime; // extra exposure time for plunger pixel report
mjr 55:4db125cd11a0 2634
mjr 55:4db125cd11a0 2635
mjr 55:4db125cd11a0 2636
mjr 55:4db125cd11a0 2637 // ---------------------------------------------------------------------------
mjr 55:4db125cd11a0 2638 //
mjr 40:cc0d9814522b 2639 // Night mode setting updates
mjr 40:cc0d9814522b 2640 //
mjr 38:091e511ce8a0 2641
mjr 38:091e511ce8a0 2642 // Turn night mode on or off
mjr 38:091e511ce8a0 2643 static void setNightMode(bool on)
mjr 38:091e511ce8a0 2644 {
mjr 40:cc0d9814522b 2645 // set the new night mode flag in the noisy output class
mjr 53:9b2611964afc 2646 nightMode = on;
mjr 55:4db125cd11a0 2647
mjr 40:cc0d9814522b 2648 // update the special output pin that shows the night mode state
mjr 53:9b2611964afc 2649 int port = int(cfg.nightMode.port) - 1;
mjr 53:9b2611964afc 2650 if (port >= 0 && port < numOutputs)
mjr 53:9b2611964afc 2651 lwPin[port]->set(nightMode ? 255 : 0);
mjr 40:cc0d9814522b 2652
mjr 40:cc0d9814522b 2653 // update all outputs for the mode change
mjr 40:cc0d9814522b 2654 updateAllOuts();
mjr 38:091e511ce8a0 2655 }
mjr 38:091e511ce8a0 2656
mjr 38:091e511ce8a0 2657 // Toggle night mode
mjr 38:091e511ce8a0 2658 static void toggleNightMode()
mjr 38:091e511ce8a0 2659 {
mjr 53:9b2611964afc 2660 setNightMode(!nightMode);
mjr 38:091e511ce8a0 2661 }
mjr 38:091e511ce8a0 2662
mjr 38:091e511ce8a0 2663
mjr 38:091e511ce8a0 2664 // ---------------------------------------------------------------------------
mjr 38:091e511ce8a0 2665 //
mjr 35:e959ffba78fd 2666 // Plunger Sensor
mjr 35:e959ffba78fd 2667 //
mjr 35:e959ffba78fd 2668
mjr 35:e959ffba78fd 2669 // the plunger sensor interface object
mjr 35:e959ffba78fd 2670 PlungerSensor *plungerSensor = 0;
mjr 35:e959ffba78fd 2671
mjr 35:e959ffba78fd 2672 // Create the plunger sensor based on the current configuration. If
mjr 35:e959ffba78fd 2673 // there's already a sensor object, we'll delete it.
mjr 35:e959ffba78fd 2674 void createPlunger()
mjr 35:e959ffba78fd 2675 {
mjr 35:e959ffba78fd 2676 // create the new sensor object according to the type
mjr 35:e959ffba78fd 2677 switch (cfg.plunger.sensorType)
mjr 35:e959ffba78fd 2678 {
mjr 35:e959ffba78fd 2679 case PlungerType_TSL1410RS:
mjr 35:e959ffba78fd 2680 // pins are: SI, CLOCK, AO
mjr 53:9b2611964afc 2681 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 2682 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 2683 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 2684 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 2685 NC);
mjr 35:e959ffba78fd 2686 break;
mjr 35:e959ffba78fd 2687
mjr 35:e959ffba78fd 2688 case PlungerType_TSL1410RP:
mjr 35:e959ffba78fd 2689 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 2690 plungerSensor = new PlungerSensorTSL1410R(
mjr 53:9b2611964afc 2691 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 2692 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 2693 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 2694 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 2695 break;
mjr 35:e959ffba78fd 2696
mjr 35:e959ffba78fd 2697 case PlungerType_TSL1412RS:
mjr 35:e959ffba78fd 2698 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 2699 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 2700 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 2701 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 2702 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 2703 NC);
mjr 35:e959ffba78fd 2704 break;
mjr 35:e959ffba78fd 2705
mjr 35:e959ffba78fd 2706 case PlungerType_TSL1412RP:
mjr 35:e959ffba78fd 2707 // pins are: SI, CLOCK, AO1, AO2
mjr 53:9b2611964afc 2708 plungerSensor = new PlungerSensorTSL1412R(
mjr 53:9b2611964afc 2709 wirePinName(cfg.plunger.sensorPin[0]),
mjr 53:9b2611964afc 2710 wirePinName(cfg.plunger.sensorPin[1]),
mjr 53:9b2611964afc 2711 wirePinName(cfg.plunger.sensorPin[2]),
mjr 53:9b2611964afc 2712 wirePinName(cfg.plunger.sensorPin[3]));
mjr 35:e959ffba78fd 2713 break;
mjr 35:e959ffba78fd 2714
mjr 35:e959ffba78fd 2715 case PlungerType_Pot:
mjr 35:e959ffba78fd 2716 // pins are: AO
mjr 53:9b2611964afc 2717 plungerSensor = new PlungerSensorPot(
mjr 53:9b2611964afc 2718 wirePinName(cfg.plunger.sensorPin[0]));
mjr 35:e959ffba78fd 2719 break;
mjr 35:e959ffba78fd 2720
mjr 35:e959ffba78fd 2721 case PlungerType_None:
mjr 35:e959ffba78fd 2722 default:
mjr 35:e959ffba78fd 2723 plungerSensor = new PlungerSensorNull();
mjr 35:e959ffba78fd 2724 break;
mjr 35:e959ffba78fd 2725 }
mjr 33:d832bcab089e 2726 }
mjr 33:d832bcab089e 2727
mjr 52:8298b2a73eb2 2728 // Global plunger calibration mode flag
mjr 52:8298b2a73eb2 2729 bool plungerCalMode;
mjr 52:8298b2a73eb2 2730
mjr 48:058ace2aed1d 2731 // Plunger reader
mjr 51:57eb311faafa 2732 //
mjr 51:57eb311faafa 2733 // This class encapsulates our plunger data processing. At the simplest
mjr 51:57eb311faafa 2734 // level, we read the position from the sensor, adjust it for the
mjr 51:57eb311faafa 2735 // calibration settings, and report the calibrated position to the host.
mjr 51:57eb311faafa 2736 //
mjr 51:57eb311faafa 2737 // In addition, we constantly monitor the data for "firing" motions.
mjr 51:57eb311faafa 2738 // A firing motion is when the user pulls back the plunger and releases
mjr 51:57eb311faafa 2739 // it, allowing it to shoot forward under the force of the main spring.
mjr 51:57eb311faafa 2740 // When we detect that this is happening, we briefly stop reporting the
mjr 51:57eb311faafa