An I/O controller for virtual pinball machines: accelerometer nudge sensing, analog plunger input, button input encoding, LedWiz compatible output controls, and more.

Dependencies:   mbed FastIO FastPWM USBDevice

Fork of Pinscape_Controller by Mike R

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

This is Version 2 of the Pinscape Controller, an I/O controller for virtual pinball machines. (You can find the old version 1 software here.) Pinscape is software for the KL25Z that turns the board into a full-featured I/O controller for virtual pinball, with support for accelerometer-based nudging, a mechanical plunger, button inputs, and feedback device control.

In case you haven't heard of the idea before, a "virtual pinball machine" is basically a video pinball simulator that's built into a real pinball machine body. A TV monitor goes in place of the pinball playfield, and a second TV goes in the backbox to show the backglass artwork. Some cabs also include a third monitor to simulate the DMD (Dot Matrix Display) used for scoring on 1990s machines, or even an original plasma DMD. A computer (usually a Windows PC) is hidden inside the cabinet, running pinball emulation software that displays a life-sized playfield on the main TV. The cabinet has all of the usual buttons, too, so it not only looks like the real thing, but plays like it too. That's a picture of my own machine to the right. On the outside, it's built exactly like a real arcade pinball machine, with the same overall dimensions and all of the standard pinball cabinet trim hardware.

It's possible to buy a pre-built virtual pinball machine, but it also makes a great DIY project. If you have some basic wood-working skills and know your way around PCs, you can build one from scratch. The computer part is just an ordinary Windows PC, and all of the pinball emulation can be built out of free, open-source software. In that spirit, the Pinscape Controller is an open-source software/hardware project that offers a no-compromises, all-in-one control center for all of the unique input/output needs of a virtual pinball cabinet. If you've been thinking about building one of these, but you're not sure how to connect a plunger, flipper buttons, lights, nudge sensor, and whatever else you can think of, this project might be just what you're looking for.

You can find much more information about DIY Pin Cab building in general in the Virtual Cabinet Forum on vpforums.org. Also visit my Pinscape Resources page for more about this project and other virtual pinball projects I'm working on.

Downloads

  • Pinscape Release Builds: This page has download links for all of the Pinscape software. To get started, install and run the Pinscape Config Tool on your Windows computer. It will lead you through the steps for installing the Pinscape firmware on the KL25Z.
  • Config Tool Source Code. The complete C# source code for the config tool. You don't need this to run the tool, but it's available if you want to customize anything or see how it works inside.

Documentation

The new Version 2 Build Guide is now complete! This new version aims to be a complete guide to building a virtual pinball machine, including not only the Pinscape elements but all of the basics, from sourcing parts to building all of the hardware.

You can also refer to the original Hardware Build Guide (PDF), but that's out of date now, since it refers to the old version 1 software, which was rather different (especially when it comes to configuration).

System Requirements

The new Config Tool requires a fairly up-to-date Microsoft .NET installation. If you use Windows Update to keep your system current, you should be fine. A modern version of Internet Explorer (IE) is required, even if you don't use it as your main browser, because the Config Tool uses some system components that Microsoft packages into the IE install set. I test with IE11, so that's known to work. IE8 doesn't work. IE9 and 10 are unknown at this point.

The Windows requirements are only for the config tool. The firmware doesn't care about anything on the Windows side, so if you can make do without the config tool, you can use almost any Windows setup.

Main Features

Plunger: The Pinscape Controller started out as a "mechanical plunger" controller: a device for attaching a real pinball plunger to the video game software so that you could launch the ball the natural way. This is still, of course, a central feature of the project. The software supports several types of sensors: a high-resolution optical sensor (which works by essentially taking pictures of the plunger as it moves); a slide potentiometer (which determines the position via the changing electrical resistance in the pot); a quadrature sensor (which counts bars printed on a special guide rail that it moves along); and an IR distance sensor (which determines the position by sending pulses of light at the plunger and measuring the round-trip travel time). The Build Guide explains how to set up each type of sensor.

Nudging: The KL25Z (the little microcontroller that the software runs on) has a built-in accelerometer. The Pinscape software uses it to sense when you nudge the cabinet, and feeds the acceleration data to the pinball software on the PC. This turns physical nudges into virtual English on the ball. The accelerometer is quite sensitive and accurate, so we can measure the difference between little bumps and hard shoves, and everything in between. The result is natural and immersive.

Buttons: You can wire real pinball buttons to the KL25Z, and the software will translate the buttons into PC input. You have the option to map each button to a keyboard key or joystick button. You can wire up your flipper buttons, Magna Save buttons, Start button, coin slots, operator buttons, and whatever else you need.

Feedback devices: You can also attach "feedback devices" to the KL25Z. Feedback devices are things that create tactile, sound, and lighting effects in sync with the game action. The most popular PC pinball emulators know how to address a wide variety of these devices, and know how to match them to on-screen action in each virtual table. You just need an I/O controller that translates commands from the PC into electrical signals that turn the devices on and off. The Pinscape Controller can do that for you.

Expansion Boards

There are two main ways to run the Pinscape Controller: standalone, or using the "expansion boards".

In the basic standalone setup, you just need the KL25Z, plus whatever buttons, sensors, and feedback devices you want to attach to it. This mode lets you take advantage of everything the software can do, but for some features, you'll have to build some ad hoc external circuitry to interface external devices with the KL25Z. The Build Guide has detailed plans for exactly what you need to build.

The other option is the Pinscape Expansion Boards. The expansion boards are a companion project, which is also totally free and open-source, that provides Printed Circuit Board (PCB) layouts that are designed specifically to work with the Pinscape software. The PCB designs are in the widely used EAGLE format, which many PCB manufacturers can turn directly into physical boards for you. The expansion boards organize all of the external connections more neatly than on the standalone KL25Z, and they add all of the interface circuitry needed for all of the advanced software functions. The big thing they bring to the table is lots of high-power outputs. The boards provide a modular system that lets you add boards to add more outputs. If you opt for the basic core setup, you'll have enough outputs for all of the toys in a really well-equipped cabinet. If your ambitions go beyond merely well-equipped and run to the ridiculously extravagant, just add an extra board or two. The modular design also means that you can add to the system over time.

Expansion Board project page

Update notes

If you have a Pinscape V1 setup already installed, you should be able to switch to the new version pretty seamlessly. There are just a couple of things to be aware of.

First, the "configuration" procedure is completely different in the new version. Way better and way easier, but it's not what you're used to from V1. In V1, you had to edit the project source code and compile your own custom version of the program. No more! With V2, you simply install the standard, pre-compiled .bin file, and select options using the Pinscape Config Tool on Windows.

Second, if you're using the TSL1410R optical sensor for your plunger, there's a chance you'll need to boost your light source's brightness a little bit. The "shutter speed" is faster in this version, which means that it doesn't spend as much time collecting light per frame as before. The software actually does "auto exposure" adaptation on every frame, so the increased shutter speed really shouldn't bother it, but it does require a certain minimum level of contrast, which requires a certain minimal level of lighting. Check the plunger viewer in the setup tool if you have any problems; if the image looks totally dark, try increasing the light level to see if that helps.

New Features

V2 has numerous new features. Here are some of the highlights...

Dynamic configuration: as explained above, configuration is now handled through the Config Tool on Windows. It's no longer necessary to edit the source code or compile your own modified binary.

Improved plunger sensing: the software now reads the TSL1410R optical sensor about 15x faster than it did before. This allows reading the sensor at full resolution (400dpi), about 400 times per second. The faster frame rate makes a big difference in how accurately we can read the plunger position during the fast motion of a release, which allows for more precise position sensing and faster response. The differences aren't dramatic, since the sensing was already pretty good even with the slower V1 scan rate, but you might notice a little better precision in tricky skill shots.

Keyboard keys: button inputs can now be mapped to keyboard keys. The joystick button option is still available as well, of course. Keyboard keys have the advantage of being closer to universal for PC pinball software: some pinball software can be set up to take joystick input, but nearly all PC pinball emulators can take keyboard input, and nearly all of them use the same key mappings.

Local shift button: one physical button can be designed as the local shift button. This works like a Shift button on a keyboard, but with cabinet buttons. It allows each physical button on the cabinet to have two PC keys assigned, one normal and one shifted. Hold down the local shift button, then press another key, and the other key's shifted key mapping is sent to the PC. The shift button can have a regular key mapping of its own as well, so it can do double duty. The shift feature lets you access more functions without cluttering your cabinet with extra buttons. It's especially nice for less frequently used functions like adjusting the volume or activating night mode.

Night mode: the output controller has a new "night mode" option, which lets you turn off all of your noisy devices with a single button, switch, or PC command. You can designate individual ports as noisy or not. Night mode only disables the noisemakers, so you still get the benefit of your flashers, button lights, and other quiet devices. This lets you play late into the night without disturbing your housemates or neighbors.

Gamma correction: you can designate individual output ports for gamma correction. This adjusts the intensity level of an output to make it match the way the human eye perceives brightness, so that fades and color mixes look more natural in lighting devices. You can apply this to individual ports, so that it only affects ports that actually have lights of some kind attached.

IR Remote Control: the controller software can transmit and/or receive IR remote control commands if you attach appropriate parts (an IR LED to send, an IR sensor chip to receive). This can be used to turn on your TV(s) when the system powers on, if they don't turn on automatically, and for any other functions you can think of requiring IR send/receive capabilities. You can assign IR commands to cabinet buttons, so that pressing a button on your cabinet sends a remote control command from the attached IR LED, and you can have the controller generate virtual key presses on your PC in response to received IR commands. If you have the IR sensor attached, the system can use it to learn commands from your existing remotes.

Yet more USB fixes: I've been gradually finding and fixing USB bugs in the mbed library for months now. This version has all of the fixes of the last couple of releases, of course, plus some new ones. It also has a new "last resort" feature, since there always seems to be "just one more" USB bug. The last resort is that you can tell the device to automatically reboot itself if it loses the USB connection and can't restore it within a given time limit.

More Downloads

  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP releases, so you don't need my custom builds if you're using 9.9.1 or later and/or VP 10. I don't think there's any reason to use my versions instead of the latest official ones, and in fact I'd encourage you to use the official releases since they're more up to date, but I'm leaving my builds available just in case. In the official versions, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. My custom versions don't include that checkbox; they just enable the filter unconditionally.
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed to build one copy of the high-power output circuit for the LedWiz emulator feature, for use with the standalone KL25Z (that is, without the expansion boards). The quantities in the cart are for one output channel, so if you want N outputs, simply multiply the quantities by the N, with one exception: you only need one ULN2803 transistor array chip for each eight output circuits. If you're using the expansion boards, you won't need any of this, since the boards provide their own high-power outputs.
  • Cary Owens' optical sensor housing: A 3D-printable design for a housing/mounting bracket for the optical plunger sensor, designed by Cary Owens. This makes it easy to mount the sensor.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Copyright and License

The Pinscape firmware is copyright 2014, 2021 by Michael J Roberts. It's released under an MIT open-source license. See License.

Warning to VirtuaPin Kit Owners

This software isn't designed as a replacement for the VirtuaPin plunger kit's firmware. If you bought the VirtuaPin kit, I recommend that you don't install this software. The KL25Z can only run one firmware program at a time, so if you install the Pinscape firmware on your KL25Z, it will replace and erase your existing VirtuaPin proprietary firmware. If you do this, the only way to restore your VirtuaPin firmware is to physically ship the KL25Z back to VirtuaPin and ask them to re-flash it. They don't allow you to do this at home, and they don't even allow you to back up your firmware, since they want to protect their proprietary software from copying. For all of these reasons, if you want to run the Pinscape software, I strongly recommend that you buy a "blank" retail KL25Z to use with Pinscape. They only cost about $15 and are available at several online retailers, including Amazon, Mouser, and eBay. The blank retail boards don't come with any proprietary firmware pre-installed, so installing Pinscape won't delete anything that you paid extra for.

With those warnings in mind, if you're absolutely sure that you don't mind permanently erasing your VirtuaPin firmware, it is at least possible to use Pinscape as a replacement for the VirtuaPin firmware. Pinscape uses the same button wiring conventions as the VirtuaPin setup, so you can keep your buttons (although you'll have to update the GPIO pin mappings in the Config Tool to match your physical wiring). As of the June, 2021 firmware, the Vishay VCNL4010 plunger sensor that comes with the VirtuaPin v3 plunger kit is supported, so you can also keep your plunger, if you have that chip. (You should check to be sure that's the sensor chip you have before committing to this route, if keeping the plunger sensor is important to you. The older VirtuaPin plunger kits came with different IR sensors that the Pinscape software doesn't handle.)

Committer:
mjr
Date:
Thu Mar 23 05:19:05 2017 +0000
Revision:
79:682ae3171a08
Parent:
78:1e00b3fa11af
Child:
82:4f6209cb5c33
FTFA/Ticker issue fixed (by removing Ticker, changing to Timeout); new "flash write succeeded" status flag; optical plunger rounding improvements

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 35:e959ffba78fd 1 // USB Message Protocol
mjr 35:e959ffba78fd 2 //
mjr 74:822a92bc11d2 3 // This file is purely for documentation, to describe our USB protocol
mjr 74:822a92bc11d2 4 // for incoming messages (host to device). We use the standard HID setup
mjr 74:822a92bc11d2 5 // with one endpoint in each direction. See USBJoystick.cpp and .h for
mjr 74:822a92bc11d2 6 // the USB descriptors.
mjr 74:822a92bc11d2 7 //
mjr 74:822a92bc11d2 8 // Our incoming message protocol is an extended version of the protocol
mjr 74:822a92bc11d2 9 // used by the LedWiz. Our protocol is designed to be 100% backwards
mjr 74:822a92bc11d2 10 // compatible with clients using the original LedWiz wire protocol, as long
mjr 74:822a92bc11d2 11 // as they only send well-formed messages in the original protocol. The
mjr 74:822a92bc11d2 12 // "well-formed" part is an important condition, because our extensions to
mjr 74:822a92bc11d2 13 // the original protocol all consist of messages that aren't defined in the
mjr 74:822a92bc11d2 14 // original protocol and are meaningless to a real LedWiz.
mjr 35:e959ffba78fd 15 //
mjr 74:822a92bc11d2 16 // The protocol compatibility ensures that all original LedWiz clients can
mjr 74:822a92bc11d2 17 // also transparently access a Pinscape unit. Clients will simply think the
mjr 74:822a92bc11d2 18 // Pinscape unit is an LedWiz, thus they'll be able to operate 32 of our
mjr 74:822a92bc11d2 19 // ports. We designate the first 32 ports (ports 1-32) as the ones accessible
mjr 74:822a92bc11d2 20 // through the LedWiz protocol.
mjr 74:822a92bc11d2 21 //
mjr 74:822a92bc11d2 22 // In addition the wire-level protocol compatibility, we can provide legacy
mjr 74:822a92bc11d2 23 // LedWiz clients with access to more than 32 ports by emulating multiple
mjr 74:822a92bc11d2 24 // virtual LedWiz units. We can't do this across the wire protocol, since
mjr 74:822a92bc11d2 25 // the KL25Z USB interface constrains us to a single VID/PID (which is how
mjr 74:822a92bc11d2 26 // LedWiz clients distinguish units). However, virtuall all legacy LedWiz
mjr 74:822a92bc11d2 27 // clients access the device through a shared library, LEDWIZ.DLL, rather
mjr 74:822a92bc11d2 28 // than directly through USB. LEDWIZ.DLL is distributed by the LedWiz's
mjr 74:822a92bc11d2 29 // manufacturer and has a published client interface. We can thus provide
mjr 74:822a92bc11d2 30 // a replacement DLL that contains the logic needed to recognize a Pinscape
mjr 74:822a92bc11d2 31 // unit and represent it to clients as multiple LedWiz devices. This allows
mjr 74:822a92bc11d2 32 // old clients to access our full complement of ports without any changes
mjr 74:822a92bc11d2 33 // to the clients. We define some extended message types (SBX and PBX)
mjr 74:822a92bc11d2 34 // specifically to support this DLL feature.
mjr 74:822a92bc11d2 35 //
mjr 74:822a92bc11d2 36
mjr 35:e959ffba78fd 37
mjr 35:e959ffba78fd 38 // ------ OUTGOING MESSAGES (DEVICE TO HOST) ------
mjr 35:e959ffba78fd 39 //
mjr 47:df7a88cd249c 40 // General note: 16-bit and 32-bit fields in our reports are little-endian
mjr 47:df7a88cd249c 41 // unless otherwise specified.
mjr 47:df7a88cd249c 42 //
mjr 39:b3815a1c3802 43 // 1. Joystick reports
mjr 35:e959ffba78fd 44 // In most cases, our outgoing messages are HID joystick reports, using the
mjr 35:e959ffba78fd 45 // format defined in USBJoystick.cpp. This allows us to be installed on
mjr 35:e959ffba78fd 46 // Windows as a standard USB joystick, which all versions of Windows support
mjr 35:e959ffba78fd 47 // using in-the-box drivers. This allows a completely transparent, driverless,
mjr 39:b3815a1c3802 48 // plug-and-play installation experience on Windows. Our joystick report
mjr 39:b3815a1c3802 49 // looks like this (see USBJoystick.cpp for the formal HID report descriptor):
mjr 35:e959ffba78fd 50 //
mjr 55:4db125cd11a0 51 // ss status bits:
mjr 55:4db125cd11a0 52 // 0x01 -> plunger enabled
mjr 55:4db125cd11a0 53 // 0x02 -> night mode engaged
mjr 73:4e8ce0b18915 54 // 0x04,0x08,0x10 -> power sense status: meaningful only when
mjr 73:4e8ce0b18915 55 // the TV-on timer is used. Figure (ss>>2) & 0x07 to
mjr 73:4e8ce0b18915 56 // isolate the status bits. The resulting value is:
mjr 73:4e8ce0b18915 57 // 1 -> latch was on at last check
mjr 73:4e8ce0b18915 58 // 2 -> latch was off at last check, SET pin high
mjr 73:4e8ce0b18915 59 // 3 -> latch off, SET pin low, ready to check status
mjr 73:4e8ce0b18915 60 // 4 -> TV timer countdown in progress
mjr 73:4e8ce0b18915 61 // 5 -> TV relay is on
mjr 77:0b96f6867312 62 // 6 -> sending IR signals designated as TV ON signals
mjr 77:0b96f6867312 63 // 0x20 -> IR learning mode in progress
mjr 79:682ae3171a08 64 // 0x40 -> configuration saved successfully (see below)
mjr 40:cc0d9814522b 65 // 00 2nd byte of status (reserved)
mjr 40:cc0d9814522b 66 // 00 3rd byte of status (reserved)
mjr 39:b3815a1c3802 67 // 00 always zero for joystick reports
mjr 40:cc0d9814522b 68 // bb joystick buttons, low byte (buttons 1-8, 1 bit per button)
mjr 40:cc0d9814522b 69 // bb joystick buttons, 2nd byte (buttons 9-16)
mjr 40:cc0d9814522b 70 // bb joystick buttons, 3rd byte (buttons 17-24)
mjr 40:cc0d9814522b 71 // bb joystick buttons, high byte (buttons 25-32)
mjr 39:b3815a1c3802 72 // xx low byte of X position = nudge/accelerometer X axis
mjr 39:b3815a1c3802 73 // xx high byte of X position
mjr 39:b3815a1c3802 74 // yy low byte of Y position = nudge/accelerometer Y axis
mjr 39:b3815a1c3802 75 // yy high byte of Y position
mjr 39:b3815a1c3802 76 // zz low byte of Z position = plunger position
mjr 39:b3815a1c3802 77 // zz high byte of Z position
mjr 39:b3815a1c3802 78 //
mjr 39:b3815a1c3802 79 // The X, Y, and Z values are 16-bit signed integers. The accelerometer
mjr 39:b3815a1c3802 80 // values are on an abstract scale, where 0 represents no acceleration,
mjr 39:b3815a1c3802 81 // negative maximum represents -1g on that axis, and positive maximum
mjr 39:b3815a1c3802 82 // represents +1g on that axis. For the plunger position, 0 is the park
mjr 39:b3815a1c3802 83 // position (the rest position of the plunger) and positive values represent
mjr 39:b3815a1c3802 84 // retracted (pulled back) positions. A negative value means that the plunger
mjr 39:b3815a1c3802 85 // is pushed forward of the park position.
mjr 39:b3815a1c3802 86 //
mjr 79:682ae3171a08 87 // Status bit 0x40 is set after a successful configuration update via special
mjr 79:682ae3171a08 88 // command 65 6 (save config to flash). The device always reboots after this
mjr 79:682ae3171a08 89 // command, so if the host wants to receive a status update verifying the
mjr 79:682ae3171a08 90 // save, it has to request a non-zero reboot delay in the message to allow
mjr 79:682ae3171a08 91 // us time to send at least one of these status reports after the save.
mjr 79:682ae3171a08 92 // This bit is only sent after a successful save, which means that the flash
mjr 79:682ae3171a08 93 // write succeeded and the written sectors verified as correct.
mjr 79:682ae3171a08 94 //
mjr 39:b3815a1c3802 95 // 2. Special reports
mjr 35:e959ffba78fd 96 // We subvert the joystick report format in certain cases to report other
mjr 35:e959ffba78fd 97 // types of information, when specifically requested by the host. This allows
mjr 35:e959ffba78fd 98 // our custom configuration UI on the Windows side to query additional
mjr 35:e959ffba78fd 99 // information that we don't normally send via the joystick reports. We
mjr 35:e959ffba78fd 100 // define a custom vendor-specific "status" field in the reports that we
mjr 35:e959ffba78fd 101 // use to identify these special reports, as described below.
mjr 35:e959ffba78fd 102 //
mjr 39:b3815a1c3802 103 // Normal joystick reports always have 0 in the high bit of the 2nd byte
mjr 35:e959ffba78fd 104 // of the report. Special non-joystick reports always have 1 in the high bit
mjr 35:e959ffba78fd 105 // of the first byte. (This byte is defined in the HID Report Descriptor
mjr 35:e959ffba78fd 106 // as an opaque vendor-defined value, so the joystick interface on the
mjr 35:e959ffba78fd 107 // Windows side simply ignores it.)
mjr 35:e959ffba78fd 108 //
mjr 52:8298b2a73eb2 109 // 2A. Plunger sensor status report
mjr 52:8298b2a73eb2 110 // Software on the PC can request a detailed status report from the plunger
mjr 52:8298b2a73eb2 111 // sensor. The status information is meant as an aid to installing and
mjr 52:8298b2a73eb2 112 // adjusting the sensor device for proper performance. For imaging sensor
mjr 52:8298b2a73eb2 113 // types, the status report includes a complete current image snapshot
mjr 52:8298b2a73eb2 114 // (an array of all of the pixels the sensor is currently imaging). For
mjr 52:8298b2a73eb2 115 // all sensor types, it includes the current plunger position registered
mjr 52:8298b2a73eb2 116 // on the sensor, and some timing information.
mjr 52:8298b2a73eb2 117 //
mjr 52:8298b2a73eb2 118 // To request the sensor status, the host sends custom protocol message 65 3
mjr 52:8298b2a73eb2 119 // (see below). The device replies with a message in this format:
mjr 52:8298b2a73eb2 120 //
mjr 52:8298b2a73eb2 121 // bytes 0:1 = 0x87FF
mjr 52:8298b2a73eb2 122 // byte 2 = 0 -> first (currently only) status report packet
mjr 52:8298b2a73eb2 123 // (additional packets could be added in the future if
mjr 52:8298b2a73eb2 124 // more fields need to be added)
mjr 52:8298b2a73eb2 125 // bytes 3:4 = number of pixels to be sent in following messages, as
mjr 52:8298b2a73eb2 126 // an unsigned 16-bit little-endian integer. This is 0 if
mjr 52:8298b2a73eb2 127 // the sensor isn't an imaging type.
mjr 52:8298b2a73eb2 128 // bytes 5:6 = current plunger position registered on the sensor.
mjr 52:8298b2a73eb2 129 // For imaging sensors, this is the pixel position, so it's
mjr 52:8298b2a73eb2 130 // scaled from 0 to number of pixels - 1. For non-imaging
mjr 52:8298b2a73eb2 131 // sensors, this uses the generic joystick scale 0..4095.
mjr 52:8298b2a73eb2 132 // The special value 0xFFFF means that the position couldn't
mjr 52:8298b2a73eb2 133 // be determined,
mjr 52:8298b2a73eb2 134 // byte 7 = bit flags:
mjr 52:8298b2a73eb2 135 // 0x01 = normal orientation detected
mjr 52:8298b2a73eb2 136 // 0x02 = reversed orientation detected
mjr 52:8298b2a73eb2 137 // 0x04 = calibration mode is active (no pixel packets
mjr 52:8298b2a73eb2 138 // are sent for this reading)
mjr 52:8298b2a73eb2 139 // bytes 8:9:10 = average time for each sensor read, in 10us units.
mjr 52:8298b2a73eb2 140 // This is the average time it takes to complete the I/O
mjr 52:8298b2a73eb2 141 // operation to read the sensor, to obtain the raw sensor
mjr 52:8298b2a73eb2 142 // data for instantaneous plunger position reading. For
mjr 52:8298b2a73eb2 143 // an imaging sensor, this is the time it takes for the
mjr 52:8298b2a73eb2 144 // sensor to capture the image and transfer it to the
mjr 52:8298b2a73eb2 145 // microcontroller. For an analog sensor (e.g., an LVDT
mjr 52:8298b2a73eb2 146 // or potentiometer), it's the time to complete an ADC
mjr 52:8298b2a73eb2 147 // sample.
mjr 52:8298b2a73eb2 148 // bytes 11:12:13 = time it took to process the current frame, in 10us
mjr 52:8298b2a73eb2 149 // units. This is the software processing time that was
mjr 52:8298b2a73eb2 150 // needed to analyze the raw data read from the sensor.
mjr 52:8298b2a73eb2 151 // This is typically only non-zero for imaging sensors,
mjr 52:8298b2a73eb2 152 // where it reflects the time required to scan the pixel
mjr 52:8298b2a73eb2 153 // array to find the indicated plunger position. The time
mjr 52:8298b2a73eb2 154 // is usually zero or negligible for analog sensor types,
mjr 52:8298b2a73eb2 155 // since the only "analysis" is a multiplication to rescale
mjr 52:8298b2a73eb2 156 // the ADC sample.
mjr 52:8298b2a73eb2 157 //
mjr 52:8298b2a73eb2 158 // If the sensor is an imaging sensor type, this will be followed by a
mjr 52:8298b2a73eb2 159 // series of pixel messages. The imaging sensor types have too many pixels
mjr 52:8298b2a73eb2 160 // to send in a single USB transaction, so the device breaks up the array
mjr 52:8298b2a73eb2 161 // into as many packets as needed and sends them in sequence. For non-
mjr 52:8298b2a73eb2 162 // imaging sensors, the "number of pixels" field in the lead packet is
mjr 52:8298b2a73eb2 163 // zero, so obviously no pixel packets will follow. If the "calibration
mjr 52:8298b2a73eb2 164 // active" bit in the flags byte is set, no pixel packets are sent even
mjr 52:8298b2a73eb2 165 // if the sensor is an imaging type, since the transmission time for the
mjr 52:8298b2a73eb2 166 // pixels would intefere with the calibration process. If pixels are sent,
mjr 52:8298b2a73eb2 167 // they're sent in order starting at the first pixel. The format of each
mjr 52:8298b2a73eb2 168 // pixel packet is:
mjr 35:e959ffba78fd 169 //
mjr 35:e959ffba78fd 170 // bytes 0:1 = 11-bit index, with high 5 bits set to 10000. For
mjr 48:058ace2aed1d 171 // example, 0x8004 (encoded little endian as 0x04 0x80)
mjr 48:058ace2aed1d 172 // indicates index 4. This is the starting pixel number
mjr 48:058ace2aed1d 173 // in the report. The first report will be 0x00 0x80 to
mjr 48:058ace2aed1d 174 // indicate pixel #0.
mjr 47:df7a88cd249c 175 // bytes 2 = 8-bit unsigned int brightness level of pixel at index
mjr 47:df7a88cd249c 176 // bytes 3 = brightness of pixel at index+1
mjr 35:e959ffba78fd 177 // etc for the rest of the packet
mjr 35:e959ffba78fd 178 //
mjr 52:8298b2a73eb2 179 // Note that we currently only support one-dimensional imaging sensors
mjr 52:8298b2a73eb2 180 // (i.e., pixel arrays that are 1 pixel wide). The report format doesn't
mjr 52:8298b2a73eb2 181 // have any provision for a two-dimensional layout. The KL25Z probably
mjr 52:8298b2a73eb2 182 // isn't powerful enough to do real-time image analysis on a 2D image
mjr 52:8298b2a73eb2 183 // anyway, so it's unlikely that we'd be able to make 2D sensors work at
mjr 52:8298b2a73eb2 184 // all, but if we ever add such a thing we'll have to upgrade the report
mjr 52:8298b2a73eb2 185 // format here accordingly.
mjr 51:57eb311faafa 186 //
mjr 51:57eb311faafa 187 //
mjr 53:9b2611964afc 188 // 2B. Configuration report.
mjr 39:b3815a1c3802 189 // This is requested by sending custom protocol message 65 4 (see below).
mjr 39:b3815a1c3802 190 // In reponse, the device sends one report to the host using this format:
mjr 35:e959ffba78fd 191 //
mjr 35:e959ffba78fd 192 // bytes 0:1 = 0x8800. This has the bit pattern 10001 in the high
mjr 35:e959ffba78fd 193 // 5 bits, which distinguishes it from regular joystick
mjr 40:cc0d9814522b 194 // reports and from other special report types.
mjr 74:822a92bc11d2 195 // bytes 2:3 = total number of configured outputs, little endian. This
mjr 74:822a92bc11d2 196 // is the number of outputs with assigned functions in the
mjr 74:822a92bc11d2 197 // active configuration.
mjr 75:677892300e7a 198 // byte 4 = Pinscape unit number (0-15), little endian
mjr 75:677892300e7a 199 // byte 5 = reserved (currently always zero)
mjr 40:cc0d9814522b 200 // bytes 6:7 = plunger calibration zero point, little endian
mjr 40:cc0d9814522b 201 // bytes 8:9 = plunger calibration maximum point, little endian
mjr 52:8298b2a73eb2 202 // byte 10 = plunger calibration release time, in milliseconds
mjr 52:8298b2a73eb2 203 // byte 11 = bit flags:
mjr 40:cc0d9814522b 204 // 0x01 -> configuration loaded; 0 in this bit means that
mjr 40:cc0d9814522b 205 // the firmware has been loaded but no configuration
mjr 40:cc0d9814522b 206 // has been sent from the host
mjr 74:822a92bc11d2 207 // 0x02 -> SBX/PBX extension features: 1 in this bit means
mjr 74:822a92bc11d2 208 // that these features are present in this version.
mjr 78:1e00b3fa11af 209 // 0x04 -> new accelerometer features supported (adjustable
mjr 78:1e00b3fa11af 210 // dynamic range, auto-centering on/off, adjustable
mjr 78:1e00b3fa11af 211 // auto-centering time)
mjr 73:4e8ce0b18915 212 // bytes 12:13 = available RAM, in bytes, little endian. This is the amount
mjr 73:4e8ce0b18915 213 // of unused heap (malloc'able) memory. The firmware generally
mjr 73:4e8ce0b18915 214 // allocates all of the dynamic memory it needs during startup,
mjr 73:4e8ce0b18915 215 // so the free memory figure doesn't tend to fluctuate during
mjr 73:4e8ce0b18915 216 // normal operation. The dynamic memory used is a function of
mjr 73:4e8ce0b18915 217 // the set of features enabled.
mjr 35:e959ffba78fd 218 //
mjr 53:9b2611964afc 219 // 2C. Device ID report.
mjr 40:cc0d9814522b 220 // This is requested by sending custom protocol message 65 7 (see below).
mjr 40:cc0d9814522b 221 // In response, the device sends one report to the host using this format:
mjr 40:cc0d9814522b 222 //
mjr 52:8298b2a73eb2 223 // bytes 0:1 = 0x9000. This has bit pattern 10010 in the high 5 bits
mjr 52:8298b2a73eb2 224 // to distinguish this from other report types.
mjr 53:9b2611964afc 225 // byte 2 = ID type. This is the same ID type sent in the request.
mjr 53:9b2611964afc 226 // bytes 3-12 = requested ID. The ID is 80 bits in big-endian byte
mjr 53:9b2611964afc 227 // order. For IDs longer than 80 bits, we truncate to the
mjr 53:9b2611964afc 228 // low-order 80 bits (that is, the last 80 bits).
mjr 53:9b2611964afc 229 //
mjr 53:9b2611964afc 230 // ID type 1 = CPU ID. This is the globally unique CPU ID
mjr 53:9b2611964afc 231 // stored in the KL25Z CPU.
mjr 35:e959ffba78fd 232 //
mjr 53:9b2611964afc 233 // ID type 2 = OpenSDA ID. This is the globally unique ID
mjr 53:9b2611964afc 234 // for the connected OpenSDA controller, if known. This
mjr 53:9b2611964afc 235 // allow the host to figure out which USB MSD (virtual
mjr 53:9b2611964afc 236 // disk drive), if any, represents the OpenSDA module for
mjr 53:9b2611964afc 237 // this Pinscape USB interface. This is primarily useful
mjr 53:9b2611964afc 238 // to determine which MSD to write in order to update the
mjr 53:9b2611964afc 239 // firmware on a given Pinscape unit.
mjr 53:9b2611964afc 240 //
mjr 53:9b2611964afc 241 // 2D. Configuration variable report.
mjr 52:8298b2a73eb2 242 // This is requested by sending custom protocol message 65 9 (see below).
mjr 52:8298b2a73eb2 243 // In response, the device sends one report to the host using this format:
mjr 52:8298b2a73eb2 244 //
mjr 52:8298b2a73eb2 245 // bytes 0:1 = 0x9800. This has bit pattern 10011 in the high 5 bits
mjr 52:8298b2a73eb2 246 // to distinguish this from other report types.
mjr 52:8298b2a73eb2 247 // byte 2 = Variable ID. This is the same variable ID sent in the
mjr 52:8298b2a73eb2 248 // query message, to relate the reply to the request.
mjr 52:8298b2a73eb2 249 // bytes 3-8 = Current value of the variable, in the format for the
mjr 52:8298b2a73eb2 250 // individual variable type. The variable formats are
mjr 52:8298b2a73eb2 251 // described in the CONFIGURATION VARIABLES section below.
mjr 52:8298b2a73eb2 252 //
mjr 53:9b2611964afc 253 // 2E. Software build information report.
mjr 53:9b2611964afc 254 // This is requested by sending custom protocol message 65 10 (see below).
mjr 53:9b2611964afc 255 // In response, the device sends one report using this format:
mjr 53:9b2611964afc 256 //
mjr 73:4e8ce0b18915 257 // bytes 0:1 = 0xA000. This has bit pattern 10100 in the high 5 bits
mjr 77:0b96f6867312 258 // (and 10100000 in the high 8 bits) to distinguish it from
mjr 77:0b96f6867312 259 // other report types.
mjr 53:9b2611964afc 260 // bytes 2:5 = Build date. This is returned as a 32-bit integer,
mjr 53:9b2611964afc 261 // little-endian as usual, encoding a decimal value
mjr 53:9b2611964afc 262 // in the format YYYYMMDD giving the date of the build.
mjr 53:9b2611964afc 263 // E.g., Feb 16 2016 is encoded as 20160216 (decimal).
mjr 53:9b2611964afc 264 // bytes 6:9 = Build time. This is a 32-bit integer, little-endian,
mjr 53:9b2611964afc 265 // encoding a decimal value in the format HHMMSS giving
mjr 53:9b2611964afc 266 // build time on a 24-hour clock.
mjr 53:9b2611964afc 267 //
mjr 73:4e8ce0b18915 268 // 2F. Button status report.
mjr 73:4e8ce0b18915 269 // This is requested by sending custom protocol message 65 13 (see below).
mjr 73:4e8ce0b18915 270 // In response, the device sends one report using this format:
mjr 73:4e8ce0b18915 271 //
mjr 77:0b96f6867312 272 // bytes 0:1 = 0xA1. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 273 // 10100001 in the high 8 bits) to distinguish it from other
mjr 77:0b96f6867312 274 // report types.
mjr 73:4e8ce0b18915 275 // byte 2 = number of button reports
mjr 73:4e8ce0b18915 276 // byte 3 = Physical status of buttons 1-8, 1 bit each. The low-order
mjr 73:4e8ce0b18915 277 // bit (0x01) is button 1. Each bit is 0 if the button is off,
mjr 73:4e8ce0b18915 278 // 1 if on. This reflects the physical status of the button
mjr 73:4e8ce0b18915 279 // input pins, after debouncing but before any logical state
mjr 73:4e8ce0b18915 280 // processing. Pulse mode and shifting have no effect on the
mjr 73:4e8ce0b18915 281 // physical state; this simply indicates whether the button is
mjr 73:4e8ce0b18915 282 // electrically on (shorted to GND) or off (open circuit).
mjr 73:4e8ce0b18915 283 // byte 4 = buttons 9-16
mjr 73:4e8ce0b18915 284 // byte 5 = buttons 17-24
mjr 73:4e8ce0b18915 285 // byte 6 = buttons 25-32
mjr 73:4e8ce0b18915 286 // byte 7 = buttons 33-40
mjr 73:4e8ce0b18915 287 // byte 8 = buttons 41-48
mjr 73:4e8ce0b18915 288 //
mjr 77:0b96f6867312 289 // 2G. IR sensor data report.
mjr 77:0b96f6867312 290 // This is requested by sending custom protocol message 65 12 (see below).
mjr 77:0b96f6867312 291 // That command puts controller in IR learning mode for a short time, during
mjr 77:0b96f6867312 292 // which it monitors the IR sensor and send these special reports to relay the
mjr 77:0b96f6867312 293 // readings. The reports contain the raw data, plus the decoded command code
mjr 77:0b96f6867312 294 // and protocol information if the controller is able to recognize and decode
mjr 77:0b96f6867312 295 // the command.
mjr 52:8298b2a73eb2 296 //
mjr 77:0b96f6867312 297 // bytes 0:1 = 0xA2. This has bit pattern 10100 in the high 5 bits (and
mjr 77:0b96f6867312 298 // 10100010 in the high 8 bits to distinguish it from other
mjr 77:0b96f6867312 299 // report types.
mjr 77:0b96f6867312 300 // byte 2 = number of raw reports that follow
mjr 77:0b96f6867312 301 // bytes 3:4 = first raw report, as a little-endian 16-bit int. The
mjr 77:0b96f6867312 302 // value represents the time of an IR "space" or "mark" in
mjr 77:0b96f6867312 303 // 2us units. The low bit is 0 for a space and 1 for a mark.
mjr 77:0b96f6867312 304 // To recover the time in microseconds, mask our the low bit
mjr 77:0b96f6867312 305 // and multiply the result by 2. Received codes always
mjr 77:0b96f6867312 306 // alternate between spaces and marks. A space is an interval
mjr 77:0b96f6867312 307 // where the IR is off, and a mark is an interval with IR on.
mjr 77:0b96f6867312 308 // If the value is 0xFFFE (after masking out the low bit), it
mjr 77:0b96f6867312 309 // represents a timeout, that is, a time greater than or equal
mjr 77:0b96f6867312 310 // to the maximum that can be represented in this format,
mjr 77:0b96f6867312 311 // which is 131068us. None of the IR codes we can parse have
mjr 77:0b96f6867312 312 // any internal signal component this long, so a timeout value
mjr 77:0b96f6867312 313 // is generally seen only during a gap between codes where
mjr 77:0b96f6867312 314 // nothing is being transmitted.
mjr 77:0b96f6867312 315 // bytes 4:5 = second raw report
mjr 77:0b96f6867312 316 // (etc for remaining reports)
mjr 77:0b96f6867312 317 //
mjr 77:0b96f6867312 318 // If byte 2 is 0x00, it indicates that learning mode has expired without
mjr 77:0b96f6867312 319 // a code being received, so it's the last report sent for the learning
mjr 77:0b96f6867312 320 // session.
mjr 77:0b96f6867312 321 //
mjr 77:0b96f6867312 322 // If byte 2 is 0xFF, it indicates that a code has been successfully
mjr 77:0b96f6867312 323 // learned. The rest of the report contains the learned code instead
mjr 77:0b96f6867312 324 // of the raw data:
mjr 77:0b96f6867312 325 //
mjr 77:0b96f6867312 326 // byte 3 = protocol ID, which is an integer giving an internal code
mjr 77:0b96f6867312 327 // identifying the IR protocol that was recognized for the
mjr 77:0b96f6867312 328 // received data. See IRProtocolID.h for a list of the IDs.
mjr 77:0b96f6867312 329 // byte 4 = bit flags:
mjr 77:0b96f6867312 330 // 0x02 -> the protocol uses "dittos"
mjr 77:0b96f6867312 331 // bytes 5:6:7:8:9:10:11:12 = a little-endian 64-bit int containing
mjr 77:0b96f6867312 332 // the code received. The code is essentially the data payload
mjr 77:0b96f6867312 333 // of the IR packet, after removing bits that are purely
mjr 77:0b96f6867312 334 // structural, such as toggle bits and error correction bits.
mjr 77:0b96f6867312 335 // The mapping between the IR bit stream and our 64-bit is
mjr 77:0b96f6867312 336 // essentially arbitrary and varies by protocol, but it always
mjr 77:0b96f6867312 337 // has round-trip fidelity: using the 64-bit code value +
mjr 77:0b96f6867312 338 // protocol ID + flags to send an IR command will result in
mjr 77:0b96f6867312 339 // the same IR bit sequence being sent, modulo structural bits
mjr 77:0b96f6867312 340 // that need to be updates in the reconstruction (such as toggle
mjr 77:0b96f6867312 341 // bits or sequencing codes).
mjr 77:0b96f6867312 342 //
mjr 77:0b96f6867312 343 //
mjr 77:0b96f6867312 344 // WHY WE USE A HACKY APPROACH TO DIFFERENT REPORT TYPES
mjr 35:e959ffba78fd 345 //
mjr 35:e959ffba78fd 346 // The HID report system was specifically designed to provide a clean,
mjr 35:e959ffba78fd 347 // structured way for devices to describe the data they send to the host.
mjr 35:e959ffba78fd 348 // Our approach isn't clean or structured; it ignores the promises we
mjr 35:e959ffba78fd 349 // make about the contents of our report via the HID Report Descriptor
mjr 35:e959ffba78fd 350 // and stuffs our own different data format into the same structure.
mjr 35:e959ffba78fd 351 //
mjr 77:0b96f6867312 352 // We use this hacky approach only because we can't use the standard USB
mjr 77:0b96f6867312 353 // HID mechanism for varying report types, which is to provide multiple
mjr 77:0b96f6867312 354 // report descriptors and tag each report with a type byte that indicates
mjr 77:0b96f6867312 355 // which descriptor applies. We can't use that standard approach because
mjr 77:0b96f6867312 356 // we want to be 100% LedWiz compatible. The snag is that some Windows
mjr 77:0b96f6867312 357 // LedWiz clients parse the USB HID descriptors as part of identifying a
mjr 77:0b96f6867312 358 // USB HID device as a valid LedWiz unit, and will only recognize the device
mjr 77:0b96f6867312 359 // if certain properties of the HID descriptors match those of a real LedWiz.
mjr 77:0b96f6867312 360 // One of the features that's important to some clients is the descriptor
mjr 77:0b96f6867312 361 // link structure, which is affected by the layout of HID Report Descriptor
mjr 77:0b96f6867312 362 // entries. In order to match the expected layout, we can only define a
mjr 77:0b96f6867312 363 // single kind of output report. Since we have to use Joystick reports for
mjr 77:0b96f6867312 364 // the sake of VP and other pinball software, and we're only allowed the
mjr 77:0b96f6867312 365 // one report type, we have to make that one report type the Joystick type.
mjr 77:0b96f6867312 366 // That's why we overload the joystick reports with other meanings. It's a
mjr 77:0b96f6867312 367 // hack, but at least it's a fairly reliable and isolated hack, in that our
mjr 77:0b96f6867312 368 // special reports are only generated when clients specifically ask for
mjr 77:0b96f6867312 369 // them. Plus, even if a client who doesn't ask for a special report
mjr 77:0b96f6867312 370 // somehow gets one, the worst that happens is that they get a momentary
mjr 77:0b96f6867312 371 // spurious reading from the accelerometer and plunger.
mjr 35:e959ffba78fd 372
mjr 35:e959ffba78fd 373
mjr 35:e959ffba78fd 374
mjr 35:e959ffba78fd 375 // ------- INCOMING MESSAGES (HOST TO DEVICE) -------
mjr 35:e959ffba78fd 376 //
mjr 35:e959ffba78fd 377 // For LedWiz compatibility, our incoming message format conforms to the
mjr 35:e959ffba78fd 378 // basic USB format used by real LedWiz units. This is simply 8 data
mjr 35:e959ffba78fd 379 // bytes, all private vendor-specific values (meaning that the Windows HID
mjr 35:e959ffba78fd 380 // driver treats them as opaque and doesn't attempt to parse them).
mjr 35:e959ffba78fd 381 //
mjr 35:e959ffba78fd 382 // Within this basic 8-byte format, we recognize the full protocol used
mjr 35:e959ffba78fd 383 // by real LedWiz units, plus an extended protocol that we define privately.
mjr 35:e959ffba78fd 384 // The LedWiz protocol leaves a large part of the potential protocol space
mjr 35:e959ffba78fd 385 // undefined, so we take advantage of this undefined region for our
mjr 35:e959ffba78fd 386 // extensions. This ensures that we can properly recognize all messages
mjr 35:e959ffba78fd 387 // intended for a real LedWiz unit, as well as messages from custom host
mjr 35:e959ffba78fd 388 // software that knows it's talking to a Pinscape unit.
mjr 35:e959ffba78fd 389
mjr 35:e959ffba78fd 390 // --- REAL LED WIZ MESSAGES ---
mjr 35:e959ffba78fd 391 //
mjr 74:822a92bc11d2 392 // The real LedWiz protocol has two message types, "SBA" and "PBA". The
mjr 74:822a92bc11d2 393 // message type can be determined from the first byte of the 8-byte message
mjr 74:822a92bc11d2 394 // packet: if the first byte 64 (0x40), it's an SBA message. If the first
mjr 74:822a92bc11d2 395 // byte is 0-49 or 129-132, it's a PBA message. All other byte values are
mjr 74:822a92bc11d2 396 // invalid in the original protocol and have undefined behavior if sent to
mjr 74:822a92bc11d2 397 // a real LedWiz. We take advantage of this to extend the protocol with
mjr 74:822a92bc11d2 398 // our new features by assigning new meanings to byte patterns that have no
mjr 74:822a92bc11d2 399 // meaning in the original protocol.
mjr 35:e959ffba78fd 400 //
mjr 74:822a92bc11d2 401 // "SBA" message: 64 xx xx xx xx ss 00 00
mjr 74:822a92bc11d2 402 // xx = on/off bit mask for 8 outputs
mjr 74:822a92bc11d2 403 // ss = global flash speed setting (valid values 1-7)
mjr 74:822a92bc11d2 404 // 00 = unused/reserved; client should set to zero (not enforced, but
mjr 74:822a92bc11d2 405 // strongly recommended in case of future additions)
mjr 35:e959ffba78fd 406 //
mjr 35:e959ffba78fd 407 // If the first byte has value 64 (0x40), it's an SBA message. This type of
mjr 35:e959ffba78fd 408 // message sets all 32 outputs individually ON or OFF according to the next
mjr 35:e959ffba78fd 409 // 32 bits (4 bytes) of the message, and sets the flash speed to the value in
mjr 74:822a92bc11d2 410 // the sixth byte. The flash speed sets the global cycle rate for flashing
mjr 74:822a92bc11d2 411 // outputs - outputs with their values set to the range 128-132. The speed
mjr 74:822a92bc11d2 412 // parameter is in ad hoc units that aren't documented in the LedWiz API, but
mjr 74:822a92bc11d2 413 // observations of real LedWiz units show that the "speed" is actually the
mjr 74:822a92bc11d2 414 // period, each unit representing 0.25s: so speed 1 is a 0.25s period, or 4Hz,
mjr 74:822a92bc11d2 415 // speed 2 is a 0.5s period or 2Hz, etc., up to speed 7 as a 1.75s period or
mjr 74:822a92bc11d2 416 // 0.57Hz. The period is the full waveform cycle time.
mjr 74:822a92bc11d2 417 //
mjr 35:e959ffba78fd 418 //
mjr 74:822a92bc11d2 419 // "PBA" message: bb bb bb bb bb bb bb bb
mjr 74:822a92bc11d2 420 // bb = brightness level, 0-49 or 128-132
mjr 35:e959ffba78fd 421 //
mjr 74:822a92bc11d2 422 // Note that there's no prefix byte indicating this message type. This
mjr 74:822a92bc11d2 423 // message is indicated simply by the first byte being in one of the valid
mjr 74:822a92bc11d2 424 // ranges.
mjr 74:822a92bc11d2 425 //
mjr 74:822a92bc11d2 426 // Each byte gives the new brightness level or flash pattern for one part.
mjr 74:822a92bc11d2 427 // The valid values are:
mjr 35:e959ffba78fd 428 //
mjr 35:e959ffba78fd 429 // 0-48 = fixed brightness level, linearly from 0% to 100% intensity
mjr 35:e959ffba78fd 430 // 49 = fixed brightness level at 100% intensity (same as 48)
mjr 35:e959ffba78fd 431 // 129 = flashing pattern, fade up / fade down (sawtooth wave)
mjr 35:e959ffba78fd 432 // 130 = flashing pattern, on / off (square wave)
mjr 35:e959ffba78fd 433 // 131 = flashing pattern, on for 50% duty cycle / fade down
mjr 35:e959ffba78fd 434 // 132 = flashing pattern, fade up / on for 50% duty cycle
mjr 35:e959ffba78fd 435 //
mjr 74:822a92bc11d2 436 // This message sets new brightness/flash settings for 8 ports. There's
mjr 74:822a92bc11d2 437 // no port number specified in the message; instead, the port is given by
mjr 74:822a92bc11d2 438 // the protocol state. Specifically, the device has an internal register
mjr 74:822a92bc11d2 439 // containing the base port for PBA messages. On reset AND after any SBA
mjr 74:822a92bc11d2 440 // message is received, the base port is set to 0. After any PBA message
mjr 74:822a92bc11d2 441 // is received and processed, the base port is incremented by 8, resetting
mjr 74:822a92bc11d2 442 // to 0 when it reaches 32. The bytes of the message set the brightness
mjr 74:822a92bc11d2 443 // levels for the base port, base port + 1, ..., base port + 7 respectively.
mjr 35:e959ffba78fd 444 //
mjr 74:822a92bc11d2 445 //
mjr 35:e959ffba78fd 446
mjr 35:e959ffba78fd 447 // --- PRIVATE EXTENDED MESSAGES ---
mjr 35:e959ffba78fd 448 //
mjr 35:e959ffba78fd 449 // All of our extended protocol messages are identified by the first byte:
mjr 35:e959ffba78fd 450 //
mjr 35:e959ffba78fd 451 // 65 -> Miscellaneous control message. The second byte specifies the specific
mjr 35:e959ffba78fd 452 // operation:
mjr 35:e959ffba78fd 453 //
mjr 39:b3815a1c3802 454 // 0 -> No Op - does nothing. (This can be used to send a test message on the
mjr 39:b3815a1c3802 455 // USB endpoint.)
mjr 39:b3815a1c3802 456 //
mjr 35:e959ffba78fd 457 // 1 -> Set device unit number and plunger status, and save the changes immediately
mjr 35:e959ffba78fd 458 // to flash. The device will automatically reboot after the changes are saved.
mjr 35:e959ffba78fd 459 // The additional bytes of the message give the parameters:
mjr 35:e959ffba78fd 460 //
mjr 35:e959ffba78fd 461 // third byte = new unit number (0-15, corresponding to nominal unit numbers 1-16)
mjr 35:e959ffba78fd 462 // fourth byte = plunger on/off (0=disabled, 1=enabled)
mjr 35:e959ffba78fd 463 //
mjr 35:e959ffba78fd 464 // 2 -> Begin plunger calibration mode. The device stays in this mode for about
mjr 35:e959ffba78fd 465 // 15 seconds, and sets the zero point and maximum retraction points to the
mjr 35:e959ffba78fd 466 // observed endpoints of sensor readings while the mode is running. After
mjr 35:e959ffba78fd 467 // the time limit elapses, the device automatically stores the results in
mjr 35:e959ffba78fd 468 // non-volatile flash memory and exits the mode.
mjr 35:e959ffba78fd 469 //
mjr 51:57eb311faafa 470 // 3 -> Send pixel dump. The device sends one complete image snapshot from the
mjr 51:57eb311faafa 471 // plunger sensor, as as series of pixel dump messages. (The message format
mjr 51:57eb311faafa 472 // isn't big enough to allow the whole image to be sent in one message, so
mjr 53:9b2611964afc 473 // the image is broken up into as many messages as necessary.) The device
mjr 53:9b2611964afc 474 // then resumes sending normal joystick messages. If the plunger sensor
mjr 53:9b2611964afc 475 // isn't an imaging type, or no sensor is installed, no pixel messages are
mjr 53:9b2611964afc 476 // sent. Parameters:
mjr 48:058ace2aed1d 477 //
mjr 48:058ace2aed1d 478 // third byte = bit flags:
mjr 51:57eb311faafa 479 // 0x01 = low res mode. The device rescales the sensor pixel array
mjr 51:57eb311faafa 480 // sent in the dump messages to a low-resolution subset. The
mjr 51:57eb311faafa 481 // size of the subset is determined by the device. This has
mjr 51:57eb311faafa 482 // no effect on the sensor operation; it merely reduces the
mjr 51:57eb311faafa 483 // USB transmission time to allow for a faster frame rate for
mjr 51:57eb311faafa 484 // viewing in the config tool.
mjr 35:e959ffba78fd 485 //
mjr 53:9b2611964afc 486 // fourth byte = extra exposure time in 100us (.1ms) increments. For
mjr 53:9b2611964afc 487 // imaging sensors, we'll add this delay to the minimum exposure
mjr 53:9b2611964afc 488 // time. This allows the caller to explicitly adjust the exposure
mjr 53:9b2611964afc 489 // level for calibration purposes.
mjr 53:9b2611964afc 490 //
mjr 35:e959ffba78fd 491 // 4 -> Query configuration. The device sends a special configuration report,
mjr 40:cc0d9814522b 492 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 493 // joystick reports.
mjr 35:e959ffba78fd 494 //
mjr 74:822a92bc11d2 495 // 5 -> Turn all outputs off and restore LedWiz defaults. Sets all output
mjr 74:822a92bc11d2 496 // ports to OFF and LedWiz brightness/mode setting 48, and sets the LedWiz
mjr 74:822a92bc11d2 497 // global flash speed to 2.
mjr 35:e959ffba78fd 498 //
mjr 35:e959ffba78fd 499 // 6 -> Save configuration to flash. This saves all variable updates sent via
mjr 35:e959ffba78fd 500 // type 66 messages since the last reboot, then automatically reboots the
mjr 35:e959ffba78fd 501 // device to put the changes into effect.
mjr 35:e959ffba78fd 502 //
mjr 53:9b2611964afc 503 // third byte = delay time in seconds. The device will wait this long
mjr 53:9b2611964afc 504 // before disconnecting, to allow the PC to perform any cleanup tasks
mjr 53:9b2611964afc 505 // while the device is still attached (e.g., modifying Windows device
mjr 53:9b2611964afc 506 // driver settings)
mjr 53:9b2611964afc 507 //
mjr 40:cc0d9814522b 508 // 7 -> Query device ID. The device replies with a special device ID report
mjr 40:cc0d9814522b 509 // (see above; see also USBJoystick.cpp), then resumes sending normal
mjr 40:cc0d9814522b 510 // joystick reports.
mjr 40:cc0d9814522b 511 //
mjr 53:9b2611964afc 512 // The third byte of the message is the ID index to retrieve:
mjr 53:9b2611964afc 513 //
mjr 53:9b2611964afc 514 // 1 = CPU ID: returns the KL25Z globally unique CPU ID.
mjr 53:9b2611964afc 515 //
mjr 53:9b2611964afc 516 // 2 = OpenSDA ID: returns the OpenSDA TUID. This must be patched
mjr 53:9b2611964afc 517 // into the firmware by the PC host when the .bin file is
mjr 53:9b2611964afc 518 // installed onto the device. This will return all 'X' bytes
mjr 53:9b2611964afc 519 // if the value wasn't patched at install time.
mjr 53:9b2611964afc 520 //
mjr 40:cc0d9814522b 521 // 8 -> Engage/disengage night mode. The third byte of the message is 1 to
mjr 55:4db125cd11a0 522 // engage night mode, 0 to disengage night mode. The current mode isn't
mjr 55:4db125cd11a0 523 // stored persistently; night mode is always off after a reset.
mjr 40:cc0d9814522b 524 //
mjr 52:8298b2a73eb2 525 // 9 -> Query configuration variable. The second byte is the config variable
mjr 52:8298b2a73eb2 526 // number (see the CONFIGURATION VARIABLES section below). For the array
mjr 52:8298b2a73eb2 527 // variables (button assignments, output ports), the third byte is the
mjr 52:8298b2a73eb2 528 // array index. The device replies with a configuration variable report
mjr 52:8298b2a73eb2 529 // (see above) with the current setting for the requested variable.
mjr 52:8298b2a73eb2 530 //
mjr 53:9b2611964afc 531 // 10 -> Query software build information. No parameters. This replies with
mjr 53:9b2611964afc 532 // the software build information report (see above).
mjr 53:9b2611964afc 533 //
mjr 73:4e8ce0b18915 534 // 11 -> TV ON relay manual control. This allows testing and operating the
mjr 73:4e8ce0b18915 535 // relay from the PC. This doesn't change the power-up configuration;
mjr 73:4e8ce0b18915 536 // it merely allows the relay to be controlled directly.
mjr 73:4e8ce0b18915 537 //
mjr 73:4e8ce0b18915 538 // 0 = turn relay off
mjr 73:4e8ce0b18915 539 // 1 = turn relay on
mjr 73:4e8ce0b18915 540 // 2 = pulse the relay as though the power-on delay timer fired
mjr 73:4e8ce0b18915 541 //
mjr 77:0b96f6867312 542 // 12 -> Learn IR code. The device enters "IR learning mode". While in
mjr 77:0b96f6867312 543 // learning mode, the device reports the raw signals read through
mjr 77:0b96f6867312 544 // the IR sensor to the PC through the special IR learning report
mjr 77:0b96f6867312 545 // (see "2G" above). If a signal can be decoded through a known
mjr 77:0b96f6867312 546 // protocol, the device sends a final "2G" report with the decoded
mjr 77:0b96f6867312 547 // command, then terminates learning mode. If no signal can be
mjr 77:0b96f6867312 548 // decoded within a timeout period, the mode automatically ends,
mjr 77:0b96f6867312 549 // and the device sends a final IR learning report with zero raw
mjr 77:0b96f6867312 550 // signals to indicate termination. After initiating IR learning
mjr 77:0b96f6867312 551 // mode, the user should point the remote control with the key to
mjr 77:0b96f6867312 552 // be learned at the IR sensor on the KL25Z, and press and hold the
mjr 77:0b96f6867312 553 // key on the remote for a few seconds. Holding the key for a few
mjr 77:0b96f6867312 554 // moments is important because it lets the decoder sense the type
mjr 77:0b96f6867312 555 // of auto-repeat coding the remote uses. The learned code can be
mjr 77:0b96f6867312 556 // written to an IR config variable slot to program the controller
mjr 77:0b96f6867312 557 // to send the learned command on events like TV ON or a button
mjr 77:0b96f6867312 558 // press.
mjr 77:0b96f6867312 559 //
mjr 78:1e00b3fa11af 560 // 13 -> Get button status report. The device sends one button status
mjr 78:1e00b3fa11af 561 // report in response (see section "2F" above).
mjr 78:1e00b3fa11af 562 //
mjr 78:1e00b3fa11af 563 // 14 -> Manually center the accelerometer. This sets the accelerometer
mjr 78:1e00b3fa11af 564 // zero point to the running average of readings over the past few
mjr 78:1e00b3fa11af 565 // seconds.
mjr 78:1e00b3fa11af 566 //
mjr 78:1e00b3fa11af 567 // 15 -> Set up ad hoc IR command, part 1. This sets up the first part
mjr 78:1e00b3fa11af 568 // of an IR command to transmit. The device stores the data in an
mjr 78:1e00b3fa11af 569 // internal register for later use in message 65 16. Send the
mjr 78:1e00b3fa11af 570 // remainder of the command data with 65 16.
mjr 78:1e00b3fa11af 571 //
mjr 78:1e00b3fa11af 572 // byte 3 = IR protocol ID
mjr 78:1e00b3fa11af 573 // byte 4 = flags (IRFlagXxx bit flags)
mjr 78:1e00b3fa11af 574 // byte 5-8 = low-order 32 bits of command code, little-endian
mjr 78:1e00b3fa11af 575 //
mjr 78:1e00b3fa11af 576 // 16 -> Finish and send an ad hoc IR command. Use message 65 15 first
mjr 78:1e00b3fa11af 577 // to set up the start of the command data, then send this message
mjr 78:1e00b3fa11af 578 // to fill in the rest of the data and transmit the command. Upon
mjr 78:1e00b3fa11af 579 // receiving this message, the device performs the transmission.
mjr 78:1e00b3fa11af 580 //
mjr 78:1e00b3fa11af 581 // byte 3-6 = high-order 32 bits of command code, little-endian
mjr 78:1e00b3fa11af 582 //
mjr 73:4e8ce0b18915 583 //
mjr 35:e959ffba78fd 584 // 66 -> Set configuration variable. The second byte of the message is the config
mjr 35:e959ffba78fd 585 // variable number, and the remaining bytes give the new value for the variable.
mjr 53:9b2611964afc 586 // The value format is specific to each variable; see the CONFIGURATION VARIABLES
mjr 53:9b2611964afc 587 // section below for a list of the variables and their formats. This command
mjr 53:9b2611964afc 588 // only sets the value in RAM; it doesn't write the value to flash and doesn't
mjr 53:9b2611964afc 589 // put the change into effect. To save the new settings, the host must send a
mjr 53:9b2611964afc 590 // type 65 subtype 6 message (see above). That saves the settings to flash and
mjr 53:9b2611964afc 591 // reboots the device, which makes the new settings active.
mjr 35:e959ffba78fd 592 //
mjr 74:822a92bc11d2 593 // 67 -> "SBX". This is an extended form of the original LedWiz SBA message. This
mjr 74:822a92bc11d2 594 // version is specifically designed to support a replacement LEDWIZ.DLL on the
mjr 74:822a92bc11d2 595 // host that exposes one Pinscape device as multiple virtual LedWiz devices,
mjr 74:822a92bc11d2 596 // in order to give legacy clients access to more than 32 ports. Each virtual
mjr 74:822a92bc11d2 597 // LedWiz represents a block of 32 ports. The format of this message is the
mjr 74:822a92bc11d2 598 // same as for the original SBA, with the addition of one byte:
mjr 74:822a92bc11d2 599 //
mjr 74:822a92bc11d2 600 // 67 xx xx xx xx ss pp 00
mjr 74:822a92bc11d2 601 // xx = on/off switches for 8 ports, one bit per port
mjr 74:822a92bc11d2 602 // ss = global flash speed setting for this bank of ports, 1-7
mjr 74:822a92bc11d2 603 // pp = port group: 0 for ports 1-32, 1 for ports 33-64, etc
mjr 74:822a92bc11d2 604 // 00 = unused/reserved; client should set to zero
mjr 74:822a92bc11d2 605 //
mjr 74:822a92bc11d2 606 // As with SBA, this sets the on/off switch states for a block of 32 ports.
mjr 74:822a92bc11d2 607 // SBA always addresses ports 1-32; SBX can address any set of 32 ports.
mjr 74:822a92bc11d2 608 //
mjr 74:822a92bc11d2 609 // We keep a separate speed setting for each group of 32 ports. The purpose
mjr 74:822a92bc11d2 610 // of the SBX extension is to allow a custom LEDWIZ.DLL to expose multiple
mjr 74:822a92bc11d2 611 // virtual LedWiz units to legacy clients, so clients will expect each unit
mjr 74:822a92bc11d2 612 // to have its separate flash speed setting. Each block of 32 ports maps to
mjr 74:822a92bc11d2 613 // a virtual unit on the client side, so each block needs its own speed state.
mjr 74:822a92bc11d2 614 //
mjr 74:822a92bc11d2 615 // 68 -> "PBX". This is an extended form of the original LedWiz PBA message; it's
mjr 74:822a92bc11d2 616 // the PBA equivalent of our SBX extension above.
mjr 74:822a92bc11d2 617 //
mjr 74:822a92bc11d2 618 // 68 pp ee ee ee ee ee ee
mjr 74:822a92bc11d2 619 // pp = port group: 0 for ports 1-8, 1 for 9-16, etc
mjr 74:822a92bc11d2 620 // qq = sequence number: 0 for the first 8 ports in the group, etc
mjr 74:822a92bc11d2 621 // ee = brightness/flash values, 6 bits per port, packed into the bytes
mjr 74:822a92bc11d2 622 //
mjr 74:822a92bc11d2 623 // The port group 'pp' selects a group of 8 ports. Note that, unlike PBA,
mjr 74:822a92bc11d2 624 // the port group being updated is explicitly coded in the message, which makes
mjr 74:822a92bc11d2 625 // the message stateless. This eliminates any possibility of the client and
mjr 74:822a92bc11d2 626 // host getting out of sync as to which ports they're talking about. This
mjr 74:822a92bc11d2 627 // message doesn't affect the PBA port address state.
mjr 74:822a92bc11d2 628 //
mjr 74:822a92bc11d2 629 // The brightness values are *almost* the same as in PBA, but not quite. We
mjr 74:822a92bc11d2 630 // remap the flashing state values as follows:
mjr 74:822a92bc11d2 631 //
mjr 74:822a92bc11d2 632 // 0-48 = brightness level, 0% to 100%, on a linear scale
mjr 74:822a92bc11d2 633 // 49 = brightness level 100% (redundant with 48)
mjr 74:822a92bc11d2 634 // 60 = PBA 129 equivalent, sawtooth
mjr 74:822a92bc11d2 635 // 61 = PBA 130 equivalent, square wave (on/off)
mjr 74:822a92bc11d2 636 // 62 = PBA 131 equivalent, on/fade down
mjr 74:822a92bc11d2 637 // 63 = PBA 132 equivalent, fade up/on
mjr 74:822a92bc11d2 638 //
mjr 74:822a92bc11d2 639 // We reassign the brightness levels like this because it allows us to pack
mjr 74:822a92bc11d2 640 // every possible value into 6 bits. This allows us to fit 8 port settings
mjr 74:822a92bc11d2 641 // into six bytes. The 6-bit fields are packed into the 8 bytes consecutively
mjr 74:822a92bc11d2 642 // starting with the low-order bit of the first byte. An efficient way to
mjr 74:822a92bc11d2 643 // pack the 'ee' fields given the brightness values is to shift each group of
mjr 74:822a92bc11d2 644 // four bytes into a uint, then shift the uint into three 'ee' bytes:
mjr 74:822a92bc11d2 645 //
mjr 74:822a92bc11d2 646 // unsigned int tmp1 = bri[0] | (bri[1]<<6) | (bri[2]<<12) | (bri[3]<<18);
mjr 74:822a92bc11d2 647 // unsigned int tmp2 = bri[4] | (bri[5]<<6) | (bri[6]<<12) | (bri[7]<<18);
mjr 74:822a92bc11d2 648 // unsigned char port_group = FIRST_PORT_TO_ADDRESS / 8;
mjr 74:822a92bc11d2 649 // unsigned char msg[8] = {
mjr 74:822a92bc11d2 650 // 68, pp,
mjr 74:822a92bc11d2 651 // tmp1 & 0xFF, (tmp1 >> 8) & 0xFF, (tmp1 >> 16) & 0xFF,
mjr 74:822a92bc11d2 652 // tmp2 & 0xFF, (tmp2 >> 8) & 0xFF, (tmp2 >> 16) & 0xFF
mjr 74:822a92bc11d2 653 // };
mjr 74:822a92bc11d2 654 //
mjr 35:e959ffba78fd 655 // 200-228 -> Set extended output brightness. This sets outputs N to N+6 to the
mjr 35:e959ffba78fd 656 // respective brightness values in the 2nd through 8th bytes of the message
mjr 35:e959ffba78fd 657 // (output N is set to the 2nd byte value, N+1 is set to the 3rd byte value,
mjr 35:e959ffba78fd 658 // etc). Each brightness level is a linear brightness level from 0-255,
mjr 35:e959ffba78fd 659 // where 0 is 0% brightness and 255 is 100% brightness. N is calculated as
mjr 35:e959ffba78fd 660 // (first byte - 200)*7 + 1:
mjr 35:e959ffba78fd 661 //
mjr 35:e959ffba78fd 662 // 200 = outputs 1-7
mjr 35:e959ffba78fd 663 // 201 = outputs 8-14
mjr 35:e959ffba78fd 664 // 202 = outputs 15-21
mjr 35:e959ffba78fd 665 // ...
mjr 35:e959ffba78fd 666 // 228 = outputs 197-203
mjr 35:e959ffba78fd 667 //
mjr 53:9b2611964afc 668 // This message is the way to address ports 33 and higher. Original LedWiz
mjr 53:9b2611964afc 669 // protocol messages can't access ports above 32, since the protocol is
mjr 53:9b2611964afc 670 // hard-wired for exactly 32 ports.
mjr 35:e959ffba78fd 671 //
mjr 53:9b2611964afc 672 // Note that the extended output messages differ from regular LedWiz commands
mjr 35:e959ffba78fd 673 // in two ways. First, the brightness is the ONLY attribute when an output is
mjr 53:9b2611964afc 674 // set using this mode. There's no separate ON/OFF state per output as there
mjr 35:e959ffba78fd 675 // is with the SBA/PBA messages. To turn an output OFF with this message, set
mjr 35:e959ffba78fd 676 // the intensity to 0. Setting a non-zero intensity turns it on immediately
mjr 35:e959ffba78fd 677 // without regard to the SBA status for the port. Second, the brightness is
mjr 35:e959ffba78fd 678 // on a full 8-bit scale (0-255) rather than the LedWiz's approximately 5-bit
mjr 35:e959ffba78fd 679 // scale, because there are no parts of the range reserved for flashing modes.
mjr 35:e959ffba78fd 680 //
mjr 35:e959ffba78fd 681 // Outputs 1-32 can be controlled by EITHER the regular LedWiz SBA/PBA messages
mjr 35:e959ffba78fd 682 // or by the extended messages. The latest setting for a given port takes
mjr 35:e959ffba78fd 683 // precedence. If an SBA/PBA message was the last thing sent to a port, the
mjr 35:e959ffba78fd 684 // normal LedWiz combination of ON/OFF and brightness/flash mode status is used
mjr 35:e959ffba78fd 685 // to determine the port's physical output setting. If an extended brightness
mjr 35:e959ffba78fd 686 // message was the last thing sent to a port, the LedWiz ON/OFF status and
mjr 35:e959ffba78fd 687 // flash modes are ignored, and the fixed brightness is set. Outputs 33 and
mjr 35:e959ffba78fd 688 // higher inherently can't be addressed or affected by SBA/PBA messages.
mjr 53:9b2611964afc 689 //
mjr 53:9b2611964afc 690 // (The precedence scheme is designed to accommodate a mix of legacy and DOF
mjr 53:9b2611964afc 691 // software transparently. The behavior described is really just to ensure
mjr 53:9b2611964afc 692 // transparent interoperability; it's not something that host software writers
mjr 53:9b2611964afc 693 // should have to worry about. We expect that anyone writing new software will
mjr 53:9b2611964afc 694 // just use the extended protocol and ignore the old LedWiz commands, since
mjr 53:9b2611964afc 695 // the extended protocol is easier to use and more powerful.)
mjr 35:e959ffba78fd 696
mjr 35:e959ffba78fd 697
mjr 35:e959ffba78fd 698 // ------- CONFIGURATION VARIABLES -------
mjr 35:e959ffba78fd 699 //
mjr 35:e959ffba78fd 700 // Message type 66 (see above) sets one configuration variable. The second byte
mjr 35:e959ffba78fd 701 // of the message is the variable ID, and the rest of the bytes give the new
mjr 35:e959ffba78fd 702 // value, in a variable-specific format. 16-bit values are little endian.
mjr 55:4db125cd11a0 703 // Any bytes at the end of the message not otherwise specified are reserved
mjr 55:4db125cd11a0 704 // for future use and should always be set to 0 in the message data.
mjr 35:e959ffba78fd 705 //
mjr 77:0b96f6867312 706 // Variable IDs:
mjr 77:0b96f6867312 707 //
mjr 53:9b2611964afc 708 // 0 -> QUERY ONLY: Describe the configuration variables. The device
mjr 53:9b2611964afc 709 // sends a config variable query report with the following fields:
mjr 53:9b2611964afc 710 //
mjr 53:9b2611964afc 711 // byte 3 -> number of scalar (non-array) variables (these are
mjr 53:9b2611964afc 712 // numbered sequentially from 1 to N)
mjr 53:9b2611964afc 713 // byte 4 -> number of array variables (these are numbered
mjr 53:9b2611964afc 714 // sequentially from 256-N to 255)
mjr 53:9b2611964afc 715 //
mjr 53:9b2611964afc 716 // The description query is meant to allow the host to capture all
mjr 53:9b2611964afc 717 // configuration settings on the device without having to know what
mjr 53:9b2611964afc 718 // the variables mean or how many there are. This is useful for
mjr 53:9b2611964afc 719 // backing up the settings in a file on the PC, for example, or for
mjr 53:9b2611964afc 720 // capturing them to restore after a firmware update. This allows
mjr 53:9b2611964afc 721 // more flexible interoperability between unsynchronized versions
mjr 53:9b2611964afc 722 // of the firmware and the host software.
mjr 53:9b2611964afc 723 //
mjr 53:9b2611964afc 724 // 1 -> USB device ID. This sets the USB vendor and product ID codes
mjr 53:9b2611964afc 725 // to use when connecting to the PC. For LedWiz emulation, use
mjr 35:e959ffba78fd 726 // vendor 0xFAFA and product 0x00EF + unit# (where unit# is the
mjr 53:9b2611964afc 727 // nominal LedWiz unit number, from 1 to 16). If you have any
mjr 53:9b2611964afc 728 // REAL LedWiz units in your system, we recommend starting the
mjr 53:9b2611964afc 729 // Pinscape LedWiz numbering at 8 to avoid conflicts with the
mjr 53:9b2611964afc 730 // real LedWiz units. If you don't have any real LedWiz units,
mjr 53:9b2611964afc 731 // you can number your Pinscape units starting from 1.
mjr 35:e959ffba78fd 732 //
mjr 53:9b2611964afc 733 // If LedWiz emulation isn't desired or causes host conflicts,
mjr 53:9b2611964afc 734 // use our private ID: Vendor 0x1209, product 0xEAEA. (These IDs
mjr 53:9b2611964afc 735 // are registered with http://pid.codes, a registry for open-source
mjr 53:9b2611964afc 736 // USB devices, so they're guaranteed to be free of conflicts with
mjr 53:9b2611964afc 737 // other properly registered devices). The device will NOT appear
mjr 53:9b2611964afc 738 // as an LedWiz if you use the private ID codes, but DOF (R3 or
mjr 53:9b2611964afc 739 // later) will still recognize it as a Pinscape controller.
mjr 53:9b2611964afc 740 //
mjr 53:9b2611964afc 741 // bytes 3:4 -> USB Vendor ID
mjr 53:9b2611964afc 742 // bytes 5:6 -> USB Product ID
mjr 53:9b2611964afc 743 //
mjr 53:9b2611964afc 744 // 2 -> Pinscape Controller unit number for DOF. The Pinscape unit
mjr 53:9b2611964afc 745 // number is independent of the LedWiz unit number, and indepedent
mjr 53:9b2611964afc 746 // of the USB vendor/product IDs. DOF (R3 and later) uses this to
mjr 53:9b2611964afc 747 // identify the unit for the extended Pinscape functionality.
mjr 53:9b2611964afc 748 // For easiest DOF configuration, we recommend numbering your
mjr 53:9b2611964afc 749 // units sequentially starting at 1 (regardless of whether or not
mjr 53:9b2611964afc 750 // you have any real LedWiz units).
mjr 53:9b2611964afc 751 //
mjr 53:9b2611964afc 752 // byte 3 -> unit number, from 1 to 16
mjr 35:e959ffba78fd 753 //
mjr 55:4db125cd11a0 754 // 3 -> Enable/disable joystick reports.
mjr 55:4db125cd11a0 755 //
mjr 55:4db125cd11a0 756 // byte 2 -> 1 to enable, 0 to disable
mjr 35:e959ffba78fd 757 //
mjr 55:4db125cd11a0 758 // When joystick reports are disabled, the device registers as a generic HID
mjr 55:4db125cd11a0 759 // device, and only sends the private report types used by the Windows config
mjr 55:4db125cd11a0 760 // tool. It won't appear to Windows as a USB game controller or joystick.
mjr 55:4db125cd11a0 761 //
mjr 55:4db125cd11a0 762 // Note that this doesn't affect whether the device also registers a keyboard
mjr 55:4db125cd11a0 763 // interface. A keyboard interface will appear if and only if any buttons
mjr 55:4db125cd11a0 764 // (including virtual buttons, such as the ZB Launch Ball feature) are assigned
mjr 55:4db125cd11a0 765 // to generate keyboard key input.
mjr 55:4db125cd11a0 766 //
mjr 77:0b96f6867312 767 // 4 -> Accelerometer settings
mjr 35:e959ffba78fd 768 //
mjr 55:4db125cd11a0 769 // byte 3 -> orientation:
mjr 55:4db125cd11a0 770 // 0 = ports at front (USB ports pointing towards front of cabinet)
mjr 55:4db125cd11a0 771 // 1 = ports at left
mjr 55:4db125cd11a0 772 // 2 = ports at right
mjr 55:4db125cd11a0 773 // 3 = ports at rear
mjr 77:0b96f6867312 774 // byte 4 -> dynamic range
mjr 78:1e00b3fa11af 775 // 0 = +/- 1G (2G hardware mode, but rescales joystick reports to 1G
mjr 78:1e00b3fa11af 776 // range; compatible with older versions)
mjr 77:0b96f6867312 777 // 1 = +/- 2G (2G hardware mode)
mjr 77:0b96f6867312 778 // 2 = +/- 4G (4G hardware mode)
mjr 77:0b96f6867312 779 // 3 = +/- 8G (8G hardware mode)
mjr 78:1e00b3fa11af 780 // byte 5 -> Auto-centering mode
mjr 78:1e00b3fa11af 781 // 0 = auto-centering on, 5 second timer (default, compatible
mjr 78:1e00b3fa11af 782 // with older versions)
mjr 78:1e00b3fa11af 783 // 1-60 = auto-centering on with the given time in seconds
mjr 78:1e00b3fa11af 784 // 61-245 = reserved
mjr 78:1e00b3fa11af 785 // 255 = auto-centering off; manual centering only
mjr 55:4db125cd11a0 786 //
mjr 55:4db125cd11a0 787 // 5 -> Plunger sensor type.
mjr 35:e959ffba78fd 788 //
mjr 55:4db125cd11a0 789 // byte 3 -> plunger type:
mjr 55:4db125cd11a0 790 // 0 = none (disabled)
mjr 55:4db125cd11a0 791 // 1 = TSL1410R linear image sensor, 1280x1 pixels, serial mode
mjr 55:4db125cd11a0 792 // *2 = TSL1410R, parallel mode
mjr 55:4db125cd11a0 793 // 3 = TSL1412R linear image sensor, 1536x1 pixels, serial mode
mjr 55:4db125cd11a0 794 // *4 = TSL1412R, parallel mode
mjr 55:4db125cd11a0 795 // 5 = Potentiometer with linear taper, or any other device that
mjr 55:4db125cd11a0 796 // represents the position reading with a single analog voltage
mjr 55:4db125cd11a0 797 // *6 = AEDR8300 optical quadrature sensor, 75lpi
mjr 55:4db125cd11a0 798 // *7 = AS5304 magnetic quadrature sensor, 160 steps per 2mm
mjr 55:4db125cd11a0 799 //
mjr 55:4db125cd11a0 800 // * The sensor types marked with asterisks (*) are reserved for types
mjr 55:4db125cd11a0 801 // that aren't currently implemented but could be added in the future.
mjr 55:4db125cd11a0 802 // Selecting these types will effectively disable the plunger.
mjr 55:4db125cd11a0 803 //
mjr 55:4db125cd11a0 804 // 6 -> Plunger pin assignments.
mjr 47:df7a88cd249c 805 //
mjr 55:4db125cd11a0 806 // byte 3 -> pin assignment 1
mjr 55:4db125cd11a0 807 // byte 4 -> pin assignment 2
mjr 55:4db125cd11a0 808 // byte 5 -> pin assignment 3
mjr 55:4db125cd11a0 809 // byte 6 -> pin assignment 4
mjr 55:4db125cd11a0 810 //
mjr 55:4db125cd11a0 811 // All of the pins use the standard GPIO port format (see "GPIO pin number
mjr 55:4db125cd11a0 812 // mappings" below). The actual use of the four pins depends on the plunger
mjr 55:4db125cd11a0 813 // type, as shown below. "NC" means that the pin isn't used at all for the
mjr 55:4db125cd11a0 814 // corresponding plunger type.
mjr 35:e959ffba78fd 815 //
mjr 55:4db125cd11a0 816 // Plunger Type Pin 1 Pin 2 Pin 3 Pin 4
mjr 35:e959ffba78fd 817 //
mjr 55:4db125cd11a0 818 // TSL1410R/1412R, serial SI (DigitalOut) CLK (DigitalOut) AO (AnalogIn) NC
mjr 55:4db125cd11a0 819 // TSL1410R/1412R, parallel SI (DigitalOut) CLK (DigitalOut) AO1 (AnalogIn) AO2 (AnalogIn)
mjr 55:4db125cd11a0 820 // Potentiometer AO (AnalogIn) NC NC NC
mjr 55:4db125cd11a0 821 // AEDR8300 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 822 // AS5304 A (InterruptIn) B (InterruptIn) NC NC
mjr 55:4db125cd11a0 823 //
mjr 55:4db125cd11a0 824 // 7 -> Plunger calibration button pin assignments.
mjr 35:e959ffba78fd 825 //
mjr 55:4db125cd11a0 826 // byte 3 -> features enabled/disabled: bit mask consisting of:
mjr 55:4db125cd11a0 827 // 0x01 button input is enabled
mjr 55:4db125cd11a0 828 // 0x02 lamp output is enabled
mjr 55:4db125cd11a0 829 // byte 4 -> DigitalIn pin for the button switch
mjr 55:4db125cd11a0 830 // byte 5 -> DigitalOut pin for the indicator lamp
mjr 55:4db125cd11a0 831 //
mjr 55:4db125cd11a0 832 // Note that setting a pin to NC (Not Connected) will disable it even if the
mjr 55:4db125cd11a0 833 // corresponding feature enable bit (in byte 3) is set.
mjr 35:e959ffba78fd 834 //
mjr 55:4db125cd11a0 835 // 8 -> ZB Launch Ball setup. This configures the ZB Launch Ball feature.
mjr 55:4db125cd11a0 836 //
mjr 55:4db125cd11a0 837 // byte 3 -> LedWiz port number (1-255) mapped to "ZB Launch Ball" in DOF
mjr 55:4db125cd11a0 838 // byte 4 -> key type
mjr 55:4db125cd11a0 839 // byte 5 -> key code
mjr 55:4db125cd11a0 840 // bytes 6:7 -> "push" distance, in 1/1000 inch increments (16 bit little endian)
mjr 55:4db125cd11a0 841 //
mjr 55:4db125cd11a0 842 // Set the port number to 0 to disable the feature. The key type and key code
mjr 55:4db125cd11a0 843 // fields use the same conventions as for a button mapping (see below). The
mjr 55:4db125cd11a0 844 // recommended push distance is 63, which represents .063" ~ 1/16".
mjr 35:e959ffba78fd 845 //
mjr 35:e959ffba78fd 846 // 9 -> TV ON relay setup. This requires external circuitry implemented on the
mjr 35:e959ffba78fd 847 // Expansion Board (or an equivalent circuit as described in the Build Guide).
mjr 55:4db125cd11a0 848 //
mjr 55:4db125cd11a0 849 // byte 3 -> "power status" input pin (DigitalIn)
mjr 55:4db125cd11a0 850 // byte 4 -> "latch" output (DigitalOut)
mjr 55:4db125cd11a0 851 // byte 5 -> relay trigger output (DigitalOut)
mjr 55:4db125cd11a0 852 // bytes 6:7 -> delay time in 10ms increments (16 bit little endian);
mjr 55:4db125cd11a0 853 // e.g., 550 (0x26 0x02) represents 5.5 seconds
mjr 55:4db125cd11a0 854 //
mjr 55:4db125cd11a0 855 // Set the delay time to 0 to disable the feature. The pin assignments will
mjr 55:4db125cd11a0 856 // be ignored if the feature is disabled.
mjr 35:e959ffba78fd 857 //
mjr 77:0b96f6867312 858 // If an IR remote control transmitter is installed (see variable 17), we'll
mjr 77:0b96f6867312 859 // also transmit any IR codes designated as TV ON codes when the startup timer
mjr 77:0b96f6867312 860 // finishes. This allows TVs to be turned on via IR remotes codes rather than
mjr 77:0b96f6867312 861 // hard-wiring them through the relay. The relay can be omitted in this case.
mjr 77:0b96f6867312 862 //
mjr 35:e959ffba78fd 863 // 10 -> TLC5940NT setup. This chip is an external PWM controller, with 32 outputs
mjr 35:e959ffba78fd 864 // per chip and a serial data interface that allows the chips to be daisy-
mjr 35:e959ffba78fd 865 // chained. We can use these chips to add an arbitrary number of PWM output
mjr 55:4db125cd11a0 866 // ports for the LedWiz emulation.
mjr 55:4db125cd11a0 867 //
mjr 35:e959ffba78fd 868 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 869 // byte 4 = SIN pin - Serial data (must connect to SPIO MOSI -> PTC6 or PTD2)
mjr 35:e959ffba78fd 870 // byte 5 = SCLK pin - Serial clock (must connect to SPIO SCLK -> PTC5 or PTD1)
mjr 35:e959ffba78fd 871 // byte 6 = XLAT pin - XLAT (latch) signal (any GPIO pin)
mjr 35:e959ffba78fd 872 // byte 7 = BLANK pin - BLANK signal (any GPIO pin)
mjr 35:e959ffba78fd 873 // byte 8 = GSCLK pin - Grayscale clock signal (must be a PWM-out capable pin)
mjr 35:e959ffba78fd 874 //
mjr 55:4db125cd11a0 875 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 876 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 877 //
mjr 35:e959ffba78fd 878 // 11 -> 74HC595 setup. This chip is an external shift register, with 8 outputs per
mjr 35:e959ffba78fd 879 // chip and a serial data interface that allows daisy-chaining. We use this
mjr 35:e959ffba78fd 880 // chips to add extra digital outputs for the LedWiz emulation. In particular,
mjr 35:e959ffba78fd 881 // the Chime Board (part of the Expansion Board suite) uses these to add timer-
mjr 55:4db125cd11a0 882 // protected outputs for coil devices (knockers, chimes, bells, etc).
mjr 55:4db125cd11a0 883 //
mjr 35:e959ffba78fd 884 // byte 3 = number of chips attached (connected in daisy chain)
mjr 35:e959ffba78fd 885 // byte 4 = SIN pin - Serial data (any GPIO pin)
mjr 35:e959ffba78fd 886 // byte 5 = SCLK pin - Serial clock (any GPIO pin)
mjr 35:e959ffba78fd 887 // byte 6 = LATCH pin - LATCH signal (any GPIO pin)
mjr 35:e959ffba78fd 888 // byte 7 = ENA pin - ENABLE signal (any GPIO pin)
mjr 35:e959ffba78fd 889 //
mjr 55:4db125cd11a0 890 // Set the number of chips to 0 to disable the feature. The pin assignments are
mjr 55:4db125cd11a0 891 // ignored if the feature is disabled.
mjr 55:4db125cd11a0 892 //
mjr 53:9b2611964afc 893 // 12 -> Disconnect reboot timeout. The reboot timeout allows the controller software
mjr 51:57eb311faafa 894 // to automatically reboot the KL25Z after it detects that the USB connection is
mjr 51:57eb311faafa 895 // broken. On some hosts, the device isn't able to reconnect after the initial
mjr 51:57eb311faafa 896 // connection is lost. The reboot timeout is a workaround for these cases. When
mjr 51:57eb311faafa 897 // the software detects that the connection is no longer active, it will reboot
mjr 51:57eb311faafa 898 // the KL25Z automatically if a new connection isn't established within the
mjr 55:4db125cd11a0 899 // timeout period. Set the timeout to 0 to disable the feature (i.e., the device
mjr 55:4db125cd11a0 900 // will never automatically reboot itself on a broken connection).
mjr 55:4db125cd11a0 901 //
mjr 55:4db125cd11a0 902 // byte 3 -> reboot timeout in seconds; 0 = disabled
mjr 51:57eb311faafa 903 //
mjr 53:9b2611964afc 904 // 13 -> Plunger calibration. In most cases, the calibration is set internally by the
mjr 52:8298b2a73eb2 905 // device by running the calibration procedure. However, it's sometimes useful
mjr 52:8298b2a73eb2 906 // for the host to be able to get and set the calibration, such as to back up
mjr 52:8298b2a73eb2 907 // the device settings on the PC, or to save and restore the current settings
mjr 52:8298b2a73eb2 908 // when installing a software update.
mjr 52:8298b2a73eb2 909 //
mjr 52:8298b2a73eb2 910 // bytes 3:4 = rest position (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 911 // bytes 5:6 = maximum retraction point (unsigned 16-bit little-endian)
mjr 52:8298b2a73eb2 912 // byte 7 = measured plunger release travel time in milliseconds
mjr 52:8298b2a73eb2 913 //
mjr 53:9b2611964afc 914 // 14 -> Expansion board configuration. This doesn't affect the controller behavior
mjr 52:8298b2a73eb2 915 // directly; the individual options related to the expansion boards (such as
mjr 52:8298b2a73eb2 916 // the TLC5940 and 74HC595 setup) still need to be set separately. This is
mjr 52:8298b2a73eb2 917 // stored so that the PC config UI can store and recover the information to
mjr 52:8298b2a73eb2 918 // present in the UI. For the "classic" KL25Z-only configuration, simply set
mjr 52:8298b2a73eb2 919 // all of the fields to zero.
mjr 52:8298b2a73eb2 920 //
mjr 53:9b2611964afc 921 // byte 3 = board set type. At the moment, the Pinscape expansion boards
mjr 53:9b2611964afc 922 // are the only ones supported in the software. This allows for
mjr 53:9b2611964afc 923 // adding new designs or independent designs in the future.
mjr 53:9b2611964afc 924 // 0 = Standalone KL25Z (no expansion boards)
mjr 53:9b2611964afc 925 // 1 = Pinscape expansion boards
mjr 53:9b2611964afc 926 //
mjr 53:9b2611964afc 927 // byte 4 = board set interface revision. This *isn't* the version number
mjr 53:9b2611964afc 928 // of the board itself, but rather of its software interface. In
mjr 53:9b2611964afc 929 // other words, this doesn't change every time the EAGLE layout
mjr 53:9b2611964afc 930 // for the board changes. It only changes when a revision is made
mjr 53:9b2611964afc 931 // that affects the software, such as a GPIO pin assignment.
mjr 53:9b2611964afc 932 //
mjr 55:4db125cd11a0 933 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 934 // 0 = first release (Feb 2016)
mjr 53:9b2611964afc 935 //
mjr 55:4db125cd11a0 936 // bytes 5:8 = additional hardware-specific data. These slots are used
mjr 55:4db125cd11a0 937 // to store extra data specific to the expansion boards selected.
mjr 55:4db125cd11a0 938 //
mjr 55:4db125cd11a0 939 // For Pinscape expansion boards (board set type = 1):
mjr 55:4db125cd11a0 940 // byte 5 = number of main interface boards
mjr 55:4db125cd11a0 941 // byte 6 = number of MOSFET power boards
mjr 55:4db125cd11a0 942 // byte 7 = number of chime boards
mjr 53:9b2611964afc 943 //
mjr 53:9b2611964afc 944 // 15 -> Night mode setup.
mjr 53:9b2611964afc 945 //
mjr 53:9b2611964afc 946 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none. This selects
mjr 53:9b2611964afc 947 // a physically wired button that can be used to control night mode.
mjr 53:9b2611964afc 948 // The button can also be used as normal for PC input if desired.
mjr 55:4db125cd11a0 949 // Note that night mode can still be activated via a USB command
mjr 55:4db125cd11a0 950 // even if no button is assigned.
mjr 55:4db125cd11a0 951 //
mjr 53:9b2611964afc 952 // byte 4 = flags:
mjr 66:2e3583fbd2f4 953 //
mjr 66:2e3583fbd2f4 954 // 0x01 -> The wired input is an on/off switch: night mode will be
mjr 53:9b2611964afc 955 // active when the input is switched on. If this bit isn't
mjr 66:2e3583fbd2f4 956 // set, the input is a momentary button: pushing the button
mjr 53:9b2611964afc 957 // toggles night mode.
mjr 55:4db125cd11a0 958 //
mjr 66:2e3583fbd2f4 959 // 0x02 -> Night Mode is assigned to the SHIFTED button (see Shift
mjr 66:2e3583fbd2f4 960 // Button setup at variable 16). This can only be used
mjr 66:2e3583fbd2f4 961 // in momentary mode; it's ignored if flag bit 0x01 is set.
mjr 66:2e3583fbd2f4 962 // When the shift flag is set, the button only toggles
mjr 66:2e3583fbd2f4 963 // night mode when you press it while also holding down
mjr 66:2e3583fbd2f4 964 // the Shift button.
mjr 66:2e3583fbd2f4 965 //
mjr 53:9b2611964afc 966 // byte 5 = indicator output number - 1..MAX_OUT_PORTS, or 0 for none. This
mjr 53:9b2611964afc 967 // selects an output port that will be turned on when night mode is
mjr 53:9b2611964afc 968 // activated. Night mode activation overrides any setting made by
mjr 53:9b2611964afc 969 // the host.
mjr 53:9b2611964afc 970 //
mjr 66:2e3583fbd2f4 971 // 16 -> Shift Button setup. One button can be designated as a "Local Shift
mjr 66:2e3583fbd2f4 972 // Button" that can be pressed to select a secondary meaning for other
mjr 78:1e00b3fa11af 973 // buttons. This isn't the same as the PC keyboard Shift keys; those can
mjr 66:2e3583fbd2f4 974 // be programmed using the USB key codes for Left Shift and Right Shift.
mjr 66:2e3583fbd2f4 975 // Rather, this applies a LOCAL shift feature in the cabinet button that
mjr 66:2e3583fbd2f4 976 // lets you select a secondary meaning. For example, you could assign
mjr 66:2e3583fbd2f4 977 // the Start button to the "1" key (VP "Start Game") normally, but have
mjr 66:2e3583fbd2f4 978 // its meaning change to the "5" key ("Insert Coin") when the shift
mjr 66:2e3583fbd2f4 979 // button is pressed. This provides access to more control functions
mjr 66:2e3583fbd2f4 980 // without adding more physical buttons.
mjr 66:2e3583fbd2f4 981 //
mjr 78:1e00b3fa11af 982 // byte 3 = button number - 1..MAX_BUTTONS, or 0 for none
mjr 78:1e00b3fa11af 983 // byte 4 = mode (default is 0):
mjr 66:2e3583fbd2f4 984 //
mjr 78:1e00b3fa11af 985 // 0 -> Shift OR Key mode. In this mode, the Shift button doesn't
mjr 78:1e00b3fa11af 986 // send its assigned key or IR command when initially pressed.
mjr 78:1e00b3fa11af 987 // Instead, we wait to see if another button is pressed while
mjr 78:1e00b3fa11af 988 // the Shift button is held down. If so, this Shift button
mjr 78:1e00b3fa11af 989 // press ONLY counts as the Shift function, and its own assigned
mjr 78:1e00b3fa11af 990 // key is NOT sent to the PC. On the other hand, if you press
mjr 78:1e00b3fa11af 991 // the Shift button and then release it without having pressed
mjr 78:1e00b3fa11af 992 // any other key in the meantime, this press counts as a regular
mjr 78:1e00b3fa11af 993 // key press, so we send the assigned key to the PC.
mjr 78:1e00b3fa11af 994 //
mjr 78:1e00b3fa11af 995 // 1 -> Shift AND Key mode. In this mode, the Shift button sends its
mjr 78:1e00b3fa11af 996 // assigned key when pressed, just like a normal button. If you
mjr 78:1e00b3fa11af 997 // press another button while the Shift key is pressed, the
mjr 78:1e00b3fa11af 998 // shifted meaning of the other key is used.
mjr 66:2e3583fbd2f4 999 //
mjr 77:0b96f6867312 1000 // 17 -> IR Remote Control physical device setup. We support IR remotes for
mjr 77:0b96f6867312 1001 // both sending and receiving. On the receive side, we can read from a
mjr 77:0b96f6867312 1002 // sensor such as a TSOP384xx. The sensor requires one GPIO pin with
mjr 77:0b96f6867312 1003 // interrupt support, so any PTAxx or PTDxx pin will work. On the send
mjr 77:0b96f6867312 1004 // side, we can transmit through any IR LED. This requires one PWM
mjr 77:0b96f6867312 1005 // output pin. To enable send and/or receive, specify a valid pin; to
mjr 77:0b96f6867312 1006 // disable, set the pin NC (not connected). Send and receive can be
mjr 77:0b96f6867312 1007 // enabled and disabled independently; it's not necessary to enable
mjr 77:0b96f6867312 1008 // the transmit function to use the receive function, or vice versa.
mjr 77:0b96f6867312 1009 //
mjr 77:0b96f6867312 1010 // byte 3 = receiver input GPIO pin ID. Must be interrupt-capable.
mjr 77:0b96f6867312 1011 // byte 4 = transmitter pin. Must be PWM-capable.
mjr 77:0b96f6867312 1012 //
mjr 53:9b2611964afc 1013 //
mjr 74:822a92bc11d2 1014 // SPECIAL DIAGNOSTICS VARIABLES: These work like the array variables below,
mjr 74:822a92bc11d2 1015 // the only difference being that we don't report these in the number of array
mjr 74:822a92bc11d2 1016 // variables reported in the "variable 0" query.
mjr 74:822a92bc11d2 1017 //
mjr 74:822a92bc11d2 1018 // 220 -> Performance/diagnostics variables. Items marked "read only" can't
mjr 74:822a92bc11d2 1019 // be written; any SET VARIABLE messages on these are ignored. Items
mjr 74:822a92bc11d2 1020 // marked "diagnostic only" refer to counters or statistics that are
mjr 74:822a92bc11d2 1021 // collected only when the diagnostics are enabled via the diags.h
mjr 74:822a92bc11d2 1022 // macro ENABLE_DIAGNOSTICS. These will simply return zero otherwise.
mjr 74:822a92bc11d2 1023 //
mjr 74:822a92bc11d2 1024 // byte 3 = diagnostic index (see below)
mjr 74:822a92bc11d2 1025 //
mjr 74:822a92bc11d2 1026 // Diagnostic index values:
mjr 74:822a92bc11d2 1027 //
mjr 74:822a92bc11d2 1028 // 1 -> Main loop cycle time [read only, diagnostic only]
mjr 74:822a92bc11d2 1029 // Retrieves the average time of one iteration of the main
mjr 74:822a92bc11d2 1030 // loop, in microseconds, as a uint32. This excludes the
mjr 74:822a92bc11d2 1031 // time spent processing incoming messages, as well as any
mjr 74:822a92bc11d2 1032 // time spent waiting for a dropped USB connection to be
mjr 74:822a92bc11d2 1033 // restored. This includes all subroutine time and polled
mjr 74:822a92bc11d2 1034 // task time, such as processing button and plunger input,
mjr 74:822a92bc11d2 1035 // sending USB joystick reports, etc.
mjr 74:822a92bc11d2 1036 //
mjr 74:822a92bc11d2 1037 // 2 -> Main loop message read time [read only, diagnostic only]
mjr 74:822a92bc11d2 1038 // Retrieves the average time spent processing incoming USB
mjr 74:822a92bc11d2 1039 // messages per iteration of the main loop, in microseconds,
mjr 74:822a92bc11d2 1040 // as a uint32. This only counts the processing time when
mjr 74:822a92bc11d2 1041 // messages are actually present, so the average isn't reduced
mjr 74:822a92bc11d2 1042 // by iterations of the main loop where no messages are found.
mjr 74:822a92bc11d2 1043 // That is, if we run a million iterations of the main loop,
mjr 74:822a92bc11d2 1044 // and only five of them have messages at all, the average time
mjr 74:822a92bc11d2 1045 // includes only those five cycles with messages to process.
mjr 74:822a92bc11d2 1046 //
mjr 74:822a92bc11d2 1047 // 3 -> PWM update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1048 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1049 // spent in the PWM update polling routine.
mjr 74:822a92bc11d2 1050 //
mjr 74:822a92bc11d2 1051 // 4 -> LedWiz update polling time [read only, diagnostic only]
mjr 74:822a92bc11d2 1052 // Retrieves the average time, as a uint32 in microseconds,
mjr 74:822a92bc11d2 1053 // units, spent in the LedWiz flash cycle update routine.
mjr 74:822a92bc11d2 1054 //
mjr 74:822a92bc11d2 1055 //
mjr 53:9b2611964afc 1056 // ARRAY VARIABLES: Each variable below is an array. For each get/set message,
mjr 53:9b2611964afc 1057 // byte 3 gives the array index. These are grouped at the top end of the variable
mjr 53:9b2611964afc 1058 // ID range to distinguish this special feature. On QUERY, set the index byte to 0
mjr 53:9b2611964afc 1059 // to query the number of slots; the reply will be a report for the array index
mjr 53:9b2611964afc 1060 // variable with index 0, with the first (and only) byte after that indicating
mjr 53:9b2611964afc 1061 // the maximum array index.
mjr 53:9b2611964afc 1062 //
mjr 77:0b96f6867312 1063 // 250 -> IR remote control commands - code part 2. This stores the high-order
mjr 77:0b96f6867312 1064 // 32 bits of the remote control for each slot. These are combined with
mjr 77:0b96f6867312 1065 // the low-order 32 bits from variable 251 below to form a 64-bit code.
mjr 77:0b96f6867312 1066 //
mjr 77:0b96f6867312 1067 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1068 // byte 4 = bits 32..39 of remote control command code
mjr 77:0b96f6867312 1069 // byte 5 = bits 40..47
mjr 77:0b96f6867312 1070 // byte 6 = bits 48..55
mjr 77:0b96f6867312 1071 // byte 7 = bits 56..63
mjr 77:0b96f6867312 1072 //
mjr 77:0b96f6867312 1073 // 251 -> IR remote control commands - code part 1. This stores the protocol
mjr 77:0b96f6867312 1074 // identifier and low-order 32 bits of the remote control code for each
mjr 77:0b96f6867312 1075 // remote control command slot. The code represents a key press on a
mjr 77:0b96f6867312 1076 // remote, and is usually determined by reading it from the device's
mjr 77:0b96f6867312 1077 // actual remote via the IR sensor input feature. These codes combine
mjr 77:0b96f6867312 1078 // with variable 250 above to form a 64-bit code for each slot.
mjr 77:0b96f6867312 1079 // See IRRemote/IRProtocolID.h for the protocol ID codes.
mjr 77:0b96f6867312 1080 //
mjr 77:0b96f6867312 1081 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1082 // byte 4 = protocol ID
mjr 77:0b96f6867312 1083 // byte 5 = bits 0..7 of remote control command code
mjr 77:0b96f6867312 1084 // byte 6 = bits 8..15
mjr 77:0b96f6867312 1085 // byte 7 = bits 16..23
mjr 77:0b96f6867312 1086 // byte 8 = bits 24..31
mjr 77:0b96f6867312 1087 //
mjr 77:0b96f6867312 1088 // 252 -> IR remote control commands - control information. This stores
mjr 77:0b96f6867312 1089 // descriptive information for each remote control command slot.
mjr 77:0b96f6867312 1090 // The IR code for each slot is stored in the corresponding array
mjr 77:0b96f6867312 1091 // entry in variables 251 & 250 above; the information is split over
mjr 77:0b96f6867312 1092 // several variables like this because of the 8-byte command message
mjr 77:0b96f6867312 1093 // size in our USB protocol (which we use for LedWiz compatibility).
mjr 77:0b96f6867312 1094 //
mjr 77:0b96f6867312 1095 // byte 3 = Command slot number (1..MAX_IR_CODES)
mjr 77:0b96f6867312 1096 // byte 4 = bit flags:
mjr 77:0b96f6867312 1097 // 0x01 -> send this code as a TV ON signal at system start
mjr 77:0b96f6867312 1098 // 0x02 -> use "ditto" codes when sending the command
mjr 77:0b96f6867312 1099 // byte 5 = key type; same as the key type in an input button variable
mjr 77:0b96f6867312 1100 // byte 6 = key code; same as the key code in an input button variable
mjr 77:0b96f6867312 1101 //
mjr 77:0b96f6867312 1102 // Each IR command slot can serve three purposes:
mjr 77:0b96f6867312 1103 //
mjr 77:0b96f6867312 1104 // - First, it can be used as part of the TV ON sequence when the
mjr 77:0b96f6867312 1105 // system powers up, to turn on cabinet TVs that don't power up by
mjr 77:0b96f6867312 1106 // themselves. To use this feature, set the TV ON bit in the flags.
mjr 77:0b96f6867312 1107 //
mjr 77:0b96f6867312 1108 // - Second, when the IR sensor receives a command in a given slot, we
mjr 77:0b96f6867312 1109 // can translate it into a keyboard key or joystick button press sent
mjr 77:0b96f6867312 1110 // to the PC. This lets you use any IR remote to send commands to the
mjr 77:0b96f6867312 1111 // PC, allowing access to additional control inputs without any extra
mjr 77:0b96f6867312 1112 // buttons on the cabinet. To use this feature, assign the key to
mjr 77:0b96f6867312 1113 // send in the key type and key code bytes.
mjr 77:0b96f6867312 1114 //
mjr 77:0b96f6867312 1115 // - Third, we can send a given IR command when a physical cabinet
mjr 77:0b96f6867312 1116 // button is pressed. This lets you use cabinet buttons to send IR
mjr 77:0b96f6867312 1117 // commands to other devices in your system. For example, you could
mjr 77:0b96f6867312 1118 // assign cabinet buttons to control the volume on a cab TV. To use
mjr 77:0b96f6867312 1119 // this feature, assign an IR slot as a button function in the button
mjr 77:0b96f6867312 1120 // setup.
mjr 77:0b96f6867312 1121 //
mjr 66:2e3583fbd2f4 1122 // 253 -> Extended input button setup. This adds on to the information set by
mjr 66:2e3583fbd2f4 1123 // variable 254 below, accessing additional fields. The "shifted" key
mjr 66:2e3583fbd2f4 1124 // type and code fields assign a secondary meaning to the button that's
mjr 66:2e3583fbd2f4 1125 // used when the local Shift button is being held down. See variable 16
mjr 66:2e3583fbd2f4 1126 // above for more details on the Shift button.
mjr 66:2e3583fbd2f4 1127 //
mjr 77:0b96f6867312 1128 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 66:2e3583fbd2f4 1129 // byte 4 = shifted key type (same codes as "key type" in var 254)
mjr 77:0b96f6867312 1130 // byte 5 = shifted key code (same codes as "key code" in var 254)
mjr 77:0b96f6867312 1131 // byte 6 = shifted IR command (see "IR command" in var 254)
mjr 66:2e3583fbd2f4 1132 //
mjr 53:9b2611964afc 1133 // 254 -> Input button setup. This sets up one button; it can be repeated for each
mjr 64:ef7ca92dff36 1134 // button to be configured. There are MAX_EXT_BUTTONS button slots (see
mjr 64:ef7ca92dff36 1135 // config.h for the constant definition), numbered 1..MAX_EXT_BUTTONS. Each
mjr 53:9b2611964afc 1136 // slot can be configured as a joystick button, a regular keyboard key, or a
mjr 53:9b2611964afc 1137 // media control key (mute, volume up, volume down).
mjr 53:9b2611964afc 1138 //
mjr 53:9b2611964afc 1139 // The bytes of the message are:
mjr 66:2e3583fbd2f4 1140 // byte 3 = Button number (1..MAX_BUTTONS)
mjr 64:ef7ca92dff36 1141 // byte 4 = GPIO pin for the button input; mapped as a DigitalIn port
mjr 53:9b2611964afc 1142 // byte 5 = key type reported to PC when button is pushed:
mjr 53:9b2611964afc 1143 // 0 = none (no PC input reported when button pushed)
mjr 53:9b2611964afc 1144 // 1 = joystick button -> byte 6 is the button number, 1-32
mjr 53:9b2611964afc 1145 // 2 = regular keyboard key -> byte 6 is the USB key code (see below)
mjr 67:c39e66c4e000 1146 // 3 = media key -> byte 6 is the USB media control code (see below)
mjr 53:9b2611964afc 1147 // byte 6 = key code, which depends on the key type in byte 5
mjr 53:9b2611964afc 1148 // byte 7 = flags - a combination of these bit values:
mjr 53:9b2611964afc 1149 // 0x01 = pulse mode. This reports a physical on/off switch's state
mjr 53:9b2611964afc 1150 // to the host as a brief key press whenever the switch changes
mjr 53:9b2611964afc 1151 // state. This is useful for the VPinMAME Coin Door button,
mjr 53:9b2611964afc 1152 // which requires the End key to be pressed each time the
mjr 53:9b2611964afc 1153 // door changes state.
mjr 77:0b96f6867312 1154 // byte 8 = IR command to transmit when unshifted button is pressed. This
mjr 77:0b96f6867312 1155 // contains an IR slot number (1..MAX_IR_CODES), or 0 if no code
mjr 77:0b96f6867312 1156 // is associated with the button.
mjr 53:9b2611964afc 1157 //
mjr 53:9b2611964afc 1158 // 255 -> LedWiz output port setup. This sets up one output port; it can be repeated
mjr 53:9b2611964afc 1159 // for each port to be configured. There are 128 possible slots for output ports,
mjr 53:9b2611964afc 1160 // numbered 1 to 128. The number of ports atcually active is determined by
mjr 53:9b2611964afc 1161 // the first DISABLED port (type 0). For example, if ports 1-32 are set as GPIO
mjr 53:9b2611964afc 1162 // outputs and port 33 is disabled, we'll report to the host that we have 32 ports,
mjr 53:9b2611964afc 1163 // regardless of the settings for post 34 and higher.
mjr 53:9b2611964afc 1164 //
mjr 53:9b2611964afc 1165 // The bytes of the message are:
mjr 53:9b2611964afc 1166 // byte 3 = LedWiz port number (1 to MAX_OUT_PORTS)
mjr 53:9b2611964afc 1167 // byte 4 = physical output type:
mjr 53:9b2611964afc 1168 // 0 = Disabled. This output isn't used, and isn't visible to the
mjr 53:9b2611964afc 1169 // LedWiz/DOF software on the host. The FIRST disabled port
mjr 53:9b2611964afc 1170 // determines the number of ports visible to the host - ALL ports
mjr 53:9b2611964afc 1171 // after the first disabled port are also implicitly disabled.
mjr 53:9b2611964afc 1172 // 1 = GPIO PWM output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1173 // operating in PWM mode. Note that only a subset of KL25Z GPIO
mjr 53:9b2611964afc 1174 // ports are PWM-capable.
mjr 53:9b2611964afc 1175 // 2 = GPIO Digital output: connected to GPIO pin specified in byte 5,
mjr 53:9b2611964afc 1176 // operating in digital mode. Digital ports can only be set ON
mjr 53:9b2611964afc 1177 // or OFF, with no brightness/intensity control. All pins can be
mjr 53:9b2611964afc 1178 // used in this mode.
mjr 53:9b2611964afc 1179 // 3 = TLC5940 port: connected to TLC5940 output port number specified
mjr 53:9b2611964afc 1180 // in byte 5. Ports are numbered sequentially starting from port 0
mjr 53:9b2611964afc 1181 // for the first output (OUT0) on the first chip in the daisy chain.
mjr 53:9b2611964afc 1182 // 4 = 74HC595 port: connected to 74HC595 output port specified in byte 5.
mjr 53:9b2611964afc 1183 // As with the TLC5940 outputs, ports are numbered sequentially from 0
mjr 53:9b2611964afc 1184 // for the first output on the first chip in the daisy chain.
mjr 53:9b2611964afc 1185 // 5 = Virtual output: this output port exists for the purposes of the
mjr 53:9b2611964afc 1186 // LedWiz/DOF software on the host, but isn't physically connected
mjr 53:9b2611964afc 1187 // to any output device. This can be used to create a virtual output
mjr 53:9b2611964afc 1188 // for the DOF ZB Launch Ball signal, for example, or simply as a
mjr 53:9b2611964afc 1189 // placeholder in the LedWiz port numbering. The physical output ID
mjr 53:9b2611964afc 1190 // (byte 5) is ignored for this port type.
mjr 53:9b2611964afc 1191 // byte 5 = physical output port, interpreted according to the value in byte 4
mjr 53:9b2611964afc 1192 // byte 6 = flags: a combination of these bit values:
mjr 53:9b2611964afc 1193 // 0x01 = active-high output (0V on output turns attached device ON)
mjr 53:9b2611964afc 1194 // 0x02 = noisemaker device: disable this output when "night mode" is engaged
mjr 53:9b2611964afc 1195 // 0x04 = apply gamma correction to this output
mjr 53:9b2611964afc 1196 //
mjr 53:9b2611964afc 1197 // Note that the on-board LED segments can be used as LedWiz output ports. This
mjr 53:9b2611964afc 1198 // is useful for testing a new installation with DOF or other PC software without
mjr 53:9b2611964afc 1199 // having to connect any external devices. Assigning the on-board LED segments to
mjr 53:9b2611964afc 1200 // output ports overrides their normal status/diagnostic display use, so the normal
mjr 53:9b2611964afc 1201 // status flash pattern won't appear when they're used this way.
mjr 52:8298b2a73eb2 1202 //
mjr 35:e959ffba78fd 1203
mjr 35:e959ffba78fd 1204
mjr 55:4db125cd11a0 1205 // --- GPIO PIN NUMBER MAPPINGS ---
mjr 35:e959ffba78fd 1206 //
mjr 53:9b2611964afc 1207 // In USB messages that specify GPIO pin assignments, pins are identified by
mjr 53:9b2611964afc 1208 // 8-bit integers. The special value 0xFF means NC (not connected). All actual
mjr 53:9b2611964afc 1209 // pins are mapped with the port number in the top 3 bits and the pin number in
mjr 53:9b2611964afc 1210 // the bottom 5 bits. Port A=0, B=1, ..., E=4. For example, PTC7 is port C (2)
mjr 53:9b2611964afc 1211 // pin 7, so it's represented as (2 << 5) | 7.
mjr 53:9b2611964afc 1212
mjr 35:e959ffba78fd 1213
mjr 35:e959ffba78fd 1214 // --- USB KEYBOARD SCAN CODES ---
mjr 35:e959ffba78fd 1215 //
mjr 53:9b2611964afc 1216 // For regular keyboard keys, we use the standard USB HID scan codes
mjr 53:9b2611964afc 1217 // for the US keyboard layout. The scan codes are defined by the USB
mjr 53:9b2611964afc 1218 // HID specifications; you can find a full list in the official USB
mjr 53:9b2611964afc 1219 // specs. Some common codes are listed below as a quick reference.
mjr 35:e959ffba78fd 1220 //
mjr 53:9b2611964afc 1221 // Key name -> USB scan code (hex)
mjr 53:9b2611964afc 1222 // A-Z -> 04-1D
mjr 53:9b2611964afc 1223 // top row 1!->0) -> 1E-27
mjr 53:9b2611964afc 1224 // Return -> 28
mjr 53:9b2611964afc 1225 // Escape -> 29
mjr 53:9b2611964afc 1226 // Backspace -> 2A
mjr 53:9b2611964afc 1227 // Tab -> 2B
mjr 53:9b2611964afc 1228 // Spacebar -> 2C
mjr 53:9b2611964afc 1229 // -_ -> 2D
mjr 53:9b2611964afc 1230 // =+ -> 2E
mjr 53:9b2611964afc 1231 // [{ -> 2F
mjr 53:9b2611964afc 1232 // ]} -> 30
mjr 53:9b2611964afc 1233 // \| -> 31
mjr 53:9b2611964afc 1234 // ;: -> 33
mjr 53:9b2611964afc 1235 // '" -> 34
mjr 53:9b2611964afc 1236 // `~ -> 35
mjr 53:9b2611964afc 1237 // ,< -> 36
mjr 53:9b2611964afc 1238 // .> -> 37
mjr 53:9b2611964afc 1239 // /? -> 38
mjr 53:9b2611964afc 1240 // Caps Lock -> 39
mjr 53:9b2611964afc 1241 // F1-F12 -> 3A-45
mjr 53:9b2611964afc 1242 // F13-F24 -> 68-73
mjr 53:9b2611964afc 1243 // Print Screen -> 46
mjr 53:9b2611964afc 1244 // Scroll Lock -> 47
mjr 53:9b2611964afc 1245 // Pause -> 48
mjr 53:9b2611964afc 1246 // Insert -> 49
mjr 53:9b2611964afc 1247 // Home -> 4A
mjr 53:9b2611964afc 1248 // Page Up -> 4B
mjr 53:9b2611964afc 1249 // Del -> 4C
mjr 53:9b2611964afc 1250 // End -> 4D
mjr 53:9b2611964afc 1251 // Page Down -> 4E
mjr 53:9b2611964afc 1252 // Right Arrow -> 4F
mjr 53:9b2611964afc 1253 // Left Arrow -> 50
mjr 53:9b2611964afc 1254 // Down Arrow -> 51
mjr 53:9b2611964afc 1255 // Up Arrow -> 52
mjr 53:9b2611964afc 1256 // Num Lock/Clear -> 53
mjr 53:9b2611964afc 1257 // Keypad / * - + -> 54 55 56 57
mjr 53:9b2611964afc 1258 // Keypad Enter -> 58
mjr 53:9b2611964afc 1259 // Keypad 1-9 -> 59-61
mjr 53:9b2611964afc 1260 // Keypad 0 -> 62
mjr 53:9b2611964afc 1261 // Keypad . -> 63
mjr 53:9b2611964afc 1262 // Mute -> 7F
mjr 53:9b2611964afc 1263 // Volume Up -> 80
mjr 53:9b2611964afc 1264 // Volume Down -> 81
mjr 53:9b2611964afc 1265 // Left Control -> E0
mjr 53:9b2611964afc 1266 // Left Shift -> E1
mjr 53:9b2611964afc 1267 // Left Alt -> E2
mjr 53:9b2611964afc 1268 // Left GUI -> E3
mjr 53:9b2611964afc 1269 // Right Control -> E4
mjr 53:9b2611964afc 1270 // Right Shift -> E5
mjr 53:9b2611964afc 1271 // Right Alt -> E6
mjr 53:9b2611964afc 1272 // Right GUI -> E7
mjr 53:9b2611964afc 1273 //
mjr 66:2e3583fbd2f4 1274 // Due to limitations in Windows, there's a limit of 6 regular keys
mjr 66:2e3583fbd2f4 1275 // pressed at the same time. The shift keys in the E0-E7 range don't
mjr 66:2e3583fbd2f4 1276 // count against this limit, though, since they're encoded as modifier
mjr 66:2e3583fbd2f4 1277 // keys; all of these can be pressed at the same time in addition to 6
mjr 67:c39e66c4e000 1278 // regular keys.
mjr 67:c39e66c4e000 1279
mjr 67:c39e66c4e000 1280 // --- USB MEDIA CONTROL SCAN CODES ---
mjr 67:c39e66c4e000 1281 //
mjr 67:c39e66c4e000 1282 // Buttons mapped to type 3 are Media Control buttons. These select
mjr 67:c39e66c4e000 1283 // a small set of common media control functions. We recognize the
mjr 67:c39e66c4e000 1284 // following type codes only:
mjr 67:c39e66c4e000 1285 //
mjr 67:c39e66c4e000 1286 // Mute -> E2
mjr 67:c39e66c4e000 1287 // Volume up -> E9
mjr 67:c39e66c4e000 1288 // Volume Down -> EA
mjr 67:c39e66c4e000 1289 // Next Track -> B5
mjr 67:c39e66c4e000 1290 // Previous Track -> B6
mjr 67:c39e66c4e000 1291 // Stop -> B7
mjr 67:c39e66c4e000 1292 // Play/Pause -> CD