An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Wed Dec 22 21:48:24 2021 +0000
Revision:
116:80ebb41bad94
Parent:
115:39d2eb4b1830
Add Arnoz RigMaster and KLShield boards

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 74:822a92bc11d2 3 // This file is purely for documentation, to describe our USB protocol
mjr 74:822a92bc11d2 4 // for incoming messages (host to device). We use the standard HID setup
mjr 74:822a92bc11d2 5 // with one endpoint in each direction. See USBJoystick.cpp and .h for
mjr 74:822a92bc11d2 6 // the USB descriptors.
mjr 74:822a92bc11d2 7 //
mjr 74:822a92bc11d2 8 // Our incoming message protocol is an extended version of the protocol
mjr 74:822a92bc11d2 9 // used by the LedWiz. Our protocol is designed to be 100% backwards
mjr 74:822a92bc11d2 10 // compatible with clients using the original LedWiz wire protocol, as long
mjr 74:822a92bc11d2 11 // as they only send well-formed messages in the original protocol. The
mjr 74:822a92bc11d2 12 // "well-formed" part is an important condition, because our extensions to
mjr 74:822a92bc11d2 13 // the original protocol all consist of messages that aren't defined in the
mjr 74:822a92bc11d2 14 // original protocol and are meaningless to a real LedWiz.
mjr 35:e959ffba78fd 15 //
mjr 74:822a92bc11d2 16 // The protocol compatibility ensures that all original LedWiz clients can
mjr 74:822a92bc11d2 17 // also transparently access a Pinscape unit. Clients will simply think the
mjr 74:822a92bc11d2 18 // Pinscape unit is an LedWiz, thus they'll be able to operate 32 of our
mjr 74:822a92bc11d2 19 // ports. We designate the first 32 ports (ports 1-32) as the ones accessible
mjr 74:822a92bc11d2 20 // through the LedWiz protocol.
mjr 74:822a92bc11d2 21 //
mjr 74:822a92bc11d2 22 // In addition the wire-level protocol compatibility, we can provide legacy
mjr 74:822a92bc11d2 23 // LedWiz clients with access to more than 32 ports by emulating multiple
mjr 74:822a92bc11d2 24 // virtual LedWiz units. We can't do this across the wire protocol, since
mjr 74:822a92bc11d2 25 // the KL25Z USB interface constrains us to a single VID/PID (which is how
mjr 74:822a92bc11d2 26 // LedWiz clients distinguish units). However, virtuall all legacy LedWiz
mjr 74:822a92bc11d2 27 // clients access the device through a shared library, LEDWIZ.DLL, rather
mjr 74:822a92bc11d2 28 // than directly through USB. LEDWIZ.DLL is distributed by the LedWiz's
mjr 74:822a92bc11d2 29 // manufacturer and has a published client interface. We can thus provide
mjr 74:822a92bc11d2 30 // a replacement DLL that contains the logic needed to recognize a Pinscape
mjr 74:822a92bc11d2 31 // unit and represent it to clients as multiple LedWiz devices. This allows
mjr 74:822a92bc11d2 32 // old clients to access our full complement of ports without any changes
mjr 74:822a92bc11d2 33 // to the clients. We define some extended message types (SBX and PBX)
mjr 74:822a92bc11d2 34 // specifically to support this DLL feature.
mjr 74:822a92bc11d2 35 //
mjr 74:822a92bc11d2 36
mjr 35:e959ffba78fd 37
mjr 35:e959ffba78fd 38 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 39 //
mjr 47:df7a88cd249c 40 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 41 // unless otherwise specified.
mjr 47:df7a88cd249c 42 //
mjr 39:b3815a1c3802 43 // 1. Joystick reports
mjr 35:e959ffba78fd 44 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 45 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 46 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 47 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 48 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 49 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 50 //
mjr 55:4db125cd11a0 51 // ss status bits:
mjr 55:4db125cd11a0 52 // 0x01 -> plunger enabled
mjr 55:4db125cd11a0 53 // 0x02 -> night mode engaged
mjr 73:4e8ce0b18915 54 // 0x04,0x08,0x10 -> power sense status: meaningful only when
mjr 73:4e8ce0b18915 55 // the TV-on timer is used. Figure (ss>>2) & 0x07 to
mjr 73:4e8ce0b18915 56 // isolate the status bits. The resulting value is:
mjr 73:4e8ce0b18915 57 // 1 -> latch was on at last check
mjr 73:4e8ce0b18915 58 // 2 -> latch was off at last check, SET pin high
mjr 73:4e8ce0b18915 59 // 3 -> latch off, SET pin low, ready to check status
mjr 73:4e8ce0b18915 60 // 4 -> TV timer countdown in progress
mjr 73:4e8ce0b18915 61 // 5 -> TV relay is on
mjr 77:0b96f6867312 62 // 6 -> sending IR signals designated as TV ON signals
mjr 77:0b96f6867312 63 // 0x20 -> IR learning mode in progress
mjr 79:682ae3171a08 64 // 0x40 -> configuration saved successfully (see below)
mjr 40:cc0d9814522b 65 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 66 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 67 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 68 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 69 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 70 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 71 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 72 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 73 // xx high byte of X position
mjr 39:b3815a1c3802 74 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 75 // yy high byte of Y position
mjr 39:b3815a1c3802 76 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 77 // zz high byte of Z position
mjr 39:b3815a1c3802 78 //
mjr 39:b3815a1c3802 79 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 80 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 81 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 82 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 83 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 84 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 85 // is pushed forward of the park position.
mjr 39:b3815a1c3802 86 //
mjr 79:682ae3171a08 87 // Status bit 0x40 is set after a successful configuration update via special
mjr 79:682ae3171a08 88 // command 65 6 (save config to flash). The device always reboots after this
mjr 79:682ae3171a08 89 // command, so if the host wants to receive a status update verifying the
mjr 79:682ae3171a08 90 // save, it has to request a non-zero reboot delay in the message to allow
mjr 79:682ae3171a08 91 // us time to send at least one of these status reports after the save.
mjr 79:682ae3171a08 92 // This bit is only sent after a successful save, which means that the flash
mjr 79:682ae3171a08 93 // write succeeded and the written sectors verified as correct.
mjr 82:4f6209cb5c33 94 // NOTE: older firmware versions didn't support this status bit, so clients
mjr 82:4f6209cb5c33 95 // can't interpret the lack of a response as a failure for older versions.
mjr 82:4f6209cb5c33 96 // To determine if the flag is supported, check the config report feature
mjr 82:4f6209cb5c33 97 // flags.
mjr 82:4f6209cb5c33 98 //
mjr 79:682ae3171a08 99 //
mjr 39:b3815a1c3802 100 // 2. Special reports
mjr 35:e959ffba78fd 101 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 102 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 103 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 104 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 105 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 106 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 107 //
mjr 39:b3815a1c3802 108 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 109 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 110 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 111 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 112 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 113 //
mjr 52:8298b2a73eb2 114 // 2A. Plunger sensor status report
mjr 52:8298b2a73eb2 115 // Software on the PC can request a detailed status report from the plunger
mjr 52:8298b2a73eb2 116 // sensor. The status information is meant as an aid to installing and
mjr 52:8298b2a73eb2 117 // adjusting the sensor device for proper performance. For imaging sensor
mjr 52:8298b2a73eb2 118 // types, the status report includes a complete current image snapshot
mjr 52:8298b2a73eb2 119 // (an array of all of the pixels the sensor is currently imaging). For
mjr 52:8298b2a73eb2 120 // all sensor types, it includes the current plunger position registered
mjr 52:8298b2a73eb2 121 // on the sensor, and some timing information.
mjr 52:8298b2a73eb2 122 //
mjr 52:8298b2a73eb2 123 // To request the sensor status, the host sends custom protocol message 65 3
mjr 52:8298b2a73eb2 124 // (see below). The device replies with a message in this format:
mjr 52:8298b2a73eb2 125 //
mjr 52:8298b2a73eb2 126 // bytes 0:1 = 0x87FF
mjr 86:e30a1f60f783 127 // byte 2 = 0 -> first status report packet
mjr 52:8298b2a73eb2 128 // bytes 3:4 = number of pixels to be sent in following messages, as
mjr 52:8298b2a73eb2 129 // an unsigned 16-bit little-endian integer. This is 0 if
mjr 52:8298b2a73eb2 130 // the sensor isn't an imaging type.
mjr 86:e30a1f60f783 131 // bytes 5:6 = current plunger position registered on the sensor. This
mjr 86:e30a1f60f783 132 // is on the *native* scale for the sensor, which might be
mjr 86:e30a1f60f783 133 // different from joystick units. By default, the native
mjr 86:e30a1f60f783 134 // scale is the number of pixels for an imaging sensor, or
mjr 86:e30a1f60f783 135 // 4096 for other sensor types. The actual native scale can
mjr 86:e30a1f60f783 136 // be reported separately via a second status report message
mjr 86:e30a1f60f783 137 // (see below).
mjr 52:8298b2a73eb2 138 // byte 7 = bit flags:
mjr 52:8298b2a73eb2 139 // 0x01 = normal orientation detected
mjr 52:8298b2a73eb2 140 // 0x02 = reversed orientation detected
mjr 52:8298b2a73eb2 141 // 0x04 = calibration mode is active (no pixel packets
mjr 52:8298b2a73eb2 142 // are sent for this reading)
mjr 52:8298b2a73eb2 143 // bytes 8:9:10 = average time for each sensor read, in 10us units.
mjr 52:8298b2a73eb2 144 // This is the average time it takes to complete the I/O
mjr 52:8298b2a73eb2 145 // operation to read the sensor, to obtain the raw sensor
mjr 52:8298b2a73eb2 146 // data for instantaneous plunger position reading. For
mjr 52:8298b2a73eb2 147 // an imaging sensor, this is the time it takes for the
mjr 52:8298b2a73eb2 148 // sensor to capture the image and transfer it to the
mjr 52:8298b2a73eb2 149 // microcontroller. For an analog sensor (e.g., an LVDT
mjr 52:8298b2a73eb2 150 // or potentiometer), it's the time to complete an ADC
mjr 52:8298b2a73eb2 151 // sample.
mjr 52:8298b2a73eb2 152 // bytes 11:12:13 = time it took to process the current frame, in 10us
mjr 52:8298b2a73eb2 153 // units. This is the software processing time that was
mjr 52:8298b2a73eb2 154 // needed to analyze the raw data read from the sensor.
mjr 52:8298b2a73eb2 155 // This is typically only non-zero for imaging sensors,
mjr 52:8298b2a73eb2 156 // where it reflects the time required to scan the pixel
mjr 52:8298b2a73eb2 157 // array to find the indicated plunger position. The time
mjr 52:8298b2a73eb2 158 // is usually zero or negligible for analog sensor types,
mjr 52:8298b2a73eb2 159 // since the only "analysis" is a multiplication to rescale
mjr 52:8298b2a73eb2 160 // the ADC sample.
mjr 52:8298b2a73eb2 161 //
mjr 86:e30a1f60f783 162 // An optional second message provides additional information:
mjr 86:e30a1f60f783 163 //
mjr 86:e30a1f60f783 164 // bytes 0:1 = 0x87FF
mjr 86:e30a1f60f783 165 // byte 2 = 1 -> second status report packet
mjr 86:e30a1f60f783 166 // bytes 3:4 = Native sensor scale. This is the actual native scale
mjr 86:e30a1f60f783 167 // used for the position report in the first status report
mjr 86:e30a1f60f783 168 // packet above.
mjr 86:e30a1f60f783 169 // bytes 5:6 = Jitter window lower bound, in native sensor scale units.
mjr 86:e30a1f60f783 170 // bytes 7:8 = Jitter window upper bound, in native sensor scale units.
mjr 86:e30a1f60f783 171 // The jitter window bounds reflect the current jitter filter
mjr 86:e30a1f60f783 172 // status as of this reading.
mjr 86:e30a1f60f783 173 // bytes 9:10 = Raw sensor reading before jitter filter was applied.
mjr 86:e30a1f60f783 174 // bytes 11:12 = Auto-exposure time in microseconds
mjr 87:8d35c74403af 175 //
mjr 87:8d35c74403af 176 // An optional third message provides additional information specifically
mjr 87:8d35c74403af 177 // for bar-code sensors:
mjr 87:8d35c74403af 178 //
mjr 87:8d35c74403af 179 // bytes 0:1 = 0x87FF
mjr 113:7330439f2ffc 180 // byte 2 = 2 -> bar code sensor extra status report
mjr 87:8d35c74403af 181 // byte 3 = number of bits in bar code
mjr 87:8d35c74403af 182 // byte 4 = bar code type:
mjr 87:8d35c74403af 183 // 1 = Gray code/Manchester bit coding
mjr 87:8d35c74403af 184 // bytes 5:6 = pixel offset of first bit
mjr 87:8d35c74403af 185 // byte 7 = width in pixels of each bit
mjr 87:8d35c74403af 186 // bytes 8:9 = raw bar code bits
mjr 87:8d35c74403af 187 // bytes 10:11 = mask of successfully read bar code bits; a '1' bit means
mjr 87:8d35c74403af 188 // that the bit was read successfully, '0' means the bit was
mjr 87:8d35c74403af 189 // unreadable
mjr 108:bd5d4bd4383b 190 //
mjr 113:7330439f2ffc 191 // Another optional third message provides additional information
mjr 113:7330439f2ffc 192 // specifically for digital quadrature sensors:
mjr 108:bd5d4bd4383b 193 //
mjr 108:bd5d4bd4383b 194 // bytes 0:1 = 0x87FF
mjr 113:7330439f2ffc 195 // byte 2 = 3 -> digital quadrature sensor extra status report
mjr 108:bd5d4bd4383b 196 // byte 3 = "A" channel reading (0 or 1)
mjr 108:bd5d4bd4383b 197 // byte 4 = "B" channel reading (0 or 1)
mjr 113:7330439f2ffc 198 //
mjr 113:7330439f2ffc 199 // Yet another optional third message provides additional information for
mjr 113:7330439f2ffc 200 // VCNL4010 sensors:
mjr 86:e30a1f60f783 201 //
mjr 113:7330439f2ffc 202 // bytes 0:1 = 0x87FF
mjr 113:7330439f2ffc 203 // bytes 2 = 4 -> VCNL4010 extra status report
mjr 113:7330439f2ffc 204 // bytes 3:4 = last proximity count reading (16-bit, little-endian), jitter filtered
mjr 113:7330439f2ffc 205 // bytes 5:6 = last proximity count reading, original unfiltered value
mjr 113:7330439f2ffc 206 //
mjr 113:7330439f2ffc 207 // If the sensor is an imaging sensor type, the first and second sensor
mjr 113:7330439f2ffc 208 // reports will be followed by a series of pixel reports giving the live
mjr 113:7330439f2ffc 209 // image view on the sensor. The imaging sensor types have too many pixels
mjr 52:8298b2a73eb2 210 // to send in a single USB transaction, so the device breaks up the array
mjr 52:8298b2a73eb2 211 // into as many packets as needed and sends them in sequence. For non-
mjr 52:8298b2a73eb2 212 // imaging sensors, the "number of pixels" field in the lead packet is
mjr 52:8298b2a73eb2 213 // zero, so obviously no pixel packets will follow. If the "calibration
mjr 52:8298b2a73eb2 214 // active" bit in the flags byte is set, no pixel packets are sent even
mjr 52:8298b2a73eb2 215 // if the sensor is an imaging type, since the transmission time for the
mjr 87:8d35c74403af 216 // pixels would interfere with the calibration process. If pixels are sent,
mjr 52:8298b2a73eb2 217 // they're sent in order starting at the first pixel. The format of each
mjr 52:8298b2a73eb2 218 // pixel packet is:
mjr 35:e959ffba78fd 219 //
mjr 35:e959ffba78fd 220 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 221 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 222 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 223 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 224 // indicate pixel #0.
mjr 47:df7a88cd249c 225 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 226 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 227 // etc for the rest of the packet
mjr 35:e959ffba78fd 228 //
mjr 52:8298b2a73eb2 229 // Note that we currently only support one-dimensional imaging sensors
mjr 52:8298b2a73eb2 230 // (i.e., pixel arrays that are 1 pixel wide). The report format doesn't
mjr 52:8298b2a73eb2 231 // have any provision for a two-dimensional layout. The KL25Z probably
mjr 52:8298b2a73eb2 232 // isn't powerful enough to do real-time image analysis on a 2D image
mjr 52:8298b2a73eb2 233 // anyway, so it's unlikely that we'd be able to make 2D sensors work at
mjr 52:8298b2a73eb2 234 // all, but if we ever add such a thing we'll have to upgrade the report
mjr 52:8298b2a73eb2 235 // format here accordingly.
mjr 51:57eb311faafa 236 //
mjr 51:57eb311faafa 237 //
mjr 53:9b2611964afc 238 // 2B. Configuration report.
mjr 39:b3815a1c3802 239 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 240 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 241 //
mjr 35:e959ffba78fd 242 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 243 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 244 // reports and from other special report types.
mjr 74:822a92bc11d2 245 // bytes 2:3 = total number of configured outputs, little endian. This
mjr 74:822a92bc11d2 246 // is the number of outputs with assigned functions in the
mjr 74:822a92bc11d2 247 // active configuration.
mjr 98:4df3c0f7e707 248 // byte 4 = Pinscape unit number (0-15)
mjr 75:677892300e7a 249 // byte 5 = reserved (currently always zero)
mjr 40:cc0d9814522b 250 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 251 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 52:8298b2a73eb2 252 // byte 10 = plunger calibration release time, in milliseconds
mjr 52:8298b2a73eb2 253 // byte 11 = bit flags:
mjr 40:cc0d9814522b 254 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 255 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 256 // has been sent from the host
mjr 74:822a92bc11d2 257 // 0x02 -> SBX/PBX extension features: 1 in this bit means
mjr 74:822a92bc11d2 258 // that these features are present in this version.
mjr 78:1e00b3fa11af 259 // 0x04 -> new accelerometer features supported (adjustable
mjr 78:1e00b3fa11af 260 // dynamic range, auto-centering on/off, adjustable
mjr 78:1e00b3fa11af 261 // auto-centering time)
mjr 82:4f6209cb5c33 262 // 0x08 -> flash write status flag supported (see flag 0x40
mjr 82:4f6209cb5c33 263 // in normal joystick status report)
mjr 92:f264fbaa1be5 264 // 0x10 -> joystick report timing features supports
mjr 92:f264fbaa1be5 265 // (configurable joystick report interval, acceler-
mjr 92:f264fbaa1be5 266 // ometer stutter counter)
mjr 99:8139b0c274f4 267 // 0x20 -> chime logic is supported
mjr 73:4e8ce0b18915 268 // bytes 12:13 = available RAM, in bytes, little endian. This is the amount
mjr 73:4e8ce0b18915 269 // of unused heap (malloc'able) memory. The firmware generally
mjr 73:4e8ce0b18915 270 // allocates all of the dynamic memory it needs during startup,
mjr 73:4e8ce0b18915 271 // so the free memory figure doesn't tend to fluctuate during
mjr 73:4e8ce0b18915 272 // normal operation. The dynamic memory used is a function of
mjr 73:4e8ce0b18915 273 // the set of features enabled.
mjr 35:e959ffba78fd 274 //
mjr 53:9b2611964afc 275 // 2C. Device ID report.
mjr 40:cc0d9814522b 276 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 277 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 278 //
mjr 52:8298b2a73eb2 279 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5 bits
mjr 52:8298b2a73eb2 280 // to distinguish this from other report types.
mjr 53:9b2611964afc 281 // byte 2 = ID type. This is the same ID type sent in the request.
mjr 53:9b2611964afc 282 // bytes 3-12 = requested ID. The ID is 80 bits in big-endian byte
mjr 53:9b2611964afc 283 // order. For IDs longer than 80 bits, we truncate to the
mjr 53:9b2611964afc 284 // low-order 80 bits (that is, the last 80 bits).
mjr 53:9b2611964afc 285 //
mjr 53:9b2611964afc 286 // ID type 1 = CPU ID. This is the globally unique CPU ID
mjr 53:9b2611964afc 287 // stored in the KL25Z CPU.
mjr 35:e959ffba78fd 288 //
mjr 53:9b2611964afc 289 // ID type 2 = OpenSDA ID. This is the globally unique ID
mjr 53:9b2611964afc 290 // for the connected OpenSDA controller, if known. This
mjr 53:9b2611964afc 291 // allow the host to figure out which USB MSD (virtual
mjr 53:9b2611964afc 292 // disk drive), if any, represents the OpenSDA module for
mjr 53:9b2611964afc 293 // this Pinscape USB interface. This is primarily useful
mjr 53:9b2611964afc 294 // to determine which MSD to write in order to update the
mjr 53:9b2611964afc 295 // firmware on a given Pinscape unit.
mjr 53:9b2611964afc 296 //
mjr 53:9b2611964afc 297 // 2D. Configuration variable report.
mjr 52:8298b2a73eb2 298 // This is requested by sending custom protocol message 65 9 (see below).
mjr 52:8298b2a73eb2 299 // In response, the device sends one report to the host using this format:
mjr 52:8298b2a73eb2 300 //
mjr 52:8298b2a73eb2 301 // bytes 0:1 = 0x9800. This has bit pattern 10011 in the high 5 bits
mjr 52:8298b2a73eb2 302 // to distinguish this from other report types.
mjr 52:8298b2a73eb2 303 // byte 2 = Variable ID. This is the same variable ID sent in the
mjr 52:8298b2a73eb2 304 // query message, to relate the reply to the request.
mjr 52:8298b2a73eb2 305 // bytes 3-8 = Current value of the variable, in the format for the
mjr 52:8298b2a73eb2 306 // individual variable type. The variable formats are
mjr 52:8298b2a73eb2 307 // described in the CONFIGURATION VARIABLES section below.
mjr 52:8298b2a73eb2 308 //
mjr 53:9b2611964afc 309 // 2E. Software build information report.
mjr 53:9b2611964afc 310 // This is requested by sending custom protocol message 65 10 (see below).
mjr 53:9b2611964afc 311 // In response, the device sends one report using this format:
mjr 53:9b2611964afc 312 //
mjr 73:4e8ce0b18915 313 // bytes 0:1 = 0xA000. This has bit pattern 10100 in the high 5 bits
mjr 77:0b96f6867312 314 // (and 10100000 in the high 8 bits) to distinguish it from
mjr 77:0b96f6867312 315 // other report types.
mjr 53:9b2611964afc 316 // bytes 2:5 = Build date. This is returned as a 32-bit integer,
mjr 53:9b2611964afc 317 // little-endian as usual, encoding a decimal value
mjr 53:9b2611964afc 318 // in the format YYYYMMDD giving the date of the build.
mjr 53:9b2611964afc 319 // E.g., Feb 16 2016 is encoded as 20160216 (decimal).
mjr 53:9b2611964afc 320 // bytes 6:9 = Build time. This is a 32-bit integer, little-endian,
mjr 53:9b2611964afc 321 // encoding a decimal value in the format HHMMSS giving
mjr 53:9b2611964afc 322 // build time on a 24-hour clock.
mjr 53:9b2611964afc 323 //
mjr 73:4e8ce0b18915 324 // 2F. Button status report.
mjr 73:4e8ce0b18915 325 // This is requested by sending custom protocol message 65 13 (see below).
mjr 73:4e8ce0b18915 326 // In response, the device sends one report using this format:
mjr 73:4e8ce0b18915 327 //
mjr 77:0b96f6867312 328 // bytes 0:1 = 0xA1. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 329 // 10100001 in the high 8 bits) to distinguish it from other
mjr 77:0b96f6867312 330 // report types.
mjr 73:4e8ce0b18915 331 // byte 2 = number of button reports
mjr 73:4e8ce0b18915 332 // byte 3 = Physical status of buttons 1-8, 1 bit each. The low-order
mjr 73:4e8ce0b18915 333 // bit (0x01) is button 1. Each bit is 0 if the button is off,
mjr 73:4e8ce0b18915 334 // 1 if on. This reflects the physical status of the button
mjr 73:4e8ce0b18915 335 // input pins, after debouncing but before any logical state
mjr 73:4e8ce0b18915 336 // processing. Pulse mode and shifting have no effect on the
mjr 73:4e8ce0b18915 337 // physical state; this simply indicates whether the button is
mjr 73:4e8ce0b18915 338 // electrically on (shorted to GND) or off (open circuit).
mjr 73:4e8ce0b18915 339 // byte 4 = buttons 9-16
mjr 73:4e8ce0b18915 340 // byte 5 = buttons 17-24
mjr 73:4e8ce0b18915 341 // byte 6 = buttons 25-32
mjr 73:4e8ce0b18915 342 // byte 7 = buttons 33-40
mjr 73:4e8ce0b18915 343 // byte 8 = buttons 41-48
mjr 73:4e8ce0b18915 344 //
mjr 77:0b96f6867312 345 // 2G. IR sensor data report.
mjr 77:0b96f6867312 346 // This is requested by sending custom protocol message 65 12 (see below).
mjr 77:0b96f6867312 347 // That command puts controller in IR learning mode for a short time, during
mjr 77:0b96f6867312 348 // which it monitors the IR sensor and send these special reports to relay the
mjr 77:0b96f6867312 349 // readings. The reports contain the raw data, plus the decoded command code
mjr 77:0b96f6867312 350 // and protocol information if the controller is able to recognize and decode
mjr 77:0b96f6867312 351 // the command.
mjr 52:8298b2a73eb2 352 //
mjr 77:0b96f6867312 353 // bytes 0:1 = 0xA2. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 354 // 10100010 in the high 8 bits to distinguish it from other
mjr 77:0b96f6867312 355 // report types.
mjr 77:0b96f6867312 356 // byte 2 = number of raw reports that follow
mjr 77:0b96f6867312 357 // bytes 3:4 = first raw report, as a little-endian 16-bit int. The
mjr 77:0b96f6867312 358 // value represents the time of an IR "space" or "mark" in
mjr 77:0b96f6867312 359 // 2us units. The low bit is 0 for a space and 1 for a mark.
mjr 77:0b96f6867312 360 // To recover the time in microseconds, mask our the low bit
mjr 77:0b96f6867312 361 // and multiply the result by 2. Received codes always
mjr 77:0b96f6867312 362 // alternate between spaces and marks. A space is an interval
mjr 77:0b96f6867312 363 // where the IR is off, and a mark is an interval with IR on.
mjr 77:0b96f6867312 364 // If the value is 0xFFFE (after masking out the low bit), it
mjr 77:0b96f6867312 365 // represents a timeout, that is, a time greater than or equal
mjr 77:0b96f6867312 366 // to the maximum that can be represented in this format,
mjr 77:0b96f6867312 367 // which is 131068us. None of the IR codes we can parse have
mjr 77:0b96f6867312 368 // any internal signal component this long, so a timeout value
mjr 77:0b96f6867312 369 // is generally seen only during a gap between codes where
mjr 77:0b96f6867312 370 // nothing is being transmitted.
mjr 77:0b96f6867312 371 // bytes 4:5 = second raw report
mjr 77:0b96f6867312 372 // (etc for remaining reports)
mjr 77:0b96f6867312 373 //
mjr 77:0b96f6867312 374 // If byte 2 is 0x00, it indicates that learning mode has expired without
mjr 77:0b96f6867312 375 // a code being received, so it's the last report sent for the learning
mjr 77:0b96f6867312 376 // session.
mjr 77:0b96f6867312 377 //
mjr 77:0b96f6867312 378 // If byte 2 is 0xFF, it indicates that a code has been successfully
mjr 77:0b96f6867312 379 // learned. The rest of the report contains the learned code instead
mjr 77:0b96f6867312 380 // of the raw data:
mjr 77:0b96f6867312 381 //
mjr 77:0b96f6867312 382 // byte 3 = protocol ID, which is an integer giving an internal code
mjr 77:0b96f6867312 383 // identifying the IR protocol that was recognized for the
mjr 77:0b96f6867312 384 // received data. See IRProtocolID.h for a list of the IDs.
mjr 77:0b96f6867312 385 // byte 4 = bit flags:
mjr 77:0b96f6867312 386 // 0x02 -> the protocol uses "dittos"
mjr 77:0b96f6867312 387 // bytes 5:6:7:8:9:10:11:12 = a little-endian 64-bit int containing
mjr 77:0b96f6867312 388 // the code received. The code is essentially the data payload
mjr 77:0b96f6867312 389 // of the IR packet, after removing bits that are purely
mjr 77:0b96f6867312 390 // structural, such as toggle bits and error correction bits.
mjr 77:0b96f6867312 391 // The mapping between the IR bit stream and our 64-bit is
mjr 77:0b96f6867312 392 // essentially arbitrary and varies by protocol, but it always
mjr 77:0b96f6867312 393 // has round-trip fidelity: using the 64-bit code value +
mjr 77:0b96f6867312 394 // protocol ID + flags to send an IR command will result in
mjr 77:0b96f6867312 395 // the same IR bit sequence being sent, modulo structural bits
mjr 77:0b96f6867312 396 // that need to be updates in the reconstruction (such as toggle
mjr 77:0b96f6867312 397 // bits or sequencing codes).
mjr 77:0b96f6867312 398 //
mjr 77:0b96f6867312 399 //
mjr 77:0b96f6867312 400 // WHY WE USE A HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 401 //
mjr 35:e959ffba78fd 402 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 403 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 404 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 405 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 406 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 407 //
mjr 77:0b96f6867312 408 // We use this hacky approach only because we can't use the standard USB
mjr 77:0b96f6867312 409 // HID mechanism for varying report types, which is to provide multiple
mjr 77:0b96f6867312 410 // report descriptors and tag each report with a type byte that indicates
mjr 77:0b96f6867312 411 // which descriptor applies. We can't use that standard approach because
mjr 77:0b96f6867312 412 // we want to be 100% LedWiz compatible. The snag is that some Windows
mjr 77:0b96f6867312 413 // LedWiz clients parse the USB HID descriptors as part of identifying a
mjr 77:0b96f6867312 414 // USB HID device as a valid LedWiz unit, and will only recognize the device
mjr 77:0b96f6867312 415 // if certain properties of the HID descriptors match those of a real LedWiz.
mjr 77:0b96f6867312 416 // One of the features that's important to some clients is the descriptor
mjr 77:0b96f6867312 417 // link structure, which is affected by the layout of HID Report Descriptor
mjr 77:0b96f6867312 418 // entries. In order to match the expected layout, we can only define a
mjr 77:0b96f6867312 419 // single kind of output report. Since we have to use Joystick reports for
mjr 77:0b96f6867312 420 // the sake of VP and other pinball software, and we're only allowed the
mjr 77:0b96f6867312 421 // one report type, we have to make that one report type the Joystick type.
mjr 77:0b96f6867312 422 // That's why we overload the joystick reports with other meanings. It's a
mjr 77:0b96f6867312 423 // hack, but at least it's a fairly reliable and isolated hack, in that our
mjr 77:0b96f6867312 424 // special reports are only generated when clients specifically ask for
mjr 77:0b96f6867312 425 // them. Plus, even if a client who doesn't ask for a special report
mjr 77:0b96f6867312 426 // somehow gets one, the worst that happens is that they get a momentary
mjr 77:0b96f6867312 427 // spurious reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 428
mjr 35:e959ffba78fd 429
mjr 35:e959ffba78fd 430
mjr 35:e959ffba78fd 431 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 432 //
mjr 35:e959ffba78fd 433 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 434 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 435 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 436 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 437 //
mjr 35:e959ffba78fd 438 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 439 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 440 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 441 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 442 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 443 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 444 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 445
mjr 35:e959ffba78fd 446 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 447 //
mjr 74:822a92bc11d2 448 // The real LedWiz protocol has two message types, "SBA" and "PBA". The
mjr 74:822a92bc11d2 449 // message type can be determined from the first byte of the 8-byte message
mjr 74:822a92bc11d2 450 // packet: if the first byte 64 (0x40), it's an SBA message. If the first
mjr 74:822a92bc11d2 451 // byte is 0-49 or 129-132, it's a PBA message. All other byte values are
mjr 74:822a92bc11d2 452 // invalid in the original protocol and have undefined behavior if sent to
mjr 74:822a92bc11d2 453 // a real LedWiz. We take advantage of this to extend the protocol with
mjr 74:822a92bc11d2 454 // our new features by assigning new meanings to byte patterns that have no
mjr 74:822a92bc11d2 455 // meaning in the original protocol.
mjr 35:e959ffba78fd 456 //
mjr 74:822a92bc11d2 457 // "SBA" message: 64 xx xx xx xx ss 00 00
mjr 74:822a92bc11d2 458 // xx = on/off bit mask for 8 outputs
mjr 74:822a92bc11d2 459 // ss = global flash speed setting (valid values 1-7)
mjr 74:822a92bc11d2 460 // 00 = unused/reserved; client should set to zero (not enforced, but
mjr 74:822a92bc11d2 461 // strongly recommended in case of future additions)
mjr 35:e959ffba78fd 462 //
mjr 35:e959ffba78fd 463 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 464 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 465 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 74:822a92bc11d2 466 // the sixth byte. The flash speed sets the global cycle rate for flashing
mjr 74:822a92bc11d2 467 // outputs - outputs with their values set to the range 128-132. The speed
mjr 74:822a92bc11d2 468 // parameter is in ad hoc units that aren't documented in the LedWiz API, but
mjr 74:822a92bc11d2 469 // observations of real LedWiz units show that the "speed" is actually the
mjr 74:822a92bc11d2 470 // period, each unit representing 0.25s: so speed 1 is a 0.25s period, or 4Hz,
mjr 74:822a92bc11d2 471 // speed 2 is a 0.5s period or 2Hz, etc., up to speed 7 as a 1.75s period or
mjr 74:822a92bc11d2 472 // 0.57Hz. The period is the full waveform cycle time.
mjr 74:822a92bc11d2 473 //
mjr 35:e959ffba78fd 474 //
mjr 74:822a92bc11d2 475 // "PBA" message: bb bb bb bb bb bb bb bb
mjr 74:822a92bc11d2 476 // bb = brightness level, 0-49 or 128-132
mjr 35:e959ffba78fd 477 //
mjr 74:822a92bc11d2 478 // Note that there's no prefix byte indicating this message type. This
mjr 74:822a92bc11d2 479 // message is indicated simply by the first byte being in one of the valid
mjr 74:822a92bc11d2 480 // ranges.
mjr 74:822a92bc11d2 481 //
mjr 74:822a92bc11d2 482 // Each byte gives the new brightness level or flash pattern for one part.
mjr 74:822a92bc11d2 483 // The valid values are:
mjr 35:e959ffba78fd 484 //
mjr 35:e959ffba78fd 485 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 486 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 487 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 488 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 489 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 490 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 491 //
mjr 74:822a92bc11d2 492 // This message sets new brightness/flash settings for 8 ports. There's
mjr 74:822a92bc11d2 493 // no port number specified in the message; instead, the port is given by
mjr 74:822a92bc11d2 494 // the protocol state. Specifically, the device has an internal register
mjr 74:822a92bc11d2 495 // containing the base port for PBA messages. On reset AND after any SBA
mjr 74:822a92bc11d2 496 // message is received, the base port is set to 0. After any PBA message
mjr 74:822a92bc11d2 497 // is received and processed, the base port is incremented by 8, resetting
mjr 74:822a92bc11d2 498 // to 0 when it reaches 32. The bytes of the message set the brightness
mjr 74:822a92bc11d2 499 // levels for the base port, base port + 1, ..., base port + 7 respectively.
mjr 35:e959ffba78fd 500 //
mjr 74:822a92bc11d2 501 //
mjr 35:e959ffba78fd 502
mjr 35:e959ffba78fd 503 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 504 //
mjr 35:e959ffba78fd 505 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 506 //
mjr 35:e959ffba78fd 507 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 508 // operation:
mjr 35:e959ffba78fd 509 //
mjr 39:b3815a1c3802 510 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 511 // USB endpoint.)
mjr 39:b3815a1c3802 512 //
mjr 88:98bce687e6c0 513 // 1 -> Set the device's LedWiz unit number and plunger status, and save the
mjr 88:98bce687e6c0 514 // changes to flash. The device automatically reboots after the changes
mjr 88:98bce687e6c0 515 // are saved if the unit number is changed, since this changes the USB
mjr 88:98bce687e6c0 516 // product ID code. The additional bytes of the message give the
mjr 88:98bce687e6c0 517 // parameters:
mjr 35:e959ffba78fd 518 //
mjr 88:98bce687e6c0 519 // third byte = new LedWiz unit number (0-15, corresponding to nominal
mjr 88:98bce687e6c0 520 // LedWiz unit numbers 1-16)
mjr 35:e959ffba78fd 521 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 522 //
mjr 88:98bce687e6c0 523 // Note that this command is from the original version and isn't typically
mjr 88:98bce687e6c0 524 // used any more, since the same information has been subsumed into more
mjr 88:98bce687e6c0 525 // generalized option settings via the config variable system.
mjr 88:98bce687e6c0 526 //
mjr 35:e959ffba78fd 527 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 528 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 529 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 530 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 531 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 532 //
mjr 51:57eb311faafa 533 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 534 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 535 // isn't big enough to allow the whole image to be sent in one message, so
mjr 53:9b2611964afc 536 // the image is broken up into as many messages as necessary.) The device
mjr 53:9b2611964afc 537 // then resumes sending normal joystick messages. If the plunger sensor
mjr 53:9b2611964afc 538 // isn't an imaging type, or no sensor is installed, no pixel messages are
mjr 53:9b2611964afc 539 // sent. Parameters:
mjr 48:058ace2aed1d 540 //
mjr 48:058ace2aed1d 541 // third byte = bit flags:
mjr 51:57eb311faafa 542 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 543 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 544 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 545 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 546 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 547 // viewing in the config tool.
mjr 35:e959ffba78fd 548 //
mjr 53:9b2611964afc 549 // fourth byte = extra exposure time in 100us (.1ms) increments. For
mjr 53:9b2611964afc 550 // imaging sensors, we'll add this delay to the minimum exposure
mjr 53:9b2611964afc 551 // time. This allows the caller to explicitly adjust the exposure
mjr 53:9b2611964afc 552 // level for calibration purposes.
mjr 53:9b2611964afc 553 //
mjr 35:e959ffba78fd 554 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 555 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 556 // joystick reports.
mjr 35:e959ffba78fd 557 //
mjr 74:822a92bc11d2 558 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets all output
mjr 74:822a92bc11d2 559 // ports to OFF and LedWiz brightness/mode setting 48, and sets the LedWiz
mjr 74:822a92bc11d2 560 // global flash speed to 2.
mjr 35:e959ffba78fd 561 //
mjr 35:e959ffba78fd 562 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 85:3c28aee81cde 563 // type 66 messages since the last reboot, then optionally reboots the
mjr 82:4f6209cb5c33 564 // device to put the changes into effect. If the flash write succeeds,
mjr 82:4f6209cb5c33 565 // we set the "flash write OK" bit in our status reports, which we
mjr 82:4f6209cb5c33 566 // continue sending between the successful write and the delayed reboot.
mjr 85:3c28aee81cde 567 // We don't set the bit or reboot if the write fails. If the "do not
mjr 85:3c28aee81cde 568 // reboot" flag is set, we still set the flag on success for the delay
mjr 85:3c28aee81cde 569 // time, then clear the flag.
mjr 35:e959ffba78fd 570 //
mjr 53:9b2611964afc 571 // third byte = delay time in seconds. The device will wait this long
mjr 82:4f6209cb5c33 572 // before disconnecting, to allow the PC to test for the success bit
mjr 82:4f6209cb5c33 573 // in the status report, and to perform any cleanup tasks while the
mjr 82:4f6209cb5c33 574 // device is still attached (e.g., modifying Windows device driver
mjr 82:4f6209cb5c33 575 // settings)
mjr 53:9b2611964afc 576 //
mjr 85:3c28aee81cde 577 // fourth byte = flags:
mjr 85:3c28aee81cde 578 // 0x01 -> do not reboot
mjr 85:3c28aee81cde 579 //
mjr 40:cc0d9814522b 580 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 581 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 582 // joystick reports.
mjr 40:cc0d9814522b 583 //
mjr 53:9b2611964afc 584 // The third byte of the message is the ID index to retrieve:
mjr 53:9b2611964afc 585 //
mjr 53:9b2611964afc 586 // 1 = CPU ID: returns the KL25Z globally unique CPU ID.
mjr 53:9b2611964afc 587 //
mjr 53:9b2611964afc 588 // 2 = OpenSDA ID: returns the OpenSDA TUID. This must be patched
mjr 53:9b2611964afc 589 // into the firmware by the PC host when the .bin file is
mjr 53:9b2611964afc 590 // installed onto the device. This will return all 'X' bytes
mjr 53:9b2611964afc 591 // if the value wasn't patched at install time.
mjr 53:9b2611964afc 592 //
mjr 40:cc0d9814522b 593 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 55:4db125cd11a0 594 // engage night mode, 0 to disengage night mode. The current mode isn't
mjr 55:4db125cd11a0 595 // stored persistently; night mode is always off after a reset.
mjr 40:cc0d9814522b 596 //
mjr 52:8298b2a73eb2 597 // 9 -> Query configuration variable. The second byte is the config variable
mjr 52:8298b2a73eb2 598 // number (see the CONFIGURATION VARIABLES section below). For the array
mjr 52:8298b2a73eb2 599 // variables (button assignments, output ports), the third byte is the
mjr 52:8298b2a73eb2 600 // array index. The device replies with a configuration variable report
mjr 52:8298b2a73eb2 601 // (see above) with the current setting for the requested variable.
mjr 52:8298b2a73eb2 602 //
mjr 53:9b2611964afc 603 // 10 -> Query software build information. No parameters. This replies with
mjr 53:9b2611964afc 604 // the software build information report (see above).
mjr 53:9b2611964afc 605 //
mjr 73:4e8ce0b18915 606 // 11 -> TV ON relay manual control. This allows testing and operating the
mjr 73:4e8ce0b18915 607 // relay from the PC. This doesn't change the power-up configuration;
mjr 88:98bce687e6c0 608 // it merely allows the relay to be controlled directly. The third
mjr 88:98bce687e6c0 609 // byte specifies the relay operation to perform:
mjr 73:4e8ce0b18915 610 //
mjr 73:4e8ce0b18915 611 // 0 = turn relay off
mjr 73:4e8ce0b18915 612 // 1 = turn relay on
mjr 73:4e8ce0b18915 613 // 2 = pulse the relay as though the power-on delay timer fired
mjr 73:4e8ce0b18915 614 //
mjr 77:0b96f6867312 615 // 12 -> Learn IR code. The device enters "IR learning mode". While in
mjr 77:0b96f6867312 616 // learning mode, the device reports the raw signals read through
mjr 77:0b96f6867312 617 // the IR sensor to the PC through the special IR learning report
mjr 77:0b96f6867312 618 // (see "2G" above). If a signal can be decoded through a known
mjr 77:0b96f6867312 619 // protocol, the device sends a final "2G" report with the decoded
mjr 77:0b96f6867312 620 // command, then terminates learning mode. If no signal can be
mjr 77:0b96f6867312 621 // decoded within a timeout period, the mode automatically ends,
mjr 77:0b96f6867312 622 // and the device sends a final IR learning report with zero raw
mjr 77:0b96f6867312 623 // signals to indicate termination. After initiating IR learning
mjr 77:0b96f6867312 624 // mode, the user should point the remote control with the key to
mjr 77:0b96f6867312 625 // be learned at the IR sensor on the KL25Z, and press and hold the
mjr 77:0b96f6867312 626 // key on the remote for a few seconds. Holding the key for a few
mjr 77:0b96f6867312 627 // moments is important because it lets the decoder sense the type
mjr 77:0b96f6867312 628 // of auto-repeat coding the remote uses. The learned code can be
mjr 77:0b96f6867312 629 // written to an IR config variable slot to program the controller
mjr 77:0b96f6867312 630 // to send the learned command on events like TV ON or a button
mjr 77:0b96f6867312 631 // press.
mjr 77:0b96f6867312 632 //
mjr 78:1e00b3fa11af 633 // 13 -> Get button status report. The device sends one button status
mjr 78:1e00b3fa11af 634 // report in response (see section "2F" above).
mjr 78:1e00b3fa11af 635 //
mjr 78:1e00b3fa11af 636 // 14 -> Manually center the accelerometer. This sets the accelerometer
mjr 78:1e00b3fa11af 637 // zero point to the running average of readings over the past few
mjr 78:1e00b3fa11af 638 // seconds.
mjr 78:1e00b3fa11af 639 //
mjr 78:1e00b3fa11af 640 // 15 -> Set up ad hoc IR command, part 1. This sets up the first part
mjr 78:1e00b3fa11af 641 // of an IR command to transmit. The device stores the data in an
mjr 78:1e00b3fa11af 642 // internal register for later use in message 65 16. Send the
mjr 78:1e00b3fa11af 643 // remainder of the command data with 65 16.
mjr 78:1e00b3fa11af 644 //
mjr 78:1e00b3fa11af 645 // byte 3 = IR protocol ID
mjr 78:1e00b3fa11af 646 // byte 4 = flags (IRFlagXxx bit flags)
mjr 78:1e00b3fa11af 647 // byte 5-8 = low-order 32 bits of command code, little-endian
mjr 78:1e00b3fa11af 648 //
mjr 78:1e00b3fa11af 649 // 16 -> Finish and send an ad hoc IR command. Use message 65 15 first
mjr 78:1e00b3fa11af 650 // to set up the start of the command data, then send this message
mjr 78:1e00b3fa11af 651 // to fill in the rest of the data and transmit the command. Upon
mjr 78:1e00b3fa11af 652 // receiving this message, the device performs the transmission.
mjr 78:1e00b3fa11af 653 //
mjr 78:1e00b3fa11af 654 // byte 3-6 = high-order 32 bits of command code, little-endian
mjr 88:98bce687e6c0 655 //
mjr 88:98bce687e6c0 656 // 17 -> Send a pre-programmed IR command. This immediately transmits an
mjr 88:98bce687e6c0 657 // IR code stored in a command slot.
mjr 88:98bce687e6c0 658 //
mjr 88:98bce687e6c0 659 // byte 3 = command number (1..MAX_IR_CODES)
mjr 78:1e00b3fa11af 660 //
mjr 73:4e8ce0b18915 661 //
mjr 35:e959ffba78fd 662 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 663 // variable number, and the remaining bytes give the new value for the variable.
mjr 53:9b2611964afc 664 // The value format is specific to each variable; see the CONFIGURATION VARIABLES
mjr 53:9b2611964afc 665 // section below for a list of the variables and their formats. This command
mjr 53:9b2611964afc 666 // only sets the value in RAM; it doesn't write the value to flash and doesn't
mjr 53:9b2611964afc 667 // put the change into effect. To save the new settings, the host must send a
mjr 53:9b2611964afc 668 // type 65 subtype 6 message (see above). That saves the settings to flash and
mjr 53:9b2611964afc 669 // reboots the device, which makes the new settings active.
mjr 35:e959ffba78fd 670 //
mjr 74:822a92bc11d2 671 // 67 -> "SBX". This is an extended form of the original LedWiz SBA message. This
mjr 74:822a92bc11d2 672 // version is specifically designed to support a replacement LEDWIZ.DLL on the
mjr 74:822a92bc11d2 673 // host that exposes one Pinscape device as multiple virtual LedWiz devices,
mjr 74:822a92bc11d2 674 // in order to give legacy clients access to more than 32 ports. Each virtual
mjr 74:822a92bc11d2 675 // LedWiz represents a block of 32 ports. The format of this message is the
mjr 74:822a92bc11d2 676 // same as for the original SBA, with the addition of one byte:
mjr 74:822a92bc11d2 677 //
mjr 74:822a92bc11d2 678 // 67 xx xx xx xx ss pp 00
mjr 74:822a92bc11d2 679 // xx = on/off switches for 8 ports, one bit per port
mjr 74:822a92bc11d2 680 // ss = global flash speed setting for this bank of ports, 1-7
mjr 74:822a92bc11d2 681 // pp = port group: 0 for ports 1-32, 1 for ports 33-64, etc
mjr 74:822a92bc11d2 682 // 00 = unused/reserved; client should set to zero
mjr 74:822a92bc11d2 683 //
mjr 74:822a92bc11d2 684 // As with SBA, this sets the on/off switch states for a block of 32 ports.
mjr 74:822a92bc11d2 685 // SBA always addresses ports 1-32; SBX can address any set of 32 ports.
mjr 74:822a92bc11d2 686 //
mjr 74:822a92bc11d2 687 // We keep a separate speed setting for each group of 32 ports. The purpose
mjr 74:822a92bc11d2 688 // of the SBX extension is to allow a custom LEDWIZ.DLL to expose multiple
mjr 74:822a92bc11d2 689 // virtual LedWiz units to legacy clients, so clients will expect each unit
mjr 74:822a92bc11d2 690 // to have its separate flash speed setting. Each block of 32 ports maps to
mjr 74:822a92bc11d2 691 // a virtual unit on the client side, so each block needs its own speed state.
mjr 74:822a92bc11d2 692 //
mjr 74:822a92bc11d2 693 // 68 -> "PBX". This is an extended form of the original LedWiz PBA message; it's
mjr 74:822a92bc11d2 694 // the PBA equivalent of our SBX extension above.
mjr 74:822a92bc11d2 695 //
mjr 74:822a92bc11d2 696 // 68 pp ee ee ee ee ee ee
mjr 74:822a92bc11d2 697 // pp = port group: 0 for ports 1-8, 1 for 9-16, etc
mjr 74:822a92bc11d2 698 // qq = sequence number: 0 for the first 8 ports in the group, etc
mjr 74:822a92bc11d2 699 // ee = brightness/flash values, 6 bits per port, packed into the bytes
mjr 74:822a92bc11d2 700 //
mjr 74:822a92bc11d2 701 // The port group 'pp' selects a group of 8 ports. Note that, unlike PBA,
mjr 74:822a92bc11d2 702 // the port group being updated is explicitly coded in the message, which makes
mjr 74:822a92bc11d2 703 // the message stateless. This eliminates any possibility of the client and
mjr 74:822a92bc11d2 704 // host getting out of sync as to which ports they're talking about. This
mjr 74:822a92bc11d2 705 // message doesn't affect the PBA port address state.
mjr 74:822a92bc11d2 706 //
mjr 74:822a92bc11d2 707 // The brightness values are *almost* the same as in PBA, but not quite. We
mjr 74:822a92bc11d2 708 // remap the flashing state values as follows:
mjr 74:822a92bc11d2 709 //
mjr 74:822a92bc11d2 710 // 0-48 = brightness level, 0% to 100%, on a linear scale
mjr 74:822a92bc11d2 711 // 49 = brightness level 100% (redundant with 48)
mjr 74:822a92bc11d2 712 // 60 = PBA 129 equivalent, sawtooth
mjr 74:822a92bc11d2 713 // 61 = PBA 130 equivalent, square wave (on/off)
mjr 74:822a92bc11d2 714 // 62 = PBA 131 equivalent, on/fade down
mjr 74:822a92bc11d2 715 // 63 = PBA 132 equivalent, fade up/on
mjr 74:822a92bc11d2 716 //
mjr 74:822a92bc11d2 717 // We reassign the brightness levels like this because it allows us to pack
mjr 74:822a92bc11d2 718 // every possible value into 6 bits. This allows us to fit 8 port settings
mjr 74:822a92bc11d2 719 // into six bytes. The 6-bit fields are packed into the 8 bytes consecutively
mjr 74:822a92bc11d2 720 // starting with the low-order bit of the first byte. An efficient way to
mjr 74:822a92bc11d2 721 // pack the 'ee' fields given the brightness values is to shift each group of
mjr 74:822a92bc11d2 722 // four bytes into a uint, then shift the uint into three 'ee' bytes:
mjr 74:822a92bc11d2 723 //
mjr 74:822a92bc11d2 724 // unsigned int tmp1 = bri[0] | (bri[1]<<6) | (bri[2]<<12) | (bri[3]<<18);
mjr 74:822a92bc11d2 725 // unsigned int tmp2 = bri[4] | (bri[5]<<6) | (bri[6]<<12) | (bri[7]<<18);
mjr 74:822a92bc11d2 726 // unsigned char port_group = FIRST_PORT_TO_ADDRESS / 8;
mjr 74:822a92bc11d2 727 // unsigned char msg[8] = {
mjr 74:822a92bc11d2 728 // 68, pp,
mjr 74:822a92bc11d2 729 // tmp1 & 0xFF, (tmp1 >> 8) & 0xFF, (tmp1 >> 16) & 0xFF,
mjr 74:822a92bc11d2 730 // tmp2 & 0xFF, (tmp2 >> 8) & 0xFF, (tmp2 >> 16) & 0xFF
mjr 74:822a92bc11d2 731 // };
mjr 74:822a92bc11d2 732 //
mjr 35:e959ffba78fd 733 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 734 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 735 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 736 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 737 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 738 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 739 //
mjr 35:e959ffba78fd 740 // 200 = outputs 1-7
mjr 35:e959ffba78fd 741 // 201 = outputs 8-14
mjr 35:e959ffba78fd 742 // 202 = outputs 15-21
mjr 35:e959ffba78fd 743 // ...
mjr 35:e959ffba78fd 744 // 228 = outputs 197-203
mjr 35:e959ffba78fd 745 //
mjr 53:9b2611964afc 746 // This message is the way to address ports 33 and higher. Original LedWiz
mjr 53:9b2611964afc 747 // protocol messages can't access ports above 32, since the protocol is
mjr 53:9b2611964afc 748 // hard-wired for exactly 32 ports.
mjr 35:e959ffba78fd 749 //
mjr 53:9b2611964afc 750 // Note that the extended output messages differ from regular LedWiz commands
mjr 35:e959ffba78fd 751 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 53:9b2611964afc 752 // set using this mode. There's no separate ON/OFF state per output as there
mjr 35:e959ffba78fd 753 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 754 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 755 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 756 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 757 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 758 //
mjr 35:e959ffba78fd 759 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 760 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 761 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 762 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 763 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 764 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 765 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 766 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 53:9b2611964afc 767 //
mjr 53:9b2611964afc 768 // (The precedence scheme is designed to accommodate a mix of legacy and DOF
mjr 53:9b2611964afc 769 // software transparently. The behavior described is really just to ensure
mjr 53:9b2611964afc 770 // transparent interoperability; it's not something that host software writers
mjr 53:9b2611964afc 771 // should have to worry about. We expect that anyone writing new software will
mjr 53:9b2611964afc 772 // just use the extended protocol and ignore the old LedWiz commands, since
mjr 53:9b2611964afc 773 // the extended protocol is easier to use and more powerful.)
mjr 35:e959ffba78fd 774
mjr 35:e959ffba78fd 775
mjr 35:e959ffba78fd 776 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 777 //
mjr 35:e959ffba78fd 778 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 779 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 780 // value, in a variable-specific format. 16-bit values are little endian.
mjr 55:4db125cd11a0 781 // Any bytes at the end of the message not otherwise specified are reserved
mjr 55:4db125cd11a0 782 // for future use and should always be set to 0 in the message data.
mjr 35:e959ffba78fd 783 //
mjr 77:0b96f6867312 784 // Variable IDs:
mjr 77:0b96f6867312 785 //
mjr 53:9b2611964afc 786 // 0 -> QUERY ONLY: Describe the configuration variables. The device
mjr 53:9b2611964afc 787 // sends a config variable query report with the following fields:
mjr 53:9b2611964afc 788 //
mjr 53:9b2611964afc 789 // byte 3 -> number of scalar (non-array) variables (these are
mjr 53:9b2611964afc 790 // numbered sequentially from 1 to N)
mjr 53:9b2611964afc 791 // byte 4 -> number of array variables (these are numbered
mjr 53:9b2611964afc 792 // sequentially from 256-N to 255)
mjr 53:9b2611964afc 793 //
mjr 53:9b2611964afc 794 // The description query is meant to allow the host to capture all
mjr 53:9b2611964afc 795 // configuration settings on the device without having to know what
mjr 53:9b2611964afc 796 // the variables mean or how many there are. This is useful for
mjr 53:9b2611964afc 797 // backing up the settings in a file on the PC, for example, or for
mjr 53:9b2611964afc 798 // capturing them to restore after a firmware update. This allows
mjr 53:9b2611964afc 799 // more flexible interoperability between unsynchronized versions
mjr 53:9b2611964afc 800 // of the firmware and the host software.
mjr 53:9b2611964afc 801 //
mjr 53:9b2611964afc 802 // 1 -> USB device ID. This sets the USB vendor and product ID codes
mjr 53:9b2611964afc 803 // to use when connecting to the PC. For LedWiz emulation, use
mjr 35:e959ffba78fd 804 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 53:9b2611964afc 805 // nominal LedWiz unit number, from 1 to 16). If you have any
mjr 53:9b2611964afc 806 // REAL LedWiz units in your system, we recommend starting the
mjr 53:9b2611964afc 807 // Pinscape LedWiz numbering at 8 to avoid conflicts with the
mjr 53:9b2611964afc 808 // real LedWiz units. If you don't have any real LedWiz units,
mjr 53:9b2611964afc 809 // you can number your Pinscape units starting from 1.
mjr 35:e959ffba78fd 810 //
mjr 53:9b2611964afc 811 // If LedWiz emulation isn't desired or causes host conflicts,
mjr 53:9b2611964afc 812 // use our private ID: Vendor 0x1209, product 0xEAEA. (These IDs
mjr 53:9b2611964afc 813 // are registered with http://pid.codes, a registry for open-source
mjr 53:9b2611964afc 814 // USB devices, so they're guaranteed to be free of conflicts with
mjr 53:9b2611964afc 815 // other properly registered devices). The device will NOT appear
mjr 53:9b2611964afc 816 // as an LedWiz if you use the private ID codes, but DOF (R3 or
mjr 53:9b2611964afc 817 // later) will still recognize it as a Pinscape controller.
mjr 53:9b2611964afc 818 //
mjr 53:9b2611964afc 819 // bytes 3:4 -> USB Vendor ID
mjr 53:9b2611964afc 820 // bytes 5:6 -> USB Product ID
mjr 53:9b2611964afc 821 //
mjr 53:9b2611964afc 822 // 2 -> Pinscape Controller unit number for DOF. The Pinscape unit
mjr 53:9b2611964afc 823 // number is independent of the LedWiz unit number, and indepedent
mjr 53:9b2611964afc 824 // of the USB vendor/product IDs. DOF (R3 and later) uses this to
mjr 53:9b2611964afc 825 // identify the unit for the extended Pinscape functionality.
mjr 53:9b2611964afc 826 // For easiest DOF configuration, we recommend numbering your
mjr 53:9b2611964afc 827 // units sequentially starting at 1 (regardless of whether or not
mjr 53:9b2611964afc 828 // you have any real LedWiz units).
mjr 53:9b2611964afc 829 //
mjr 53:9b2611964afc 830 // byte 3 -> unit number, from 1 to 16
mjr 35:e959ffba78fd 831 //
mjr 90:aa4e571da8e8 832 // 3 -> Joystick report settings.
mjr 55:4db125cd11a0 833 //
mjr 92:f264fbaa1be5 834 // byte 3 -> Enable joystick interface: 1 to enable, 0 to disable
mjr 92:f264fbaa1be5 835 // byte 4 -> Joystick axis format, as a USBJoystick::AXIS_FORMAT_XXX value
mjr 92:f264fbaa1be5 836 // bytes 5:8 -> Reporting interval in microseconds
mjr 35:e959ffba78fd 837 //
mjr 55:4db125cd11a0 838 // When joystick reports are disabled, the device registers as a generic HID
mjr 55:4db125cd11a0 839 // device, and only sends the private report types used by the Windows config
mjr 55:4db125cd11a0 840 // tool. It won't appear to Windows as a USB game controller or joystick.
mjr 55:4db125cd11a0 841 //
mjr 55:4db125cd11a0 842 // Note that this doesn't affect whether the device also registers a keyboard
mjr 55:4db125cd11a0 843 // interface. A keyboard interface will appear if and only if any buttons
mjr 55:4db125cd11a0 844 // (including virtual buttons, such as the ZB Launch Ball feature) are assigned
mjr 55:4db125cd11a0 845 // to generate keyboard key input.
mjr 55:4db125cd11a0 846 //
mjr 77:0b96f6867312 847 // 4 -> Accelerometer settings
mjr 35:e959ffba78fd 848 //
mjr 55:4db125cd11a0 849 // byte 3 -> orientation:
mjr 55:4db125cd11a0 850 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 55:4db125cd11a0 851 // 1 = ports at left
mjr 55:4db125cd11a0 852 // 2 = ports at right
mjr 55:4db125cd11a0 853 // 3 = ports at rear
mjr 77:0b96f6867312 854 // byte 4 -> dynamic range
mjr 78:1e00b3fa11af 855 // 0 = +/- 1G (2G hardware mode, but rescales joystick reports to 1G
mjr 78:1e00b3fa11af 856 // range; compatible with older versions)
mjr 77:0b96f6867312 857 // 1 = +/- 2G (2G hardware mode)
mjr 77:0b96f6867312 858 // 2 = +/- 4G (4G hardware mode)
mjr 77:0b96f6867312 859 // 3 = +/- 8G (8G hardware mode)
mjr 78:1e00b3fa11af 860 // byte 5 -> Auto-centering mode
mjr 78:1e00b3fa11af 861 // 0 = auto-centering on, 5 second timer (default, compatible
mjr 78:1e00b3fa11af 862 // with older versions)
mjr 78:1e00b3fa11af 863 // 1-60 = auto-centering on with the given time in seconds
mjr 78:1e00b3fa11af 864 // 61-245 = reserved
mjr 78:1e00b3fa11af 865 // 255 = auto-centering off; manual centering only
mjr 92:f264fbaa1be5 866 // byte 6 -> joystick report stutter count: 1 (or 0) means that we
mjr 92:f264fbaa1be5 867 // take a fresh accelerometer on every joystick report; 2 means
mjr 92:f264fbaa1be5 868 // that we take a new reading on every other report, and repeat
mjr 92:f264fbaa1be5 869 // the prior readings on alternate reports; etc
mjr 55:4db125cd11a0 870 //
mjr 55:4db125cd11a0 871 // 5 -> Plunger sensor type.
mjr 35:e959ffba78fd 872 //
mjr 55:4db125cd11a0 873 // byte 3 -> plunger type:
mjr 55:4db125cd11a0 874 // 0 = none (disabled)
mjr 82:4f6209cb5c33 875 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode, edge detection
mjr 82:4f6209cb5c33 876 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode, edge detection
mjr 55:4db125cd11a0 877 // 5 = Potentiometer with linear taper, or any other device that
mjr 55:4db125cd11a0 878 // represents the position reading with a single analog voltage
mjr 82:4f6209cb5c33 879 // 6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 55:4db125cd11a0 880 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 82:4f6209cb5c33 881 // 8 = TSL1401CL linear image sensor, 128x1 pixel, bar code detection
mjr 82:4f6209cb5c33 882 // 9 = VL6180X time-of-flight distance sensor
mjr 100:1ff35c07217c 883 // **10 = AEAT-6012-A06 magnetic rotary encoder
mjr 100:1ff35c07217c 884 // **11 = TCD1103GFG Toshiba linear CCD, 1500x1 pixels, edge detection
mjr 111:42dc75fbe623 885 // **12 = VCNL4010 Vishay IR proximity sensor
mjr 55:4db125cd11a0 886 //
mjr 113:7330439f2ffc 887 // byte 4 -> extra sensor-speicifc parameter data
mjr 113:7330439f2ffc 888 // VCNL4010 - IRED current, in units of 10mA, valid range 1..20
mjr 113:7330439f2ffc 889 //
mjr 55:4db125cd11a0 890 // * The sensor types marked with asterisks (*) are reserved for types
mjr 55:4db125cd11a0 891 // that aren't currently implemented but could be added in the future.
mjr 100:1ff35c07217c 892 // Selecting these types will effectively disable the plunger.
mjr 100:1ff35c07217c 893 //
mjr 113:7330439f2ffc 894 // ** The sensor types marked with double asterisks (**) are
mjr 113:7330439f2ffc 895 // Experimental, meaning that the code isn't finished yet and isn't
mjr 113:7330439f2ffc 896 // meant for use in a live pin cab.
mjr 100:1ff35c07217c 897 //
mjr 100:1ff35c07217c 898 // Sensor types 2 and 4 were formerly reserved for TSL14xx sensors in
mjr 100:1ff35c07217c 899 // parallel wiring mode, but support for these is no longer planned, as
mjr 100:1ff35c07217c 900 // the KL25Z's single ADC sampler negates any speed advantage from using
mjr 100:1ff35c07217c 901 // the sensors' parallel mode. Those slots could be reassigned for
mjr 100:1ff35c07217c 902 // other sensors, since they were never enabled in any release version.
mjr 55:4db125cd11a0 903 //
mjr 55:4db125cd11a0 904 // 6 -> Plunger pin assignments.
mjr 47:df7a88cd249c 905 //
mjr 55:4db125cd11a0 906 // byte 3 -> pin assignment 1
mjr 55:4db125cd11a0 907 // byte 4 -> pin assignment 2
mjr 113:7330439f2ffc 908 // byte 5 -> pin assignment 3/misc
mjr 113:7330439f2ffc 909 // byte 6 -> pin assignment 4/misc
mjr 55:4db125cd11a0 910 //
mjr 55:4db125cd11a0 911 // All of the pins use the standard GPIO port format (see "GPIO pin number
mjr 55:4db125cd11a0 912 // mappings" below). The actual use of the four pins depends on the plunger
mjr 55:4db125cd11a0 913 // type, as shown below. "NC" means that the pin isn't used at all for the
mjr 82:4f6209cb5c33 914 // corresponding plunger type. "GPIO" means that any GPIO pin will work.
mjr 100:1ff35c07217c 915 // AnalogIn, InterruptIn, and PWM mean that only pins with the respective
mjr 82:4f6209cb5c33 916 // capabilities can be chosen.
mjr 35:e959ffba78fd 917 //
mjr 113:7330439f2ffc 918 // Plunger Type Pin 1 Pin 2 Pin 3/Misc Pin 4
mjr 35:e959ffba78fd 919 //
mjr 82:4f6209cb5c33 920 // TSL1410R/1412R/1401CL SI (GPIO) CLK (GPIO) AO (AnalogIn) NC
mjr 55:4db125cd11a0 921 // Potentiometer AO (AnalogIn) NC NC NC
mjr 55:4db125cd11a0 922 // AEDR8300 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 923 // AS5304 A (InterruptIn) B (InterruptIn) NC NC
mjr 82:4f6209cb5c33 924 // VL6180X SDA (GPIO) SCL (GPIO) GPIO0/CE (GPIO) NC
mjr 100:1ff35c07217c 925 // AEAT-6012-A06 CS (GPIO) CLK (GPIO) DO (GPIO) NC
mjr 100:1ff35c07217c 926 // TCD1103GFG fM (PWM) OS (AnalogIn) ICG (GPIO) SH (GPIO)
mjr 111:42dc75fbe623 927 // VCNL4010 SDA (GPIO) SCL (GPIO) NC NC
mjr 55:4db125cd11a0 928 //
mjr 55:4db125cd11a0 929 // 7 -> Plunger calibration button pin assignments.
mjr 35:e959ffba78fd 930 //
mjr 55:4db125cd11a0 931 // byte 3 -> features enabled/disabled: bit mask consisting of:
mjr 55:4db125cd11a0 932 // 0x01 button input is enabled
mjr 55:4db125cd11a0 933 // 0x02 lamp output is enabled
mjr 55:4db125cd11a0 934 // byte 4 -> DigitalIn pin for the button switch
mjr 55:4db125cd11a0 935 // byte 5 -> DigitalOut pin for the indicator lamp
mjr 55:4db125cd11a0 936 //
mjr 55:4db125cd11a0 937 // Note that setting a pin to NC (Not Connected) will disable it even if the
mjr 55:4db125cd11a0 938 // corresponding feature enable bit (in byte 3) is set.
mjr 35:e959ffba78fd 939 //
mjr 55:4db125cd11a0 940 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature.
mjr 55:4db125cd11a0 941 //
mjr 55:4db125cd11a0 942 // byte 3 -> LedWiz port number (1-255) mapped to "ZB Launch Ball" in DOF
mjr 55:4db125cd11a0 943 // byte 4 -> key type
mjr 55:4db125cd11a0 944 // byte 5 -> key code
mjr 55:4db125cd11a0 945 // bytes 6:7 -> "push" distance, in 1/1000 inch increments (16 bit little endian)
mjr 55:4db125cd11a0 946 //
mjr 55:4db125cd11a0 947 // Set the port number to 0 to disable the feature. The key type and key code
mjr 55:4db125cd11a0 948 // fields use the same conventions as for a button mapping (see below). The
mjr 55:4db125cd11a0 949 // recommended push distance is 63, which represents .063" ~ 1/16".
mjr 35:e959ffba78fd 950 //
mjr 35:e959ffba78fd 951 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 952 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 55:4db125cd11a0 953 //
mjr 55:4db125cd11a0 954 // byte 3 -> "power status" input pin (DigitalIn)
mjr 55:4db125cd11a0 955 // byte 4 -> "latch" output (DigitalOut)
mjr 55:4db125cd11a0 956 // byte 5 -> relay trigger output (DigitalOut)
mjr 55:4db125cd11a0 957 // bytes 6:7 -> delay time in 10ms increments (16 bit little endian);
mjr 55:4db125cd11a0 958 // e.g., 550 (0x26 0x02) represents 5.5 seconds
mjr 55:4db125cd11a0 959 //
mjr 55:4db125cd11a0 960 // Set the delay time to 0 to disable the feature. The pin assignments will
mjr 55:4db125cd11a0 961 // be ignored if the feature is disabled.
mjr 35:e959ffba78fd 962 //
mjr 77:0b96f6867312 963 // If an IR remote control transmitter is installed (see variable 17), we'll
mjr 77:0b96f6867312 964 // also transmit any IR codes designated as TV ON codes when the startup timer
mjr 77:0b96f6867312 965 // finishes. This allows TVs to be turned on via IR remotes codes rather than
mjr 77:0b96f6867312 966 // hard-wiring them through the relay. The relay can be omitted in this case.
mjr 77:0b96f6867312 967 //
mjr 87:8d35c74403af 968 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 16 outputs
mjr 35:e959ffba78fd 969 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 970 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 55:4db125cd11a0 971 // ports for the LedWiz emulation.
mjr 55:4db125cd11a0 972 //
mjr 35:e959ffba78fd 973 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 974 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 975 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 976 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 977 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 978 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 979 //
mjr 55:4db125cd11a0 980 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 981 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 982 //
mjr 35:e959ffba78fd 983 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 984 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 985 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 986 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 55:4db125cd11a0 987 // protected outputs for coil devices (knockers, chimes, bells, etc).
mjr 55:4db125cd11a0 988 //
mjr 35:e959ffba78fd 989 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 990 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 991 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 992 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 993 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 994 //
mjr 55:4db125cd11a0 995 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 996 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 997 //
mjr 53:9b2611964afc 998 // 12 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 999 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 1000 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 1001 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 1002 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 1003 // the KL25Z automatically if a new connection isn't established within the
mjr 55:4db125cd11a0 1004 // timeout period. Set the timeout to 0 to disable the feature (i.e., the device
mjr 55:4db125cd11a0 1005 // will never automatically reboot itself on a broken connection).
mjr 55:4db125cd11a0 1006 //
mjr 55:4db125cd11a0 1007 // byte 3 -> reboot timeout in seconds; 0 = disabled
mjr 51:57eb311faafa 1008 //
mjr 53:9b2611964afc 1009 // 13 -> Plunger calibration. In most cases, the calibration is set internally by the
mjr 52:8298b2a73eb2 1010 // device by running the calibration procedure. However, it's sometimes useful
mjr 52:8298b2a73eb2 1011 // for the host to be able to get and set the calibration, such as to back up
mjr 52:8298b2a73eb2 1012 // the device settings on the PC, or to save and restore the current settings
mjr 52:8298b2a73eb2 1013 // when installing a software update.
mjr 52:8298b2a73eb2 1014 //
mjr 52:8298b2a73eb2 1015 // bytes 3:4 = rest position (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 1016 // bytes 5:6 = maximum retraction point (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 1017 // byte 7 = measured plunger release travel time in milliseconds
mjr 52:8298b2a73eb2 1018 //
mjr 53:9b2611964afc 1019 // 14 -> Expansion board configuration. This doesn't affect the controller behavior
mjr 52:8298b2a73eb2 1020 // directly; the individual options related to the expansion boards (such as
mjr 52:8298b2a73eb2 1021 // the TLC5940 and 74HC595 setup) still need to be set separately. This is
mjr 52:8298b2a73eb2 1022 // stored so that the PC config UI can store and recover the information to
mjr 52:8298b2a73eb2 1023 // present in the UI. For the "classic" KL25Z-only configuration, simply set
mjr 52:8298b2a73eb2 1024 // all of the fields to zero.
mjr 52:8298b2a73eb2 1025 //
mjr 53:9b2611964afc 1026 // byte 3 = board set type. At the moment, the Pinscape expansion boards
mjr 53:9b2611964afc 1027 // are the only ones supported in the software. This allows for
mjr 53:9b2611964afc 1028 // adding new designs or independent designs in the future.
mjr 53:9b2611964afc 1029 // 0 = Standalone KL25Z (no expansion boards)
mjr 105:6a25bbfae1e4 1030 // 1 = Pinscape Expansion Boards
mjr 115:39d2eb4b1830 1031 // 2 = Oak Micros Pinscape All-In-One (AIO) Board
mjr 115:39d2eb4b1830 1032 // 3 = Oak Micros Pinscape Lite Board
mjr 116:80ebb41bad94 1033 // 4 = Arnoz RigMaster board
mjr 116:80ebb41bad94 1034 // 5 = Arnoz KLShield Board
mjr 53:9b2611964afc 1035 //
mjr 53:9b2611964afc 1036 // byte 4 = board set interface revision. This *isn't* the version number
mjr 53:9b2611964afc 1037 // of the board itself, but rather of its software interface. In
mjr 53:9b2611964afc 1038 // other words, this doesn't change every time the EAGLE layout
mjr 53:9b2611964afc 1039 // for the board changes. It only changes when a revision is made
mjr 53:9b2611964afc 1040 // that affects the software, such as a GPIO pin assignment.
mjr 53:9b2611964afc 1041 //
mjr 115:39d2eb4b1830 1042 // For Pinscape Expansion Boards (board set type 1):
mjr 55:4db125cd11a0 1043 // 0 = first release (Feb 2016)
mjr 53:9b2611964afc 1044 //
mjr 115:39d2eb4b1830 1045 // For Oak Micros AIO (type 2):
mjr 105:6a25bbfae1e4 1046 // 0 = first release (2019)
mjr 105:6a25bbfae1e4 1047 //
mjr 115:39d2eb4b1830 1048 // For Oak Micros Lite (type 3):
mjr 115:39d2eb4b1830 1049 // 0 = first release
mjr 115:39d2eb4b1830 1050 //
mjr 116:80ebb41bad94 1051 // For Arnoz RigMaster (type 4):
mjr 116:80ebb41bad94 1052 // 0 = first release (2021)
mjr 116:80ebb41bad94 1053 //
mjr 116:80ebb41bad94 1054 // For Arnoz KLShield (type 5):
mjr 115:39d2eb4b1830 1055 // 0 = first release (2021)
mjr 115:39d2eb4b1830 1056 //
mjr 55:4db125cd11a0 1057 // bytes 5:8 = additional hardware-specific data. These slots are used
mjr 55:4db125cd11a0 1058 // to store extra data specific to the expansion boards selected.
mjr 55:4db125cd11a0 1059 //
mjr 115:39d2eb4b1830 1060 // For Pinscape Expansion Boards (board set type 1), and
mjr 115:39d2eb4b1830 1061 // Oak Micros AIO (type = 2):
mjr 105:6a25bbfae1e4 1062 // byte 5 = number of main interface or AIO boards (always 1)
mjr 55:4db125cd11a0 1063 // byte 6 = number of MOSFET power boards
mjr 55:4db125cd11a0 1064 // byte 7 = number of chime boards
mjr 115:39d2eb4b1830 1065 // byte 8 = not used
mjr 116:80ebb41bad94 1066 //
mjr 116:80ebb41bad94 1067 // For Arnoz RigMaster (board set type 4) and KLShield (type 5):
mjr 116:80ebb41bad94 1068 // byte 5 = number of main baords (always 1)
mjr 116:80ebb41bad94 1069 // byte 6 = number of Mollusk PWM add-on boards
mjr 116:80ebb41bad94 1070 //
mjr 53:9b2611964afc 1071 //
mjr 53:9b2611964afc 1072 // 15 -> Night mode setup.
mjr 53:9b2611964afc 1073 //
mjr 53:9b2611964afc 1074 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none. This selects
mjr 53:9b2611964afc 1075 // a physically wired button that can be used to control night mode.
mjr 53:9b2611964afc 1076 // The button can also be used as normal for PC input if desired.
mjr 55:4db125cd11a0 1077 // Note that night mode can still be activated via a USB command
mjr 55:4db125cd11a0 1078 // even if no button is assigned.
mjr 55:4db125cd11a0 1079 //
mjr 53:9b2611964afc 1080 // byte 4 = flags:
mjr 66:2e3583fbd2f4 1081 //
mjr 66:2e3583fbd2f4 1082 // 0x01 -> The wired input is an on/off switch: night mode will be
mjr 53:9b2611964afc 1083 // active when the input is switched on. If this bit isn't
mjr 66:2e3583fbd2f4 1084 // set, the input is a momentary button: pushing the button
mjr 53:9b2611964afc 1085 // toggles night mode.
mjr 55:4db125cd11a0 1086 //
mjr 66:2e3583fbd2f4 1087 // 0x02 -> Night Mode is assigned to the SHIFTED button (see Shift
mjr 66:2e3583fbd2f4 1088 // Button setup at variable 16). This can only be used
mjr 66:2e3583fbd2f4 1089 // in momentary mode; it's ignored if flag bit 0x01 is set.
mjr 66:2e3583fbd2f4 1090 // When the shift flag is set, the button only toggles
mjr 66:2e3583fbd2f4 1091 // night mode when you press it while also holding down
mjr 66:2e3583fbd2f4 1092 // the Shift button.
mjr 66:2e3583fbd2f4 1093 //
mjr 53:9b2611964afc 1094 // byte 5 = indicator output number - 1..MAX_OUT_PORTS, or 0 for none. This
mjr 53:9b2611964afc 1095 // selects an output port that will be turned on when night mode is
mjr 53:9b2611964afc 1096 // activated. Night mode activation overrides any setting made by
mjr 53:9b2611964afc 1097 // the host.
mjr 53:9b2611964afc 1098 //
mjr 66:2e3583fbd2f4 1099 // 16 -> Shift Button setup. One button can be designated as a "Local Shift
mjr 66:2e3583fbd2f4 1100 // Button" that can be pressed to select a secondary meaning for other
mjr 78:1e00b3fa11af 1101 // buttons. This isn't the same as the PC keyboard Shift keys; those can
mjr 66:2e3583fbd2f4 1102 // be programmed using the USB key codes for Left Shift and Right Shift.
mjr 66:2e3583fbd2f4 1103 // Rather, this applies a LOCAL shift feature in the cabinet button that
mjr 66:2e3583fbd2f4 1104 // lets you select a secondary meaning. For example, you could assign
mjr 66:2e3583fbd2f4 1105 // the Start button to the "1" key (VP "Start Game") normally, but have
mjr 66:2e3583fbd2f4 1106 // its meaning change to the "5" key ("Insert Coin") when the shift
mjr 66:2e3583fbd2f4 1107 // button is pressed. This provides access to more control functions
mjr 66:2e3583fbd2f4 1108 // without adding more physical buttons.
mjr 66:2e3583fbd2f4 1109 //
mjr 78:1e00b3fa11af 1110 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none
mjr 78:1e00b3fa11af 1111 // byte 4 = mode (default is 0):
mjr 66:2e3583fbd2f4 1112 //
mjr 78:1e00b3fa11af 1113 // 0 -> Shift OR Key mode. In this mode, the Shift button doesn't
mjr 78:1e00b3fa11af 1114 // send its assigned key or IR command when initially pressed.
mjr 78:1e00b3fa11af 1115 // Instead, we wait to see if another button is pressed while
mjr 78:1e00b3fa11af 1116 // the Shift button is held down. If so, this Shift button
mjr 78:1e00b3fa11af 1117 // press ONLY counts as the Shift function, and its own assigned
mjr 78:1e00b3fa11af 1118 // key is NOT sent to the PC. On the other hand, if you press
mjr 78:1e00b3fa11af 1119 // the Shift button and then release it without having pressed
mjr 78:1e00b3fa11af 1120 // any other key in the meantime, this press counts as a regular
mjr 78:1e00b3fa11af 1121 // key press, so we send the assigned key to the PC.
mjr 78:1e00b3fa11af 1122 //
mjr 78:1e00b3fa11af 1123 // 1 -> Shift AND Key mode. In this mode, the Shift button sends its
mjr 78:1e00b3fa11af 1124 // assigned key when pressed, just like a normal button. If you
mjr 78:1e00b3fa11af 1125 // press another button while the Shift key is pressed, the
mjr 78:1e00b3fa11af 1126 // shifted meaning of the other key is used.
mjr 66:2e3583fbd2f4 1127 //
mjr 77:0b96f6867312 1128 // 17 -> IR Remote Control physical device setup. We support IR remotes for
mjr 77:0b96f6867312 1129 // both sending and receiving. On the receive side, we can read from a
mjr 77:0b96f6867312 1130 // sensor such as a TSOP384xx. The sensor requires one GPIO pin with
mjr 77:0b96f6867312 1131 // interrupt support, so any PTAxx or PTDxx pin will work. On the send
mjr 77:0b96f6867312 1132 // side, we can transmit through any IR LED. This requires one PWM
mjr 77:0b96f6867312 1133 // output pin. To enable send and/or receive, specify a valid pin; to
mjr 77:0b96f6867312 1134 // disable, set the pin NC (not connected). Send and receive can be
mjr 77:0b96f6867312 1135 // enabled and disabled independently; it's not necessary to enable
mjr 77:0b96f6867312 1136 // the transmit function to use the receive function, or vice versa.
mjr 77:0b96f6867312 1137 //
mjr 77:0b96f6867312 1138 // byte 3 = receiver input GPIO pin ID. Must be interrupt-capable.
mjr 77:0b96f6867312 1139 // byte 4 = transmitter pin. Must be PWM-capable.
mjr 77:0b96f6867312 1140 //
mjr 82:4f6209cb5c33 1141 // 18 -> Plunger auto-zeroing. This only applies to sensor types with
mjr 82:4f6209cb5c33 1142 // relative positioning, such as quadrature sensors. Other sensor
mjr 82:4f6209cb5c33 1143 // types simply ignore this.
mjr 82:4f6209cb5c33 1144 //
mjr 82:4f6209cb5c33 1145 // byte 3 = bit flags:
mjr 82:4f6209cb5c33 1146 // 0x01 -> auto-zeroing enabled
mjr 82:4f6209cb5c33 1147 // byte 4 = auto-zeroing time in seconds
mjr 82:4f6209cb5c33 1148 //
mjr 91:ae9be42652bf 1149 // 19 -> Plunger filters. There are two filters that can be applied:
mjr 85:3c28aee81cde 1150 //
mjr 91:ae9be42652bf 1151 // - Jitter filter. This sets a hysteresis window size, to reduce jitter
mjr 91:ae9be42652bf 1152 // jitter in the plunger reading. Most sensors aren't perfectly accurate;
mjr 91:ae9be42652bf 1153 // consecutive readings at the same physical plunger position vary
mjr 91:ae9be42652bf 1154 // slightly, wandering in a range near the true reading. Over time, the
mjr 91:ae9be42652bf 1155 // readings will usually average the true value, but that's not much of a
mjr 91:ae9be42652bf 1156 // consolation to us because we want to display the position in real time.
mjr 91:ae9be42652bf 1157 // To reduce the visible jitter, we can apply a hysteresis filter that
mjr 91:ae9be42652bf 1158 // hides random variations within the specified window. The window is in
mjr 91:ae9be42652bf 1159 // the sensor's native units, so the effect of a given window size
mjr 91:ae9be42652bf 1160 // depends on the sensor type. A value of zero disables the filter.
mjr 91:ae9be42652bf 1161 //
mjr 91:ae9be42652bf 1162 // - Reversed orientation. If set, this inverts the sensor readings, as
mjr 91:ae9be42652bf 1163 // though the sensor were physically flipped to the opposite direction.
mjr 91:ae9be42652bf 1164 // This allows for correcting a reversed physical sensor installation in
mjr 91:ae9be42652bf 1165 // software without having to mess with the hardware.
mjr 91:ae9be42652bf 1166 //
mjr 91:ae9be42652bf 1167 // byte 3:4 = jitter window size in native sensor units, little-endian
mjr 91:ae9be42652bf 1168 // byte 5 = orientation filter bit mask:
mjr 91:ae9be42652bf 1169 // 0x01 -> set if reversed orientation, clear if normal
mjr 91:ae9be42652bf 1170 // 0x80 -> Read-only: this bit is set if the feature is supported
mjr 85:3c28aee81cde 1171 //
mjr 87:8d35c74403af 1172 // 20 -> Plunger bar code setup. Sets parameters applicable only to bar code
mjr 87:8d35c74403af 1173 // sensor types.
mjr 87:8d35c74403af 1174 //
mjr 87:8d35c74403af 1175 // bytes 3:4 = Starting pixel offset of bar code (margin width)
mjr 87:8d35c74403af 1176 //
mjr 87:8d35c74403af 1177 // 21 -> TLC59116 setup. This chip is an external PWM controller with 16
mjr 87:8d35c74403af 1178 // outputs per chip and an I2C bus interface. Up to 14 of the chips
mjr 87:8d35c74403af 1179 // can be connected to a single bus. This chip is a successor to the
mjr 87:8d35c74403af 1180 // TLC5940 with a more modern design and some nice improvements, such
mjr 87:8d35c74403af 1181 // as glitch-free startup and a standard (I2C) physical interface.
mjr 87:8d35c74403af 1182 //
mjr 87:8d35c74403af 1183 // Each chip has a 7-bit I2C address. The top three bits of the
mjr 87:8d35c74403af 1184 // address are fixed in the chip itself and can't be configured, but
mjr 87:8d35c74403af 1185 // the low four bits are configurable via the address line pins on
mjr 87:8d35c74403af 1186 // the chip, A3 A2 A1 A0. Our convention here is to ignore the fixed
mjr 87:8d35c74403af 1187 // three bits and refer to the chip address as just the A3 A2 A1 A0
mjr 87:8d35c74403af 1188 // bits. This gives each chip an address from 0 to 15.
mjr 87:8d35c74403af 1189 //
mjr 87:8d35c74403af 1190 // I2C allows us to discover the attached chips automatically, so in
mjr 87:8d35c74403af 1191 // principle we don't need to know which chips will be present.
mjr 87:8d35c74403af 1192 // However, it's useful for the config tool to know which chips are
mjr 87:8d35c74403af 1193 // expected so that it can offer them in the output port setup UI.
mjr 87:8d35c74403af 1194 // We therefore provide a bit mask specifying the enabled chips. Each
mjr 87:8d35c74403af 1195 // bit specifies whether the chip at the corresponding address is
mjr 87:8d35c74403af 1196 // present: 0x0001 is the chip at address 0, 0x0002 is the chip at
mjr 87:8d35c74403af 1197 // address 1, etc. This is mostly for the config tool's use; we only
mjr 87:8d35c74403af 1198 // use it to determine if TLC59116 support should be enabled at all,
mjr 87:8d35c74403af 1199 // by checking if it's non-zero.
mjr 87:8d35c74403af 1200 //
mjr 87:8d35c74403af 1201 // To disable support, set the populated chip mask to 0. The pin
mjr 87:8d35c74403af 1202 // assignments are all ignored in this case.
mjr 87:8d35c74403af 1203 //
mjr 87:8d35c74403af 1204 // bytes 3:4 = populated chips, as a bit mask (OR in 1<<address
mjr 87:8d35c74403af 1205 // each populated address)
mjr 87:8d35c74403af 1206 // byte 5 = SDA (any GPIO pin)
mjr 87:8d35c74403af 1207 // byte 6 = SCL (any GPIO pin)
mjr 87:8d35c74403af 1208 // byte 7 = RESET (any GPIO pin)
mjr 87:8d35c74403af 1209 //
mjr 100:1ff35c07217c 1210 // 22 -> Plunger raw calibration data. Some sensor types need to store
mjr 100:1ff35c07217c 1211 // additional raw calibration. We provide three uint16 slots for
mjr 100:1ff35c07217c 1212 // use by the sensor, with the meaning defined by the sensor subclass.
mjr 100:1ff35c07217c 1213 //
mjr 100:1ff35c07217c 1214 // bytes 3:4 = raw data 0
mjr 100:1ff35c07217c 1215 // bytes 5:6 = raw data 1
mjr 100:1ff35c07217c 1216 // bytes 7:8 = raw data 2
mjr 100:1ff35c07217c 1217 //
mjr 53:9b2611964afc 1218 //
mjr 74:822a92bc11d2 1219 // SPECIAL DIAGNOSTICS VARIABLES: These work like the array variables below,
mjr 74:822a92bc11d2 1220 // the only difference being that we don't report these in the number of array
mjr 74:822a92bc11d2 1221 // variables reported in the "variable 0" query.
mjr 74:822a92bc11d2 1222 //
mjr 74:822a92bc11d2 1223 // 220 -> Performance/diagnostics variables. Items marked "read only" can't
mjr 74:822a92bc11d2 1224 // be written; any SET VARIABLE messages on these are ignored. Items
mjr 74:822a92bc11d2 1225 // marked "diagnostic only" refer to counters or statistics that are
mjr 74:822a92bc11d2 1226 // collected only when the diagnostics are enabled via the diags.h
mjr 74:822a92bc11d2 1227 // macro ENABLE_DIAGNOSTICS. These will simply return zero otherwise.
mjr 74:822a92bc11d2 1228 //
mjr 74:822a92bc11d2 1229 // byte 3 = diagnostic index (see below)
mjr 74:822a92bc11d2 1230 //
mjr 74:822a92bc11d2 1231 // Diagnostic index values:
mjr 74:822a92bc11d2 1232 //
mjr 74:822a92bc11d2 1233 // 1 -> Main loop cycle time [read only, diagnostic only]
mjr 74:822a92bc11d2 1234 // Retrieves the average time of one iteration of the main
mjr 74:822a92bc11d2 1235 // loop, in microseconds, as a uint32. This excludes the
mjr 74:822a92bc11d2 1236 // time spent processing incoming messages, as well as any
mjr 74:822a92bc11d2 1237 // time spent waiting for a dropped USB connection to be
mjr 74:822a92bc11d2 1238 // restored. This includes all subroutine time and polled
mjr 74:822a92bc11d2 1239 // task time, such as processing button and plunger input,
mjr 74:822a92bc11d2 1240 // sending USB joystick reports, etc.
mjr 74:822a92bc11d2 1241 //
mjr 74:822a92bc11d2 1242 // 2 -> Main loop message read time [read only, diagnostic only]
mjr 74:822a92bc11d2 1243 // Retrieves the average time spent processing incoming USB
mjr 74:822a92bc11d2 1244 // messages per iteration of the main loop, in microseconds,
mjr 74:822a92bc11d2 1245 // as a uint32. This only counts the processing time when
mjr 74:822a92bc11d2 1246 // messages are actually present, so the average isn't reduced
mjr 74:822a92bc11d2 1247 // by iterations of the main loop where no messages are found.
mjr 74:822a92bc11d2 1248 // That is, if we run a million iterations of the main loop,
mjr 74:822a92bc11d2 1249 // and only five of them have messages at all, the average time
mjr 74:822a92bc11d2 1250 // includes only those five cycles with messages to process.
mjr 74:822a92bc11d2 1251 //
mjr 74:822a92bc11d2 1252 // 3 -> PWM update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1253 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1254 // spent in the PWM update polling routine.
mjr 74:822a92bc11d2 1255 //
mjr 74:822a92bc11d2 1256 // 4 -> LedWiz update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1257 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1258 // units, spent in the LedWiz flash cycle update routine.
mjr 74:822a92bc11d2 1259 //
mjr 74:822a92bc11d2 1260 //
mjr 53:9b2611964afc 1261 // ARRAY VARIABLES: Each variable below is an array. For each get/set message,
mjr 53:9b2611964afc 1262 // byte 3 gives the array index. These are grouped at the top end of the variable
mjr 53:9b2611964afc 1263 // ID range to distinguish this special feature. On QUERY, set the index byte to 0
mjr 53:9b2611964afc 1264 // to query the number of slots; the reply will be a report for the array index
mjr 53:9b2611964afc 1265 // variable with index 0, with the first (and only) byte after that indicating
mjr 53:9b2611964afc 1266 // the maximum array index.
mjr 53:9b2611964afc 1267 //
mjr 77:0b96f6867312 1268 // 250 -> IR remote control commands - code part 2. This stores the high-order
mjr 77:0b96f6867312 1269 // 32 bits of the remote control for each slot. These are combined with
mjr 77:0b96f6867312 1270 // the low-order 32 bits from variable 251 below to form a 64-bit code.
mjr 77:0b96f6867312 1271 //
mjr 77:0b96f6867312 1272 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1273 // byte 4 = bits 32..39 of remote control command code
mjr 77:0b96f6867312 1274 // byte 5 = bits 40..47
mjr 77:0b96f6867312 1275 // byte 6 = bits 48..55
mjr 77:0b96f6867312 1276 // byte 7 = bits 56..63
mjr 77:0b96f6867312 1277 //
mjr 77:0b96f6867312 1278 // 251 -> IR remote control commands - code part 1. This stores the protocol
mjr 77:0b96f6867312 1279 // identifier and low-order 32 bits of the remote control code for each
mjr 77:0b96f6867312 1280 // remote control command slot. The code represents a key press on a
mjr 77:0b96f6867312 1281 // remote, and is usually determined by reading it from the device's
mjr 77:0b96f6867312 1282 // actual remote via the IR sensor input feature. These codes combine
mjr 77:0b96f6867312 1283 // with variable 250 above to form a 64-bit code for each slot.
mjr 77:0b96f6867312 1284 // See IRRemote/IRProtocolID.h for the protocol ID codes.
mjr 77:0b96f6867312 1285 //
mjr 77:0b96f6867312 1286 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1287 // byte 4 = protocol ID
mjr 77:0b96f6867312 1288 // byte 5 = bits 0..7 of remote control command code
mjr 77:0b96f6867312 1289 // byte 6 = bits 8..15
mjr 77:0b96f6867312 1290 // byte 7 = bits 16..23
mjr 77:0b96f6867312 1291 // byte 8 = bits 24..31
mjr 77:0b96f6867312 1292 //
mjr 77:0b96f6867312 1293 // 252 -> IR remote control commands - control information. This stores
mjr 77:0b96f6867312 1294 // descriptive information for each remote control command slot.
mjr 77:0b96f6867312 1295 // The IR code for each slot is stored in the corresponding array
mjr 77:0b96f6867312 1296 // entry in variables 251 & 250 above; the information is split over
mjr 77:0b96f6867312 1297 // several variables like this because of the 8-byte command message
mjr 77:0b96f6867312 1298 // size in our USB protocol (which we use for LedWiz compatibility).
mjr 77:0b96f6867312 1299 //
mjr 77:0b96f6867312 1300 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1301 // byte 4 = bit flags:
mjr 77:0b96f6867312 1302 // 0x01 -> send this code as a TV ON signal at system start
mjr 77:0b96f6867312 1303 // 0x02 -> use "ditto" codes when sending the command
mjr 77:0b96f6867312 1304 // byte 5 = key type; same as the key type in an input button variable
mjr 77:0b96f6867312 1305 // byte 6 = key code; same as the key code in an input button variable
mjr 77:0b96f6867312 1306 //
mjr 77:0b96f6867312 1307 // Each IR command slot can serve three purposes:
mjr 77:0b96f6867312 1308 //
mjr 77:0b96f6867312 1309 // - First, it can be used as part of the TV ON sequence when the
mjr 77:0b96f6867312 1310 // system powers up, to turn on cabinet TVs that don't power up by
mjr 77:0b96f6867312 1311 // themselves. To use this feature, set the TV ON bit in the flags.
mjr 77:0b96f6867312 1312 //
mjr 77:0b96f6867312 1313 // - Second, when the IR sensor receives a command in a given slot, we
mjr 77:0b96f6867312 1314 // can translate it into a keyboard key or joystick button press sent
mjr 77:0b96f6867312 1315 // to the PC. This lets you use any IR remote to send commands to the
mjr 77:0b96f6867312 1316 // PC, allowing access to additional control inputs without any extra
mjr 77:0b96f6867312 1317 // buttons on the cabinet. To use this feature, assign the key to
mjr 77:0b96f6867312 1318 // send in the key type and key code bytes.
mjr 77:0b96f6867312 1319 //
mjr 77:0b96f6867312 1320 // - Third, we can send a given IR command when a physical cabinet
mjr 77:0b96f6867312 1321 // button is pressed. This lets you use cabinet buttons to send IR
mjr 77:0b96f6867312 1322 // commands to other devices in your system. For example, you could
mjr 77:0b96f6867312 1323 // assign cabinet buttons to control the volume on a cab TV. To use
mjr 77:0b96f6867312 1324 // this feature, assign an IR slot as a button function in the button
mjr 77:0b96f6867312 1325 // setup.
mjr 77:0b96f6867312 1326 //
mjr 66:2e3583fbd2f4 1327 // 253 -> Extended input button setup. This adds on to the information set by
mjr 66:2e3583fbd2f4 1328 // variable 254 below, accessing additional fields. The "shifted" key
mjr 66:2e3583fbd2f4 1329 // type and code fields assign a secondary meaning to the button that's
mjr 66:2e3583fbd2f4 1330 // used when the local Shift button is being held down. See variable 16
mjr 66:2e3583fbd2f4 1331 // above for more details on the Shift button.
mjr 66:2e3583fbd2f4 1332 //
mjr 77:0b96f6867312 1333 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 66:2e3583fbd2f4 1334 // byte 4 = shifted key type (same codes as "key type" in var 254)
mjr 77:0b96f6867312 1335 // byte 5 = shifted key code (same codes as "key code" in var 254)
mjr 77:0b96f6867312 1336 // byte 6 = shifted IR command (see "IR command" in var 254)
mjr 66:2e3583fbd2f4 1337 //
mjr 53:9b2611964afc 1338 // 254 -> Input button setup. This sets up one button; it can be repeated for each
mjr 64:ef7ca92dff36 1339 // button to be configured. There are MAX_EXT_BUTTONS button slots (see
mjr 64:ef7ca92dff36 1340 // config.h for the constant definition), numbered 1..MAX_EXT_BUTTONS. Each
mjr 53:9b2611964afc 1341 // slot can be configured as a joystick button, a regular keyboard key, or a
mjr 53:9b2611964afc 1342 // media control key (mute, volume up, volume down).
mjr 53:9b2611964afc 1343 //
mjr 53:9b2611964afc 1344 // The bytes of the message are:
mjr 66:2e3583fbd2f4 1345 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 64:ef7ca92dff36 1346 // byte 4 = GPIO pin for the button input; mapped as a DigitalIn port
mjr 53:9b2611964afc 1347 // byte 5 = key type reported to PC when button is pushed:
mjr 53:9b2611964afc 1348 // 0 = none (no PC input reported when button pushed)
mjr 53:9b2611964afc 1349 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 53:9b2611964afc 1350 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 67:c39e66c4e000 1351 // 3 = media key -> byte 6 is the USB media control code (see below)
mjr 53:9b2611964afc 1352 // byte 6 = key code, which depends on the key type in byte 5
mjr 53:9b2611964afc 1353 // byte 7 = flags - a combination of these bit values:
mjr 53:9b2611964afc 1354 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 53:9b2611964afc 1355 // to the host as a brief key press whenever the switch changes
mjr 53:9b2611964afc 1356 // state. This is useful for the VPinMAME Coin Door button,
mjr 53:9b2611964afc 1357 // which requires the End key to be pressed each time the
mjr 53:9b2611964afc 1358 // door changes state.
mjr 77:0b96f6867312 1359 // byte 8 = IR command to transmit when unshifted button is pressed. This
mjr 77:0b96f6867312 1360 // contains an IR slot number (1..MAX_IR_CODES), or 0 if no code
mjr 77:0b96f6867312 1361 // is associated with the button.
mjr 53:9b2611964afc 1362 //
mjr 53:9b2611964afc 1363 // 255 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 53:9b2611964afc 1364 // for each port to be configured. There are 128 possible slots for output ports,
mjr 53:9b2611964afc 1365 // numbered 1 to 128. The number of ports atcually active is determined by
mjr 53:9b2611964afc 1366 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 53:9b2611964afc 1367 // outputs and port 33 is disabled, we'll report to the host that we have 32 ports,
mjr 53:9b2611964afc 1368 // regardless of the settings for post 34 and higher.
mjr 53:9b2611964afc 1369 //
mjr 53:9b2611964afc 1370 // The bytes of the message are:
mjr 87:8d35c74403af 1371 //
mjr 53:9b2611964afc 1372 // byte 3 = LedWiz port number (1 to MAX_OUT_PORTS)
mjr 87:8d35c74403af 1373 //
mjr 53:9b2611964afc 1374 // byte 4 = physical output type:
mjr 87:8d35c74403af 1375 //
mjr 53:9b2611964afc 1376 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 53:9b2611964afc 1377 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 53:9b2611964afc 1378 // determines the number of ports visible to the host - ALL ports
mjr 53:9b2611964afc 1379 // after the first disabled port are also implicitly disabled.
mjr 87:8d35c74403af 1380 //
mjr 53:9b2611964afc 1381 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1382 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 53:9b2611964afc 1383 // ports are PWM-capable.
mjr 87:8d35c74403af 1384 //
mjr 53:9b2611964afc 1385 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1386 // operating in digital mode. Digital ports can only be set ON
mjr 53:9b2611964afc 1387 // or OFF, with no brightness/intensity control. All pins can be
mjr 53:9b2611964afc 1388 // used in this mode.
mjr 87:8d35c74403af 1389 //
mjr 53:9b2611964afc 1390 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 53:9b2611964afc 1391 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 53:9b2611964afc 1392 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 87:8d35c74403af 1393 //
mjr 53:9b2611964afc 1394 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 53:9b2611964afc 1395 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 53:9b2611964afc 1396 // for the first output on the first chip in the daisy chain.
mjr 87:8d35c74403af 1397 //
mjr 53:9b2611964afc 1398 // 5 = Virtual output: this output port exists for the purposes of the
mjr 53:9b2611964afc 1399 // LedWiz/DOF software on the host, but isn't physically connected
mjr 53:9b2611964afc 1400 // to any output device. This can be used to create a virtual output
mjr 53:9b2611964afc 1401 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 53:9b2611964afc 1402 // placeholder in the LedWiz port numbering. The physical output ID
mjr 53:9b2611964afc 1403 // (byte 5) is ignored for this port type.
mjr 87:8d35c74403af 1404 //
mjr 87:8d35c74403af 1405 // 6 = TLC59116 output: connected to the TLC59116 output port specified
mjr 87:8d35c74403af 1406 // in byte 5. The high four bits of this value give the chip's
mjr 87:8d35c74403af 1407 // I2C address, specifically the A3 A2 A1 A0 bits configured in
mjr 87:8d35c74403af 1408 // the hardware. (A chip's I2C address is actually 7 bits, but
mjr 87:8d35c74403af 1409 // the three high-order bits are fixed, so we don't bother including
mjr 87:8d35c74403af 1410 // those in the byte 5 value). The low four bits of this value
mjr 87:8d35c74403af 1411 // give the output port number on the chip. For example, 0x37
mjr 87:8d35c74403af 1412 // specifies chip 3 (the one with A3 A2 A1 A0 wired as 0 0 1 1),
mjr 87:8d35c74403af 1413 // output #7 on that chip. Note that outputs are numbered from 0
mjr 87:8d35c74403af 1414 // to 15 (0xF) on each chip.
mjr 87:8d35c74403af 1415 //
mjr 53:9b2611964afc 1416 // byte 5 = physical output port, interpreted according to the value in byte 4
mjr 87:8d35c74403af 1417 //
mjr 53:9b2611964afc 1418 // byte 6 = flags: a combination of these bit values:
mjr 53:9b2611964afc 1419 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 53:9b2611964afc 1420 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 89:c43cd923401c 1421 // 0x04 = apply gamma correction to this output (PWM outputs only)
mjr 98:4df3c0f7e707 1422 // 0x08 = "Flipper Logic" enabled for this output
mjr 99:8139b0c274f4 1423 // 0x10 = "Chime Logic" enabled for this port
mjr 89:c43cd923401c 1424 //
mjr 99:8139b0c274f4 1425 // byte 7 = Flipper Logic OR Chime Logic parameters. If flags bit 0x08 is set,
mjr 99:8139b0c274f4 1426 // this is the Flipper Logic settings. If flags bit 0x10 is is set,
mjr 99:8139b0c274f4 1427 // it's the Chime Logic settings. The two are mutually exclusive.
mjr 99:8139b0c274f4 1428 //
mjr 99:8139b0c274f4 1429 // For flipper logic: (full power time << 4) | (hold power level)
mjr 99:8139b0c274f4 1430 // For chime logic: (max on time << 4) | (min on time)
mjr 99:8139b0c274f4 1431 //
mjr 98:4df3c0f7e707 1432 // Flipper logic uses PWM to reduce the power level on the port after an
mjr 98:4df3c0f7e707 1433 // initial timed interval at full power. This is designed for pinball
mjr 98:4df3c0f7e707 1434 // coils, which are designed to be energized only in short bursts. In
mjr 98:4df3c0f7e707 1435 // a pinball machine, most coils are used this way naturally: bumpers,
mjr 89:c43cd923401c 1436 // slingshots, kickers, knockers, chimes, etc. are only fired in brief
mjr 89:c43cd923401c 1437 // bursts. Some coils are left on for long periods, though, particularly
mjr 89:c43cd923401c 1438 // the flippers. The Flipper Logic feature is designed to handle this
mjr 89:c43cd923401c 1439 // in a way similar to how real pinball machines solve the same problem.
mjr 89:c43cd923401c 1440 // When Flipper Logic is enabled, the software gives the output full
mjr 89:c43cd923401c 1441 // power when initially turned on, but reduces the power to a lower
mjr 89:c43cd923401c 1442 // level (via PWM) after a short time elapses. The point is to reduce
mjr 89:c43cd923401c 1443 // the power to a level low enough that the coil can safely dissipate
mjr 89:c43cd923401c 1444 // the generated heat indefinitely, but still high enough to keep the
mjr 89:c43cd923401c 1445 // solenoid mechanically actuated. This is possible because solenoids
mjr 89:c43cd923401c 1446 // generally need much less power to "hold" than to actuate initially.
mjr 89:c43cd923401c 1447 //
mjr 98:4df3c0f7e707 1448 // The high-order 4 bits of this byte give the initial full power time,
mjr 98:4df3c0f7e707 1449 // using the following mapping for 0..15: 1ms, 2ms, 5ms, 10ms, 20ms, 40ms
mjr 98:4df3c0f7e707 1450 // 80ms, 100ms, 150ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms.
mjr 98:4df3c0f7e707 1451 //
mjr 98:4df3c0f7e707 1452 // Note that earlier versions prior to 3/2019 used a scale of (X+1)*50ms.
mjr 98:4df3c0f7e707 1453 // We changed to this pseudo-logarithmic scale for finer gradations at the
mjr 98:4df3c0f7e707 1454 // low end of the time scale, for coils that need fast on/off cycling.
mjr 53:9b2611964afc 1455 //
mjr 89:c43cd923401c 1456 // The low-order 4 bits of the byte give the percentage power, in 6.66%
mjr 89:c43cd923401c 1457 // increments: 0 = 0% (off), 1 = 6.66%, ..., 15 = 100%.
mjr 89:c43cd923401c 1458 //
mjr 89:c43cd923401c 1459 // A hold power of 0 provides a software equivalent of the timer-protected
mjr 89:c43cd923401c 1460 // output logic of the Pinscape expansion boards used in the main board's
mjr 89:c43cd923401c 1461 // replay knocker output and all of the chime board outputs. This is
mjr 89:c43cd923401c 1462 // suitable for devices that shouldn't ever fire for long periods to
mjr 89:c43cd923401c 1463 // start with.
mjr 89:c43cd923401c 1464 //
mjr 89:c43cd923401c 1465 // Non-zero hold powers are suitable for devices that do need to stay on
mjr 89:c43cd923401c 1466 // for long periods, such as flippers. The "right" level will vary by
mjr 89:c43cd923401c 1467 // device; you should experiment to find the lowest setting where the
mjr 89:c43cd923401c 1468 // device stays mechanically actuated. Once you find the level, you
mjr 89:c43cd923401c 1469 // should confirm that the device won't overheat at that level by turning
mjr 89:c43cd923401c 1470 // it on at the selected level and carefully monitoring it for heating.
mjr 89:c43cd923401c 1471 // If the coil stays cool for a minute or two, it should be safe to assume
mjr 89:c43cd923401c 1472 // that it's in thermal equilibrium, meaning it should be able to sustain
mjr 89:c43cd923401c 1473 // the power level indefinitely.
mjr 89:c43cd923401c 1474 //
mjr 98:4df3c0f7e707 1475 // Note that this feature can be used with any port, but it's only fully
mjr 98:4df3c0f7e707 1476 // functional with a PWM port. A digital output port can only be set to
mjr 98:4df3c0f7e707 1477 // 0% or 100%, so the only meaningful reduced hold power is 0%. This
mjr 98:4df3c0f7e707 1478 // makes the feature a simple time limiter - basically a software version
mjr 98:4df3c0f7e707 1479 // of the Chime Board from the expansion board set.
mjr 98:4df3c0f7e707 1480 //
mjr 99:8139b0c274f4 1481 // Chime Logic encodes a minimum and maximum ON time for the port. It
mjr 99:8139b0c274f4 1482 // doesn't use PWM; it simply forces the port on or off in specified
mjr 99:8139b0c274f4 1483 // durations. The low 4 bits encode the minimum ON time, as an index
mjr 99:8139b0c274f4 1484 // into the table below. The high 4 bits encode the maximum ON time,
mjr 99:8139b0c274f4 1485 // with the special case that 0 means "infinite".
mjr 99:8139b0c274f4 1486 //
mjr 99:8139b0c274f4 1487 // Chime logic time table: 0ms, 1ms, 2ms, 5ms, 10ms, 20ms, 40ms, 80ms,
mjr 99:8139b0c274f4 1488 // 100ms, 200ms, 300ms, 400ms, 500ms, 600ms, 700ms, 800ms.
mjr 99:8139b0c274f4 1489 //
mjr 89:c43cd923401c 1490 //
mjr 89:c43cd923401c 1491 // Note that the KL25Z's on-board LEDs can be used as LedWiz output ports, simply
mjr 89:c43cd923401c 1492 // by assigning the LED GPIO pins as output ports. This is useful for testing a new
mjr 89:c43cd923401c 1493 // installation without having to connect any external devices. Assigning the
mjr 89:c43cd923401c 1494 // on-board LEDs as output ports automatically overrides their normal status and
mjr 89:c43cd923401c 1495 // diagnostic display use, so be aware that the normal status flash pattern won't
mjr 89:c43cd923401c 1496 // appear when they're used this way.
mjr 52:8298b2a73eb2 1497 //
mjr 35:e959ffba78fd 1498
mjr 35:e959ffba78fd 1499
mjr 55:4db125cd11a0 1500 // --- GPIO PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 1501 //
mjr 53:9b2611964afc 1502 // In USB messages that specify GPIO pin assignments, pins are identified by
mjr 53:9b2611964afc 1503 // 8-bit integers. The special value 0xFF means NC (not connected). All actual
mjr 53:9b2611964afc 1504 // pins are mapped with the port number in the top 3 bits and the pin number in
mjr 53:9b2611964afc 1505 // the bottom 5 bits. Port A=0, B=1, ..., E=4. For example, PTC7 is port C (2)
mjr 53:9b2611964afc 1506 // pin 7, so it's represented as (2 << 5) | 7.
mjr 53:9b2611964afc 1507
mjr 35:e959ffba78fd 1508
mjr 35:e959ffba78fd 1509 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 1510 //
mjr 53:9b2611964afc 1511 // For regular keyboard keys, we use the standard USB HID scan codes
mjr 53:9b2611964afc 1512 // for the US keyboard layout. The scan codes are defined by the USB
mjr 53:9b2611964afc 1513 // HID specifications; you can find a full list in the official USB
mjr 53:9b2611964afc 1514 // specs. Some common codes are listed below as a quick reference.
mjr 35:e959ffba78fd 1515 //
mjr 53:9b2611964afc 1516 // Key name -> USB scan code (hex)
mjr 53:9b2611964afc 1517 // A-Z -> 04-1D
mjr 53:9b2611964afc 1518 // top row 1!->0) -> 1E-27
mjr 53:9b2611964afc 1519 // Return -> 28
mjr 53:9b2611964afc 1520 // Escape -> 29
mjr 53:9b2611964afc 1521 // Backspace -> 2A
mjr 53:9b2611964afc 1522 // Tab -> 2B
mjr 53:9b2611964afc 1523 // Spacebar -> 2C
mjr 53:9b2611964afc 1524 // -_ -> 2D
mjr 53:9b2611964afc 1525 // =+ -> 2E
mjr 53:9b2611964afc 1526 // [{ -> 2F
mjr 53:9b2611964afc 1527 // ]} -> 30
mjr 53:9b2611964afc 1528 // \| -> 31
mjr 53:9b2611964afc 1529 // ;: -> 33
mjr 53:9b2611964afc 1530 // '" -> 34
mjr 53:9b2611964afc 1531 // `~ -> 35
mjr 53:9b2611964afc 1532 // ,< -> 36
mjr 53:9b2611964afc 1533 // .> -> 37
mjr 53:9b2611964afc 1534 // /? -> 38
mjr 53:9b2611964afc 1535 // Caps Lock -> 39
mjr 53:9b2611964afc 1536 // F1-F12 -> 3A-45
mjr 53:9b2611964afc 1537 // F13-F24 -> 68-73
mjr 53:9b2611964afc 1538 // Print Screen -> 46
mjr 53:9b2611964afc 1539 // Scroll Lock -> 47
mjr 53:9b2611964afc 1540 // Pause -> 48
mjr 53:9b2611964afc 1541 // Insert -> 49
mjr 53:9b2611964afc 1542 // Home -> 4A
mjr 53:9b2611964afc 1543 // Page Up -> 4B
mjr 53:9b2611964afc 1544 // Del -> 4C
mjr 53:9b2611964afc 1545 // End -> 4D
mjr 53:9b2611964afc 1546 // Page Down -> 4E
mjr 53:9b2611964afc 1547 // Right Arrow -> 4F
mjr 53:9b2611964afc 1548 // Left Arrow -> 50
mjr 53:9b2611964afc 1549 // Down Arrow -> 51
mjr 53:9b2611964afc 1550 // Up Arrow -> 52
mjr 53:9b2611964afc 1551 // Num Lock/Clear -> 53
mjr 53:9b2611964afc 1552 // Keypad / * - + -> 54 55 56 57
mjr 53:9b2611964afc 1553 // Keypad Enter -> 58
mjr 53:9b2611964afc 1554 // Keypad 1-9 -> 59-61
mjr 53:9b2611964afc 1555 // Keypad 0 -> 62
mjr 53:9b2611964afc 1556 // Keypad . -> 63
mjr 53:9b2611964afc 1557 // Mute -> 7F
mjr 53:9b2611964afc 1558 // Volume Up -> 80
mjr 53:9b2611964afc 1559 // Volume Down -> 81
mjr 53:9b2611964afc 1560 // Left Control -> E0
mjr 53:9b2611964afc 1561 // Left Shift -> E1
mjr 53:9b2611964afc 1562 // Left Alt -> E2
mjr 53:9b2611964afc 1563 // Left GUI -> E3
mjr 53:9b2611964afc 1564 // Right Control -> E4
mjr 53:9b2611964afc 1565 // Right Shift -> E5
mjr 53:9b2611964afc 1566 // Right Alt -> E6
mjr 53:9b2611964afc 1567 // Right GUI -> E7
mjr 53:9b2611964afc 1568 //
mjr 66:2e3583fbd2f4 1569 // Due to limitations in Windows, there's a limit of 6 regular keys
mjr 66:2e3583fbd2f4 1570 // pressed at the same time. The shift keys in the E0-E7 range don't
mjr 66:2e3583fbd2f4 1571 // count against this limit, though, since they're encoded as modifier
mjr 66:2e3583fbd2f4 1572 // keys; all of these can be pressed at the same time in addition to 6
mjr 67:c39e66c4e000 1573 // regular keys.
mjr 67:c39e66c4e000 1574
mjr 67:c39e66c4e000 1575 // --- USB MEDIA CONTROL SCAN CODES ---
mjr 67:c39e66c4e000 1576 //
mjr 67:c39e66c4e000 1577 // Buttons mapped to type 3 are Media Control buttons. These select
mjr 67:c39e66c4e000 1578 // a small set of common media control functions. We recognize the
mjr 67:c39e66c4e000 1579 // following type codes only:
mjr 67:c39e66c4e000 1580 //
mjr 67:c39e66c4e000 1581 // Mute -> E2
mjr 67:c39e66c4e000 1582 // Volume up -> E9
mjr 67:c39e66c4e000 1583 // Volume Down -> EA
mjr 67:c39e66c4e000 1584 // Next Track -> B5
mjr 67:c39e66c4e000 1585 // Previous Track -> B6
mjr 67:c39e66c4e000 1586 // Stop -> B7
mjr 67:c39e66c4e000 1587 // Play/Pause -> CD