An input/output controller for virtual pinball machines, with plunger position tracking, accelerometer-based nudge sensing, button input encoding, and feedback device control.

Dependencies:   USBDevice mbed FastAnalogIn FastIO FastPWM SimpleDMA

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

The Pinscape Controller is a special-purpose software project that I wrote for my virtual pinball machine.

New version: V2 is now available! The information below is for version 1, which will continue to be available for people who prefer the original setup.

What exactly is a virtual pinball machine? It's basically a video-game pinball emulator built to look like a real pinball machine. (The picture at right is the one I built.) You start with a standard pinball cabinet, either built from scratch or salvaged from a real machine. Inside, you install a PC motherboard to run the software, and install TVs in place of the playfield and backglass. Several Windows pinball programs can take advantage of this setup, including the open-source project Visual Pinball, which has hundreds of tables available. Building one of these makes a great DIY project, and it's a good way to add to your skills at woodworking, computers, and electronics. Check out the Cabinet Builders' Forum on vpforums.org for lots of examples and advice.

This controller project is a key piece in my setup that helps integrate the video game into the pinball cabinet. It handles several input/output tasks that are unique to virtual pinball machines. First, it lets you connect a mechanical plunger to the software, so you can launch the ball like on a real machine. Second, it sends "nudge" data to the software, based on readings from an accelerometer. This lets you interact with the game physically, which makes the playing experience more realistic and immersive. Third, the software can handle button input (for wiring flipper buttons and other cabinet buttons), and fourth, it can control output devices (for tactile feedback, button lights, flashers, and other special effects).

Documentation

The Hardware Build Guide (PDF) has detailed instructions on how to set up a Pinscape Controller for your own virtual pinball cabinet.

Update notes

December 2015 version: This version fully supports the new Expansion Board project, but it'll also run without it. The default configuration settings haven't changed, so existing setups should continue to work as before.

August 2015 version: Be sure to get the latest version of the Config Tool for windows if you're upgrading from an older version of the firmware. This update adds support for TSL1412R sensors (a version of the 1410 sensor with a slightly larger pixel array), and a config option to set the mounting orientation of the board in the firmware rather than in VP (for better support for FP and other pinball programs that don't have VP's flexibility for setting the rotation).

Feb/March 2015 software versions: If you have a CCD plunger that you've been using with the older versions, and the plunger stops working (or doesn't work as well) after you update to the latest version, you might need to increase the brightness of your light source slightly. Check the CCD exposure with the Windows config tool to see if it looks too dark. The new software reads the CCD much more quickly than the old versions did. This makes the "shutter speed" faster, which might require a little more light to get the same readings. The CCD is actually really tolerant of varying light levels, so you probably won't have to change anything for the update - I didn't. But if you do have any trouble, have a look at the exposure meter and try a slightly brighter light source if the exposure looks too dark.

Downloads

  • Config tool for Windows (.exe and C# source): this is a Windows program that lets you view the raw pixel data from the CCD sensor, trigger plunger calibration mode, and configure some of the software options on the controller.
  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP 9.9.1 and VP 10 releases, so you don't need my custom builds if you're using 9.9.1 or 10 or later. I don't think there's any reason to use my 9.9 instead of the official 9.9.1, but I'm leaving it here just in case. In the official VP releases, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. (There's no checkbox in my custom builds, though; the filter is simply always on in those.)
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed for each output driver, if you want to use the LedWiz emulator feature. Note that quantities in the cart are for one output channel, so multiply everything by the number of channels you plan to use, except that you only need one of the ULN2803 transistor array chips for each eight output circuits.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Features

  • Plunger position sensing, using a TAOS TSL 1410R CCD linear array sensor. This sensor is a 1280 x 1 pixel array at 400 dpi, which makes it about 3" long - almost exactly the travel distance of a standard pinball plunger. The idea is that you install the sensor just above (within a few mm of) the shooter rod on the inside of the cabinet, with the CCD window facing down, aligned with and centered on the long axis of the shooter rod, and positioned so that the rest position of the tip is about 1/2" from one end of the window. As you pull back the plunger, the tip will travel down the length of the window, and the maximum retraction point will put the tip just about at the far end of the window. Put a light source below, facing the sensor - I'm using two typical 20 mA blue LEDs about 8" away (near the floor of the cabinet) with good results. The principle of operation is that the shooter rod casts a shadow on the CCD, so pixels behind the rod will register lower brightness than pixels that aren't in the shadow. We scan down the length of the sensor for the edge between darker and brighter, and this tells us how far back the rod has been pulled. We can read the CCD at about 25-30 ms intervals, so we can get rapid updates. We pass the readings reports to VP via our USB joystick reports.

    The hardware build guide includes schematics showing how to wire the CCD to the KL25Z. It's pretty straightforward - five wires between the two devices, no external components needed. Two GPIO ports are used as outputs to send signals to the device and one is used as an ADC in to read the pixel brightness inputs. The config tool has a feature that lets you display the raw pixel readings across the array, so you can test that the CCD is working and adjust the light source to get the right exposure level.

    Alternatively, you can use a slide potentiometer as the plunger sensor. This is a cheaper and somewhat simpler option that seems to work quite nicely, as you can see in Lemming77's video of this setup in action. This option is also explained more fully in the build guide.
  • Nudge sensing via the KL25Z's on-board accelerometer. Mounting the board in your cabinet makes it feel the same accelerations the cabinet experiences when you nudge it. Visual Pinball already knows how to interpret accelerometer input as nudging, so we simply feed the acceleration readings to VP via the joystick interface.
  • Cabinet button wiring. Up to 24 pushbuttons and switches can be wired to the controller for input controls (for example, flipper buttons, the Start button, the tilt bob, coin slot switches, and service door buttons). These appear to Windows as joystick buttons. VP can map joystick buttons to pinball inputs via its keyboard preferences dialog. (You can raise the 24-button limit by editing the source code, but since all of the GPIO pins are allocated, you'll have to reassign pins currently used for other functions.)
  • LedWiz emulation (limited). In addition to emulating a joystick, the device emulates the LedWiz USB interface, so controllers on the PC side such as DirectOutput Framework can recognize it and send it commands to control lights, solenoids, and other feedback devices. 22 GPIO ports are assigned by default as feedback device outputs. This feature has some limitations. The big one is that the KL25Z hardware only has 10 PWM channels, which isn't enough for a fully decked-out cabinet. You also need to build some external power driver circuitry to use this feature, because of the paltry 4mA output capacity of the KL25Z GPIO ports. The build guide includes instructions for a simple and robust output circuit, including part numbers for the exact components you need. It's not hard if you know your way around a soldering iron, but just be aware that it'll take a little work.

Warning: This is not replacement software for the VirtuaPin plunger kit. If you bought the VirtuaPin kit, please don't try to install this software. The VP kit happens to use the same microcontroller board, but the rest of its hardware is incompatible. The VP kit uses a different type of sensor for its plunger and has completely different button wiring, so the Pinscape software won't work properly with it.

Committer:
mjr
Date:
Mon Aug 18 21:46:10 2014 +0000
Revision:
9:fd65b0a94720
Parent:
8:c732e279ee29
Child:
10:976666ffa4ef
Tweaks to plunger firing detection

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mjr 5:a70c0bce770d 1 /* Copyright 2014 M J Roberts, MIT License
mjr 5:a70c0bce770d 2 *
mjr 5:a70c0bce770d 3 * Permission is hereby granted, free of charge, to any person obtaining a copy of this software
mjr 5:a70c0bce770d 4 * and associated documentation files (the "Software"), to deal in the Software without
mjr 5:a70c0bce770d 5 * restriction, including without limitation the rights to use, copy, modify, merge, publish,
mjr 5:a70c0bce770d 6 * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the
mjr 5:a70c0bce770d 7 * Software is furnished to do so, subject to the following conditions:
mjr 5:a70c0bce770d 8 *
mjr 5:a70c0bce770d 9 * The above copyright notice and this permission notice shall be included in all copies or
mjr 5:a70c0bce770d 10 * substantial portions of the Software.
mjr 5:a70c0bce770d 11 *
mjr 5:a70c0bce770d 12 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING
mjr 5:a70c0bce770d 13 * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
mjr 5:a70c0bce770d 14 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
mjr 5:a70c0bce770d 15 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
mjr 5:a70c0bce770d 16 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
mjr 5:a70c0bce770d 17 */
mjr 5:a70c0bce770d 18
mjr 5:a70c0bce770d 19 //
mjr 5:a70c0bce770d 20 // Pinscape Controller
mjr 5:a70c0bce770d 21 //
mjr 5:a70c0bce770d 22 // "Pinscape" is the name of my custom-built virtual pinball cabinet. I wrote this
mjr 5:a70c0bce770d 23 // software to perform a number of tasks that I needed for my cabinet. It runs on a
mjr 5:a70c0bce770d 24 // Freescale KL25Z microcontroller, which is a small and inexpensive device that
mjr 5:a70c0bce770d 25 // attaches to the host PC via USB and can interface with numerous types of external
mjr 5:a70c0bce770d 26 // hardware.
mjr 5:a70c0bce770d 27 //
mjr 5:a70c0bce770d 28 // I designed the software and hardware in this project especially for Pinscape, but
mjr 5:a70c0bce770d 29 // it uses standard interfaces in Windows and Visual Pinball, so it should be
mjr 5:a70c0bce770d 30 // readily usable in anyone else's VP-based cabinet. I've tried to document the
mjr 5:a70c0bce770d 31 // hardware in enough detail for anyone else to duplicate the entire project, and
mjr 5:a70c0bce770d 32 // the full software is open source.
mjr 5:a70c0bce770d 33 //
mjr 6:cc35eb643e8f 34 // The device appears to the host computer as a USB joystick. This works with the
mjr 6:cc35eb643e8f 35 // standard Windows joystick device drivers, so there's no need to install any
mjr 6:cc35eb643e8f 36 // software on the PC - Windows should recognize it as a joystick when you plug
mjr 6:cc35eb643e8f 37 // it in and shouldn't ask you to install anything. If you bring up the control
mjr 6:cc35eb643e8f 38 // panel for USB Game Controllers, this device will appear as "Pinscape Controller".
mjr 6:cc35eb643e8f 39 // *Don't* do any calibration with the Windows control panel or third-part
mjr 6:cc35eb643e8f 40 // calibration tools. The device calibrates itself automatically for the
mjr 6:cc35eb643e8f 41 // accelerometer data, and has its own special calibration procedure for the
mjr 6:cc35eb643e8f 42 // plunger (see below).
mjr 6:cc35eb643e8f 43 //
mjr 5:a70c0bce770d 44 // The controller provides the following functions. It should be possible to use
mjr 5:a70c0bce770d 45 // any subet of the features without using all of them. External hardware for any
mjr 5:a70c0bce770d 46 // particular function can simply be omitted if that feature isn't needed.
mjr 5:a70c0bce770d 47 //
mjr 5:a70c0bce770d 48 // - Nudge sensing via the KL25Z's on-board accelerometer. Nudge accelerations are
mjr 5:a70c0bce770d 49 // processed into a physics model of a rolling ball, and changes to the ball's
mjr 5:a70c0bce770d 50 // motion are sent to the host computer via the joystick interface. This is designed
mjr 5:a70c0bce770d 51 // especially to work with Visuall Pinball's nudge handling to produce realistic
mjr 5:a70c0bce770d 52 // on-screen results in VP. By doing some physics modeling right on the device,
mjr 5:a70c0bce770d 53 // rather than sending raw accelerometer data to VP, we can produce better results
mjr 5:a70c0bce770d 54 // using our awareness of the real physical parameters of a pinball cabinet.
mjr 5:a70c0bce770d 55 // VP's nudge handling has to be more generic, so it can't make the same sorts
mjr 5:a70c0bce770d 56 // of assumptions that we can about the dynamics of a real cabinet.
mjr 5:a70c0bce770d 57 //
mjr 5:a70c0bce770d 58 // The nudge data reports are compatible with the built-in Windows USB joystick
mjr 5:a70c0bce770d 59 // drivers and with VP's own joystick input scheme, so the nudge sensing is almost
mjr 5:a70c0bce770d 60 // plug-and-play. There are no Windiows drivers to install, and the only VP work
mjr 5:a70c0bce770d 61 // needed is to customize a few global preference settings.
mjr 5:a70c0bce770d 62 //
mjr 5:a70c0bce770d 63 // - Plunger position sensing via an attached TAOS TSL 1410R CCD linear array sensor.
mjr 5:a70c0bce770d 64 // The sensor must be wired to a particular set of I/O ports on the KL25Z, and must
mjr 5:a70c0bce770d 65 // be positioned adjacent to the plunger with proper lighting. The physical and
mjr 5:a70c0bce770d 66 // electronic installation details are desribed in the project documentation. We read
mjr 5:a70c0bce770d 67 // the CCD to determine how far back the plunger is pulled, and report this to Visual
mjr 5:a70c0bce770d 68 // Pinball via the joystick interface. As with the nudge data, this is all nearly
mjr 5:a70c0bce770d 69 // plug-and-play, in that it works with the default Windows USB drivers and works
mjr 5:a70c0bce770d 70 // with the existing VP handling for analog plunger input. A few VP settings are
mjr 5:a70c0bce770d 71 // needed to tell VP to allow the plunger.
mjr 5:a70c0bce770d 72 //
mjr 6:cc35eb643e8f 73 // For best results, the plunger sensor should be calibrated. The calibration
mjr 6:cc35eb643e8f 74 // is stored in non-volatile memory on board the KL25Z, so it's only necessary
mjr 6:cc35eb643e8f 75 // to do the calibration once, when you first install everything. (You might
mjr 6:cc35eb643e8f 76 // also want to re-calibrate if you physically remove and reinstall the CCD
mjr 6:cc35eb643e8f 77 // sensor or the mechanical plunger, since their alignment might change slightly
mjr 6:cc35eb643e8f 78 // when you put everything back together.) To calibrate, you have to attach a
mjr 6:cc35eb643e8f 79 // momentary switch (e.g., a push-button switch) between one of the KL25Z ground
mjr 6:cc35eb643e8f 80 // pins (e.g., jumper J9 pin 12) and PTE29 (J10 pin 9). Press and hold the
mjr 6:cc35eb643e8f 81 // button for about two seconds - the LED on the KL25Z wlil flash blue while
mjr 6:cc35eb643e8f 82 // you hold the button, and will turn solid blue when you've held it down long
mjr 6:cc35eb643e8f 83 // enough to enter calibration mode. This mode will last about 15 seconds.
mjr 6:cc35eb643e8f 84 // Simply pull the plunger all the way back, hold it for a few moments, and
mjr 6:cc35eb643e8f 85 // gradually return it to the starting position. *Don't* release it - we want
mjr 6:cc35eb643e8f 86 // to measure the maximum retracted position and the rest position, but NOT
mjr 6:cc35eb643e8f 87 // the maximum forward position when the outer barrel spring is compressed.
mjr 6:cc35eb643e8f 88 // After about 15 seconds, the device will save the new calibration settings
mjr 6:cc35eb643e8f 89 // to its flash memory, and the LED will return to the regular "heartbeat"
mjr 6:cc35eb643e8f 90 // flashes. If this is the first time you calibrated, you should observe the
mjr 6:cc35eb643e8f 91 // color of the flashes change from yellow/green to blue/green to indicate
mjr 6:cc35eb643e8f 92 // that the plunger has been calibrated.
mjr 6:cc35eb643e8f 93 //
mjr 6:cc35eb643e8f 94 // Note that while Visual Pinball itself has good native support for analog
mjr 6:cc35eb643e8f 95 // plungers, most of the VP tables in circulation don't implement the necessary
mjr 6:cc35eb643e8f 96 // scripting features to make this work properly. Therefore, you'll have to do
mjr 6:cc35eb643e8f 97 // a little scripting work for each table you download to add the required code
mjr 6:cc35eb643e8f 98 // to that individual table. The work has to be customized for each table, so
mjr 6:cc35eb643e8f 99 // I haven't been able to automate this process, but I have tried to reduce it
mjr 6:cc35eb643e8f 100 // to a relatively simple recipe that I've documented separately.
mjr 5:a70c0bce770d 101 //
mjr 5:a70c0bce770d 102 // - In addition to the CCD sensor, a button should be attached (also described in
mjr 5:a70c0bce770d 103 // the project documentation) to activate calibration mode for the plunger. When
mjr 5:a70c0bce770d 104 // calibration mode is activated, the software reads the plunger position for about
mjr 5:a70c0bce770d 105 // 10 seconds when to note the limits of travel, and uses these limits to ensure
mjr 5:a70c0bce770d 106 // accurate reports to VP that properly report the actual position of the physical
mjr 5:a70c0bce770d 107 // plunger. The calibration is stored in non-volatile memory on the KL25Z, so it's
mjr 5:a70c0bce770d 108 // only necessary to calibrate once - the calibration will survive power cycling
mjr 5:a70c0bce770d 109 // and reboots of the PC. It's only necessary to recalibrate if the CCD sensor or
mjr 5:a70c0bce770d 110 // the plunger are removed and reinstalled, since the relative alignment of the
mjr 5:a70c0bce770d 111 // parts could cahnge slightly when reinstalling.
mjr 5:a70c0bce770d 112 //
mjr 5:a70c0bce770d 113 // - LedWiz emulation. The KL25Z can appear to the PC as an LedWiz device, and will
mjr 5:a70c0bce770d 114 // accept and process LedWiz commands from the host. The software can turn digital
mjr 5:a70c0bce770d 115 // output ports on and off, and can set varying PWM intensitiy levels on a subset
mjr 5:a70c0bce770d 116 // of ports. (The KL25Z can only provide 6 PWM ports. Intensity level settings on
mjr 5:a70c0bce770d 117 // other ports is ignored, so non-PWM ports can only be used for simple on/off
mjr 5:a70c0bce770d 118 // devices such as contactors and solenoids.) The KL25Z can only supply 4mA on its
mjr 5:a70c0bce770d 119 // output ports, so external hardware is required to take advantage of the LedWiz
mjr 5:a70c0bce770d 120 // emulation. Many different hardware designs are possible, but there's a simple
mjr 5:a70c0bce770d 121 // reference design in the documentation that uses a Darlington array IC to
mjr 5:a70c0bce770d 122 // increase the output from each port to 500mA (the same level as the LedWiz),
mjr 5:a70c0bce770d 123 // plus an extended design that adds an optocoupler and MOSFET to provide very
mjr 5:a70c0bce770d 124 // high power handling, up to about 45A or 150W, with voltages up to 100V.
mjr 5:a70c0bce770d 125 // That will handle just about any DC device directly (wtihout relays or other
mjr 5:a70c0bce770d 126 // amplifiers), and switches fast enough to support PWM devices.
mjr 5:a70c0bce770d 127 //
mjr 5:a70c0bce770d 128 // The device can report any desired LedWiz unit number to the host, which makes
mjr 5:a70c0bce770d 129 // it possible to use the LedWiz emulation on a machine that also has one or more
mjr 5:a70c0bce770d 130 // actual LedWiz devices intalled. The LedWiz design allows for up to 16 units
mjr 5:a70c0bce770d 131 // to be installed in one machine - each one is invidually addressable by its
mjr 5:a70c0bce770d 132 // distinct unit number.
mjr 5:a70c0bce770d 133 //
mjr 5:a70c0bce770d 134 // The LedWiz emulation features are of course optional. There's no need to
mjr 5:a70c0bce770d 135 // build any of the external port hardware (or attach anything to the output
mjr 5:a70c0bce770d 136 // ports at all) if the LedWiz features aren't needed. Most people won't have
mjr 5:a70c0bce770d 137 // any use for the LedWiz features. I built them mostly as a learning exercise,
mjr 5:a70c0bce770d 138 // but with a slight practical need for a handful of extra ports (I'm using the
mjr 5:a70c0bce770d 139 // cutting-edge 10-contactor setup, so my real LedWiz is full!).
mjr 6:cc35eb643e8f 140 //
mjr 6:cc35eb643e8f 141 // The on-board LED on the KL25Z flashes to indicate the current device status:
mjr 6:cc35eb643e8f 142 //
mjr 6:cc35eb643e8f 143 // two short red flashes = the device is powered but hasn't successfully
mjr 6:cc35eb643e8f 144 // connected to the host via USB (either it's not physically connected
mjr 6:cc35eb643e8f 145 // to the USB port, or there was a problem with the software handshake
mjr 6:cc35eb643e8f 146 // with the USB device driver on the computer)
mjr 6:cc35eb643e8f 147 //
mjr 6:cc35eb643e8f 148 // short red flash = the host computer is in sleep/suspend mode
mjr 6:cc35eb643e8f 149 //
mjr 6:cc35eb643e8f 150 // long red/green = the LedWiz unti number has been changed, so a reset
mjr 6:cc35eb643e8f 151 // is needed. You can simply unplug the device and plug it back in,
mjr 6:cc35eb643e8f 152 // or presss and hold the reset button on the device for a few seconds.
mjr 6:cc35eb643e8f 153 //
mjr 6:cc35eb643e8f 154 // long yellow/green = everything's working, but the plunger hasn't
mjr 6:cc35eb643e8f 155 // been calibrated; follow the calibration procedure described above.
mjr 6:cc35eb643e8f 156 // This flash mode won't appear if the CCD has been disabled. Note
mjr 6:cc35eb643e8f 157 // that the device can't tell whether a CCD is physically attached,
mjr 6:cc35eb643e8f 158 // so you should use the config command to disable the CCD software
mjr 6:cc35eb643e8f 159 // features if you won't be attaching a CCD.
mjr 6:cc35eb643e8f 160 //
mjr 6:cc35eb643e8f 161 // alternating blue/green = everything's working
mjr 6:cc35eb643e8f 162 //
mjr 6:cc35eb643e8f 163 // Software configuration: you can change option settings by sending special
mjr 6:cc35eb643e8f 164 // USB commands from the PC. I've provided a Windows program for this purpose;
mjr 6:cc35eb643e8f 165 // refer to the documentation for details. For reference, here's the format
mjr 6:cc35eb643e8f 166 // of the USB command for option changes:
mjr 6:cc35eb643e8f 167 //
mjr 6:cc35eb643e8f 168 // length of report = 8 bytes
mjr 6:cc35eb643e8f 169 // byte 0 = 65 (0x41)
mjr 6:cc35eb643e8f 170 // byte 1 = 1 (0x01)
mjr 6:cc35eb643e8f 171 // byte 2 = new LedWiz unit number, 0x01 to 0x0f
mjr 6:cc35eb643e8f 172 // byte 3 = feature enable bit mask:
mjr 6:cc35eb643e8f 173 // 0x01 = enable CCD (default = on)
mjr 9:fd65b0a94720 174 //
mjr 9:fd65b0a94720 175 // Plunger calibration mode: the host can activate plunger calibration mode
mjr 9:fd65b0a94720 176 // by sending this packet. This has the same effect as pressing and holding
mjr 9:fd65b0a94720 177 // the plunger calibration button for two seconds, to allow activating this
mjr 9:fd65b0a94720 178 // mode without attaching a physical button.
mjr 9:fd65b0a94720 179 //
mjr 9:fd65b0a94720 180 // length = 8 bytes
mjr 9:fd65b0a94720 181 // byte 0 = 65 (0x41)
mjr 9:fd65b0a94720 182 // byte 1 = 2 (0x02)
mjr 9:fd65b0a94720 183 //
mjr 6:cc35eb643e8f 184
mjr 0:5acbbe3f4cf4 185 #include "mbed.h"
mjr 6:cc35eb643e8f 186 #include "math.h"
mjr 0:5acbbe3f4cf4 187 #include "USBJoystick.h"
mjr 0:5acbbe3f4cf4 188 #include "MMA8451Q.h"
mjr 1:d913e0afb2ac 189 #include "tsl1410r.h"
mjr 1:d913e0afb2ac 190 #include "FreescaleIAP.h"
mjr 2:c174f9ee414a 191 #include "crc32.h"
mjr 2:c174f9ee414a 192
mjr 5:a70c0bce770d 193
mjr 5:a70c0bce770d 194 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 195 //
mjr 5:a70c0bce770d 196 // Configuration details
mjr 5:a70c0bce770d 197 //
mjr 2:c174f9ee414a 198
mjr 5:a70c0bce770d 199 // Our USB device vendor ID, product ID, and version.
mjr 5:a70c0bce770d 200 // We use the vendor ID for the LedWiz, so that the PC-side software can
mjr 5:a70c0bce770d 201 // identify us as capable of performing LedWiz commands. The LedWiz uses
mjr 5:a70c0bce770d 202 // a product ID value from 0xF0 to 0xFF; the last four bits identify the
mjr 5:a70c0bce770d 203 // unit number (e.g., product ID 0xF7 means unit #7). This allows multiple
mjr 5:a70c0bce770d 204 // LedWiz units to be installed in a single PC; the software on the PC side
mjr 5:a70c0bce770d 205 // uses the unit number to route commands to the devices attached to each
mjr 5:a70c0bce770d 206 // unit. On the real LedWiz, the unit number must be set in the firmware
mjr 5:a70c0bce770d 207 // at the factory; it's not configurable by the end user. Most LedWiz's
mjr 5:a70c0bce770d 208 // ship with the unit number set to 0, but the vendor will set different
mjr 5:a70c0bce770d 209 // unit numbers if requested at the time of purchase. So if you have a
mjr 5:a70c0bce770d 210 // single LedWiz already installed in your cabinet, and you didn't ask for
mjr 5:a70c0bce770d 211 // a non-default unit number, your existing LedWiz will be unit 0.
mjr 5:a70c0bce770d 212 //
mjr 5:a70c0bce770d 213 // We use unit #7 by default. There doesn't seem to be a requirement that
mjr 5:a70c0bce770d 214 // unit numbers be contiguous (DirectOutput Framework and other software
mjr 5:a70c0bce770d 215 // seem happy to have units 0 and 7 installed, without 1-6 existing).
mjr 5:a70c0bce770d 216 // Marking this unit as #7 should work for almost everybody out of the box;
mjr 5:a70c0bce770d 217 // the most common case seems to be to have a single LedWiz installed, and
mjr 5:a70c0bce770d 218 // it's probably extremely rare to more than two.
mjr 6:cc35eb643e8f 219 //
mjr 6:cc35eb643e8f 220 // Note that the USB_PRODUCT_ID value set here omits the unit number. We
mjr 6:cc35eb643e8f 221 // take the unit number from the saved configuration. We provide a
mjr 6:cc35eb643e8f 222 // configuration command that can be sent via the USB connection to change
mjr 6:cc35eb643e8f 223 // the unit number, so that users can select the unit number without having
mjr 6:cc35eb643e8f 224 // to install a different version of the software. We'll combine the base
mjr 6:cc35eb643e8f 225 // product ID here with the unit number to get the actual product ID that
mjr 6:cc35eb643e8f 226 // we send to the USB controller.
mjr 5:a70c0bce770d 227 const uint16_t USB_VENDOR_ID = 0xFAFA;
mjr 6:cc35eb643e8f 228 const uint16_t USB_PRODUCT_ID = 0x00F0;
mjr 6:cc35eb643e8f 229 const uint16_t USB_VERSION_NO = 0x0006;
mjr 6:cc35eb643e8f 230 const uint8_t DEFAULT_LEDWIZ_UNIT_NUMBER = 0x07;
mjr 0:5acbbe3f4cf4 231
mjr 9:fd65b0a94720 232 // Number of pixels we read from the sensor on each frame. This can be
mjr 9:fd65b0a94720 233 // less than the physical pixel count if desired; we'll read every nth
mjr 9:fd65b0a94720 234 // piexl if so. E.g., with a 1280-pixel physical sensor, if npix is 320,
mjr 9:fd65b0a94720 235 // we'll read every 4th pixel. It takes time to read each pixel, so the
mjr 9:fd65b0a94720 236 // fewer pixels we read, the higher the refresh rate we can achieve.
mjr 9:fd65b0a94720 237 // It's therefore better not to read more pixels than we have to.
mjr 9:fd65b0a94720 238 //
mjr 9:fd65b0a94720 239 // VP seems to have an internal resolution in the 8-bit range, so there's
mjr 9:fd65b0a94720 240 // no apparent benefit to reading more than 128-256 pixels when using VP.
mjr 9:fd65b0a94720 241 // Empirically, 160 pixels seems about right. The overall travel of a
mjr 9:fd65b0a94720 242 // standard pinball plunger is about 3", so 160 pixels gives us resolution
mjr 9:fd65b0a94720 243 // of about 1/50". This seems to take full advantage of VP's modeling
mjr 9:fd65b0a94720 244 // ability, and is probably also more precise than a human player's
mjr 9:fd65b0a94720 245 // perception of the plunger position.
mjr 9:fd65b0a94720 246 const int npix = 160;
mjr 9:fd65b0a94720 247
mjr 4:02c7cd7b2183 248 // On-board RGB LED elements - we use these for diagnostic displays.
mjr 4:02c7cd7b2183 249 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
mjr 0:5acbbe3f4cf4 250
mjr 1:d913e0afb2ac 251 // calibration button - switch input and LED output
mjr 1:d913e0afb2ac 252 DigitalIn calBtn(PTE29);
mjr 1:d913e0afb2ac 253 DigitalOut calBtnLed(PTE23);
mjr 0:5acbbe3f4cf4 254
mjr 6:cc35eb643e8f 255 // LED-Wiz emulation output pin assignments. The LED-Wiz protocol
mjr 6:cc35eb643e8f 256 // can support up to 32 outputs. The KL25Z can physically provide
mjr 6:cc35eb643e8f 257 // about 48 (in addition to the ports we're already using for the
mjr 6:cc35eb643e8f 258 // CCD sensor and the calibration button), but to stay compatible
mjr 6:cc35eb643e8f 259 // with the LED-Wiz protocol we'll stop at 32.
mjr 6:cc35eb643e8f 260 //
mjr 6:cc35eb643e8f 261 // The LED-Wiz protocol allows setting individual intensity levels
mjr 6:cc35eb643e8f 262 // on all outputs, with 48 levels of intensity. This can be used
mjr 6:cc35eb643e8f 263 // to control lamp brightness and motor speeds, among other things.
mjr 6:cc35eb643e8f 264 // Unfortunately, the KL25Z only has 10 PWM channels, so while we
mjr 6:cc35eb643e8f 265 // can support the full complement of 32 outputs, we can only provide
mjr 6:cc35eb643e8f 266 // PWM dimming/speed control on 10 of them. The remaining outputs
mjr 6:cc35eb643e8f 267 // can only be switched fully on and fully off - we can't support
mjr 6:cc35eb643e8f 268 // dimming on these, so they'll ignore any intensity level setting
mjr 6:cc35eb643e8f 269 // requested by the host. Use these for devices that don't have any
mjr 6:cc35eb643e8f 270 // use for intensity settings anyway, such as contactors and knockers.
mjr 6:cc35eb643e8f 271 //
mjr 6:cc35eb643e8f 272 // The mapping between physical output pins on the KL25Z and the
mjr 6:cc35eb643e8f 273 // assigned LED-Wiz port numbers is essentially arbitrary - you can
mjr 6:cc35eb643e8f 274 // customize this by changing the entries in the array below if you
mjr 6:cc35eb643e8f 275 // wish to rearrange the pins for any reason. Be aware that some
mjr 6:cc35eb643e8f 276 // of the physical outputs are already used for other purposes
mjr 6:cc35eb643e8f 277 // (e.g., some of the GPIO pins on header J10 are used for the
mjr 6:cc35eb643e8f 278 // CCD sensor - but you can of course reassign those as well by
mjr 6:cc35eb643e8f 279 // changing the corresponding declarations elsewhere in this module).
mjr 6:cc35eb643e8f 280 // The assignments we make here have two main objectives: first,
mjr 6:cc35eb643e8f 281 // to group the outputs on headers J1 and J2 (to facilitate neater
mjr 6:cc35eb643e8f 282 // wiring by keeping the output pins together physically), and
mjr 6:cc35eb643e8f 283 // second, to make the physical pin layout match the LED-Wiz port
mjr 6:cc35eb643e8f 284 // numbering order to the extent possible. There's one big wrench
mjr 6:cc35eb643e8f 285 // in the works, though, which is the limited number and discontiguous
mjr 6:cc35eb643e8f 286 // placement of the KL25Z PWM-capable output pins. This prevents
mjr 6:cc35eb643e8f 287 // us from doing the most obvious sequential ordering of the pins,
mjr 6:cc35eb643e8f 288 // so we end up with the outputs arranged into several blocks.
mjr 6:cc35eb643e8f 289 // Hopefully this isn't too confusing; for more detailed rationale,
mjr 6:cc35eb643e8f 290 // read on...
mjr 6:cc35eb643e8f 291 //
mjr 6:cc35eb643e8f 292 // With the LED-Wiz, the host software configuration usually
mjr 6:cc35eb643e8f 293 // assumes that each RGB LED is hooked up to three consecutive ports
mjr 6:cc35eb643e8f 294 // (for the red, green, and blue components, which need to be
mjr 6:cc35eb643e8f 295 // physically wired to separate outputs to allow each color to be
mjr 6:cc35eb643e8f 296 // controlled independently). To facilitate this, we arrange the
mjr 6:cc35eb643e8f 297 // PWM-enabled outputs so that they're grouped together in the
mjr 6:cc35eb643e8f 298 // port numbering scheme. Unfortunately, these outputs aren't
mjr 6:cc35eb643e8f 299 // together in a single group in the physical pin layout, so to
mjr 6:cc35eb643e8f 300 // group them logically in the LED-Wiz port numbering scheme, we
mjr 6:cc35eb643e8f 301 // have to break up the overall numbering scheme into several blocks.
mjr 6:cc35eb643e8f 302 // So our port numbering goes sequentially down each column of
mjr 6:cc35eb643e8f 303 // header pins, but there are several break points where we have
mjr 6:cc35eb643e8f 304 // to interrupt the obvious sequence to keep the PWM pins grouped
mjr 6:cc35eb643e8f 305 // logically.
mjr 6:cc35eb643e8f 306 //
mjr 6:cc35eb643e8f 307 // In the list below, "pin J1-2" refers to pin 2 on header J1 on
mjr 6:cc35eb643e8f 308 // the KL25Z, using the standard pin numbering in the KL25Z
mjr 6:cc35eb643e8f 309 // documentation - this is the physical pin that the port controls.
mjr 6:cc35eb643e8f 310 // "LW port 1" means LED-Wiz port 1 - this is the LED-Wiz port
mjr 6:cc35eb643e8f 311 // number that you use on the PC side (in the DirectOutput config
mjr 6:cc35eb643e8f 312 // file, for example) to address the port. PWM-capable ports are
mjr 6:cc35eb643e8f 313 // marked as such - we group the PWM-capable ports into the first
mjr 6:cc35eb643e8f 314 // 10 LED-Wiz port numbers.
mjr 6:cc35eb643e8f 315 //
mjr 6:cc35eb643e8f 316 struct {
mjr 6:cc35eb643e8f 317 PinName pin;
mjr 6:cc35eb643e8f 318 bool isPWM;
mjr 6:cc35eb643e8f 319 } ledWizPortMap[32] = {
mjr 6:cc35eb643e8f 320 { PTA1, true }, // pin J1-2, LW port 1 (PWM capable - TPM 2.0 = channel 9)
mjr 6:cc35eb643e8f 321 { PTA2, true }, // pin J1-4, LW port 2 (PWM capable - TPM 2.1 = channel 10)
mjr 6:cc35eb643e8f 322 { PTD4, true }, // pin J1-6, LW port 3 (PWM capable - TPM 0.4 = channel 5)
mjr 6:cc35eb643e8f 323 { PTA12, true }, // pin J1-8, LW port 4 (PWM capable - TPM 1.0 = channel 7)
mjr 6:cc35eb643e8f 324 { PTA4, true }, // pin J1-10, LW port 5 (PWM capable - TPM 0.1 = channel 2)
mjr 6:cc35eb643e8f 325 { PTA5, true }, // pin J1-12, LW port 6 (PWM capable - TPM 0.2 = channel 3)
mjr 6:cc35eb643e8f 326 { PTA13, true }, // pin J2-2, LW port 7 (PWM capable - TPM 1.1 = channel 13)
mjr 6:cc35eb643e8f 327 { PTD5, true }, // pin J2-4, LW port 8 (PWM capable - TPM 0.5 = channel 6)
mjr 6:cc35eb643e8f 328 { PTD0, true }, // pin J2-6, LW port 9 (PWM capable - TPM 0.0 = channel 1)
mjr 6:cc35eb643e8f 329 { PTD3, true }, // pin J2-10, LW port 10 (PWM capable - TPM 0.3 = channel 4)
mjr 9:fd65b0a94720 330 { PTD2, false }, // pin J2-8, LW port 11
mjr 9:fd65b0a94720 331 { PTC8, false }, // pin J1-14, LW port 12
mjr 9:fd65b0a94720 332 { PTC9, false }, // pin J1-16, LW port 13
mjr 9:fd65b0a94720 333 { PTC7, false }, // pin J1-1, LW port 14
mjr 9:fd65b0a94720 334 { PTC0, false }, // pin J1-3, LW port 15
mjr 9:fd65b0a94720 335 { PTC3, false }, // pin J1-5, LW port 16
mjr 9:fd65b0a94720 336 { PTC4, false }, // pin J1-7, LW port 17
mjr 9:fd65b0a94720 337 { PTC5, false }, // pin J1-9, LW port 18
mjr 9:fd65b0a94720 338 { PTC6, false }, // pin J1-11, LW port 19
mjr 9:fd65b0a94720 339 { PTC10, false }, // pin J1-13, LW port 20
mjr 9:fd65b0a94720 340 { PTC11, false }, // pin J1-15, LW port 21
mjr 9:fd65b0a94720 341 { PTC12, false }, // pin J2-1, LW port 22
mjr 9:fd65b0a94720 342 { PTC13, false }, // pin J2-3, LW port 23
mjr 9:fd65b0a94720 343 { PTC16, false }, // pin J2-5, LW port 24
mjr 9:fd65b0a94720 344 { PTC17, false }, // pin J2-7, LW port 25
mjr 9:fd65b0a94720 345 { PTA16, false }, // pin J2-9, LW port 26
mjr 9:fd65b0a94720 346 { PTA17, false }, // pin J2-11, LW port 27
mjr 9:fd65b0a94720 347 { PTE31, false }, // pin J2-13, LW port 28
mjr 6:cc35eb643e8f 348 { PTD6, false }, // pin J2-17, LW port 29
mjr 6:cc35eb643e8f 349 { PTD7, false }, // pin J2-19, LW port 30
mjr 6:cc35eb643e8f 350 { PTE0, false }, // pin J2-18, LW port 31
mjr 6:cc35eb643e8f 351 { PTE1, false } // pin J2-20, LW port 32
mjr 6:cc35eb643e8f 352 };
mjr 6:cc35eb643e8f 353
mjr 6:cc35eb643e8f 354
mjr 5:a70c0bce770d 355 // I2C address of the accelerometer (this is a constant of the KL25Z)
mjr 5:a70c0bce770d 356 const int MMA8451_I2C_ADDRESS = (0x1d<<1);
mjr 5:a70c0bce770d 357
mjr 5:a70c0bce770d 358 // SCL and SDA pins for the accelerometer (constant for the KL25Z)
mjr 5:a70c0bce770d 359 #define MMA8451_SCL_PIN PTE25
mjr 5:a70c0bce770d 360 #define MMA8451_SDA_PIN PTE24
mjr 5:a70c0bce770d 361
mjr 5:a70c0bce770d 362 // Digital in pin to use for the accelerometer interrupt. For the KL25Z,
mjr 5:a70c0bce770d 363 // this can be either PTA14 or PTA15, since those are the pins physically
mjr 5:a70c0bce770d 364 // wired on this board to the MMA8451 interrupt controller.
mjr 5:a70c0bce770d 365 #define MMA8451_INT_PIN PTA15
mjr 5:a70c0bce770d 366
mjr 6:cc35eb643e8f 367 // Joystick axis report range - we report from -JOYMAX to +JOYMAX
mjr 6:cc35eb643e8f 368 #define JOYMAX 4096
mjr 6:cc35eb643e8f 369
mjr 5:a70c0bce770d 370
mjr 5:a70c0bce770d 371 // ---------------------------------------------------------------------------
mjr 9:fd65b0a94720 372 // utilities
mjr 9:fd65b0a94720 373
mjr 9:fd65b0a94720 374 // number of elements in an array
mjr 9:fd65b0a94720 375 #define countof(x) (sizeof(x)/sizeof((x)[0]))
mjr 9:fd65b0a94720 376
mjr 9:fd65b0a94720 377 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 378 //
mjr 5:a70c0bce770d 379 // LedWiz emulation
mjr 5:a70c0bce770d 380 //
mjr 5:a70c0bce770d 381
mjr 0:5acbbe3f4cf4 382 static int pbaIdx = 0;
mjr 0:5acbbe3f4cf4 383
mjr 6:cc35eb643e8f 384 // LedWiz output pin interface. We create a cover class to virtualize
mjr 6:cc35eb643e8f 385 // digital vs PWM outputs and give them a common interface. The KL25Z
mjr 6:cc35eb643e8f 386 // unfortunately doesn't have enough hardware PWM channels to support
mjr 6:cc35eb643e8f 387 // PWM on all 32 LedWiz outputs, so we provide as many PWM channels as
mjr 6:cc35eb643e8f 388 // we can (10), and fill out the rest of the outputs with plain digital
mjr 6:cc35eb643e8f 389 // outs.
mjr 6:cc35eb643e8f 390 class LwOut
mjr 6:cc35eb643e8f 391 {
mjr 6:cc35eb643e8f 392 public:
mjr 6:cc35eb643e8f 393 virtual void set(float val) = 0;
mjr 6:cc35eb643e8f 394 };
mjr 6:cc35eb643e8f 395 class LwPwmOut: public LwOut
mjr 6:cc35eb643e8f 396 {
mjr 6:cc35eb643e8f 397 public:
mjr 6:cc35eb643e8f 398 LwPwmOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 399 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 400 PwmOut p;
mjr 6:cc35eb643e8f 401 };
mjr 6:cc35eb643e8f 402 class LwDigOut: public LwOut
mjr 6:cc35eb643e8f 403 {
mjr 6:cc35eb643e8f 404 public:
mjr 6:cc35eb643e8f 405 LwDigOut(PinName pin) : p(pin) { }
mjr 6:cc35eb643e8f 406 virtual void set(float val) { p = val; }
mjr 6:cc35eb643e8f 407 DigitalOut p;
mjr 6:cc35eb643e8f 408 };
mjr 6:cc35eb643e8f 409
mjr 6:cc35eb643e8f 410 // output pin array
mjr 6:cc35eb643e8f 411 static LwOut *lwPin[32];
mjr 6:cc35eb643e8f 412
mjr 6:cc35eb643e8f 413 // initialize the output pin array
mjr 6:cc35eb643e8f 414 void initLwOut()
mjr 6:cc35eb643e8f 415 {
mjr 9:fd65b0a94720 416 for (int i = 0 ; i < countof(lwPin) ; ++i)
mjr 6:cc35eb643e8f 417 {
mjr 6:cc35eb643e8f 418 PinName p = ledWizPortMap[i].pin;
mjr 6:cc35eb643e8f 419 lwPin[i] = (ledWizPortMap[i].isPWM
mjr 6:cc35eb643e8f 420 ? (LwOut *)new LwPwmOut(p)
mjr 6:cc35eb643e8f 421 : (LwOut *)new LwDigOut(p));
mjr 6:cc35eb643e8f 422 }
mjr 6:cc35eb643e8f 423 }
mjr 6:cc35eb643e8f 424
mjr 0:5acbbe3f4cf4 425 // on/off state for each LedWiz output
mjr 1:d913e0afb2ac 426 static uint8_t wizOn[32];
mjr 0:5acbbe3f4cf4 427
mjr 0:5acbbe3f4cf4 428 // profile (brightness/blink) state for each LedWiz output
mjr 1:d913e0afb2ac 429 static uint8_t wizVal[32] = {
mjr 0:5acbbe3f4cf4 430 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 431 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 432 0, 0, 0, 0, 0, 0, 0, 0,
mjr 0:5acbbe3f4cf4 433 0, 0, 0, 0, 0, 0, 0, 0
mjr 0:5acbbe3f4cf4 434 };
mjr 0:5acbbe3f4cf4 435
mjr 1:d913e0afb2ac 436 static float wizState(int idx)
mjr 0:5acbbe3f4cf4 437 {
mjr 1:d913e0afb2ac 438 if (wizOn[idx]) {
mjr 0:5acbbe3f4cf4 439 // on - map profile brightness state to PWM level
mjr 1:d913e0afb2ac 440 uint8_t val = wizVal[idx];
mjr 0:5acbbe3f4cf4 441 if (val >= 1 && val <= 48)
mjr 0:5acbbe3f4cf4 442 return 1.0 - val/48.0;
mjr 0:5acbbe3f4cf4 443 else if (val >= 129 && val <= 132)
mjr 0:5acbbe3f4cf4 444 return 0.0;
mjr 0:5acbbe3f4cf4 445 else
mjr 0:5acbbe3f4cf4 446 return 1.0;
mjr 0:5acbbe3f4cf4 447 }
mjr 0:5acbbe3f4cf4 448 else {
mjr 0:5acbbe3f4cf4 449 // off
mjr 0:5acbbe3f4cf4 450 return 1.0;
mjr 0:5acbbe3f4cf4 451 }
mjr 0:5acbbe3f4cf4 452 }
mjr 0:5acbbe3f4cf4 453
mjr 1:d913e0afb2ac 454 static void updateWizOuts()
mjr 1:d913e0afb2ac 455 {
mjr 6:cc35eb643e8f 456 for (int i = 0 ; i < 32 ; ++i)
mjr 6:cc35eb643e8f 457 lwPin[i]->set(wizState(i));
mjr 1:d913e0afb2ac 458 }
mjr 1:d913e0afb2ac 459
mjr 5:a70c0bce770d 460 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 461 //
mjr 5:a70c0bce770d 462 // Non-volatile memory (NVM)
mjr 5:a70c0bce770d 463 //
mjr 0:5acbbe3f4cf4 464
mjr 5:a70c0bce770d 465 // Structure defining our NVM storage layout. We store a small
mjr 2:c174f9ee414a 466 // amount of persistent data in flash memory to retain calibration
mjr 5:a70c0bce770d 467 // data when powered off.
mjr 2:c174f9ee414a 468 struct NVM
mjr 2:c174f9ee414a 469 {
mjr 2:c174f9ee414a 470 // checksum - we use this to determine if the flash record
mjr 6:cc35eb643e8f 471 // has been properly initialized
mjr 2:c174f9ee414a 472 uint32_t checksum;
mjr 2:c174f9ee414a 473
mjr 2:c174f9ee414a 474 // signature value
mjr 2:c174f9ee414a 475 static const uint32_t SIGNATURE = 0x4D4A522A;
mjr 6:cc35eb643e8f 476 static const uint16_t VERSION = 0x0003;
mjr 6:cc35eb643e8f 477
mjr 6:cc35eb643e8f 478 // Is the data structure valid? We test the signature and
mjr 6:cc35eb643e8f 479 // checksum to determine if we've been properly stored.
mjr 6:cc35eb643e8f 480 int valid() const
mjr 6:cc35eb643e8f 481 {
mjr 6:cc35eb643e8f 482 return (d.sig == SIGNATURE
mjr 6:cc35eb643e8f 483 && d.vsn == VERSION
mjr 6:cc35eb643e8f 484 && d.sz == sizeof(NVM)
mjr 6:cc35eb643e8f 485 && checksum == CRC32(&d, sizeof(d)));
mjr 6:cc35eb643e8f 486 }
mjr 6:cc35eb643e8f 487
mjr 6:cc35eb643e8f 488 // save to non-volatile memory
mjr 6:cc35eb643e8f 489 void save(FreescaleIAP &iap, int addr)
mjr 6:cc35eb643e8f 490 {
mjr 6:cc35eb643e8f 491 // update the checksum and structure size
mjr 6:cc35eb643e8f 492 checksum = CRC32(&d, sizeof(d));
mjr 6:cc35eb643e8f 493 d.sz = sizeof(NVM);
mjr 6:cc35eb643e8f 494
mjr 6:cc35eb643e8f 495 // erase the sector
mjr 6:cc35eb643e8f 496 iap.erase_sector(addr);
mjr 6:cc35eb643e8f 497
mjr 6:cc35eb643e8f 498 // save the data
mjr 6:cc35eb643e8f 499 iap.program_flash(addr, this, sizeof(*this));
mjr 6:cc35eb643e8f 500 }
mjr 2:c174f9ee414a 501
mjr 9:fd65b0a94720 502 // reset calibration data for calibration mode
mjr 9:fd65b0a94720 503 void resetPlunger()
mjr 9:fd65b0a94720 504 {
mjr 9:fd65b0a94720 505 // set extremes for the calibration data
mjr 9:fd65b0a94720 506 d.plungerMax = 0;
mjr 9:fd65b0a94720 507 d.plungerZero = npix;
mjr 9:fd65b0a94720 508 d.plungerMin = npix;
mjr 9:fd65b0a94720 509 }
mjr 9:fd65b0a94720 510
mjr 2:c174f9ee414a 511 // stored data (excluding the checksum)
mjr 2:c174f9ee414a 512 struct
mjr 2:c174f9ee414a 513 {
mjr 6:cc35eb643e8f 514 // Signature, structure version, and structure size - further verification
mjr 6:cc35eb643e8f 515 // that we have valid initialized data. The size is a simple proxy for a
mjr 6:cc35eb643e8f 516 // structure version, as the most common type of change to the structure as
mjr 6:cc35eb643e8f 517 // the software evolves will be the addition of new elements. We also
mjr 6:cc35eb643e8f 518 // provide an explicit version number that we can update manually if we
mjr 6:cc35eb643e8f 519 // make any changes that don't affect the structure size but would affect
mjr 6:cc35eb643e8f 520 // compatibility with a saved record (e.g., swapping two existing elements).
mjr 2:c174f9ee414a 521 uint32_t sig;
mjr 2:c174f9ee414a 522 uint16_t vsn;
mjr 6:cc35eb643e8f 523 int sz;
mjr 2:c174f9ee414a 524
mjr 6:cc35eb643e8f 525 // has the plunger been manually calibrated?
mjr 6:cc35eb643e8f 526 int plungerCal;
mjr 6:cc35eb643e8f 527
mjr 2:c174f9ee414a 528 // plunger calibration min and max
mjr 2:c174f9ee414a 529 int plungerMin;
mjr 6:cc35eb643e8f 530 int plungerZero;
mjr 2:c174f9ee414a 531 int plungerMax;
mjr 6:cc35eb643e8f 532
mjr 6:cc35eb643e8f 533 // is the CCD enabled?
mjr 6:cc35eb643e8f 534 int ccdEnabled;
mjr 6:cc35eb643e8f 535
mjr 6:cc35eb643e8f 536 // LedWiz unit number
mjr 6:cc35eb643e8f 537 uint8_t ledWizUnitNo;
mjr 2:c174f9ee414a 538 } d;
mjr 2:c174f9ee414a 539 };
mjr 2:c174f9ee414a 540
mjr 5:a70c0bce770d 541
mjr 5:a70c0bce770d 542 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 543 //
mjr 5:a70c0bce770d 544 // Customization joystick subbclass
mjr 5:a70c0bce770d 545 //
mjr 5:a70c0bce770d 546
mjr 5:a70c0bce770d 547 class MyUSBJoystick: public USBJoystick
mjr 5:a70c0bce770d 548 {
mjr 5:a70c0bce770d 549 public:
mjr 5:a70c0bce770d 550 MyUSBJoystick(uint16_t vendor_id, uint16_t product_id, uint16_t product_release)
mjr 5:a70c0bce770d 551 : USBJoystick(vendor_id, product_id, product_release, true)
mjr 5:a70c0bce770d 552 {
mjr 5:a70c0bce770d 553 suspended_ = false;
mjr 5:a70c0bce770d 554 }
mjr 5:a70c0bce770d 555
mjr 5:a70c0bce770d 556 // are we connected?
mjr 5:a70c0bce770d 557 int isConnected() { return configured(); }
mjr 5:a70c0bce770d 558
mjr 5:a70c0bce770d 559 // Are we in suspend mode?
mjr 5:a70c0bce770d 560 int isSuspended() const { return suspended_; }
mjr 5:a70c0bce770d 561
mjr 5:a70c0bce770d 562 protected:
mjr 5:a70c0bce770d 563 virtual void suspendStateChanged(unsigned int suspended)
mjr 5:a70c0bce770d 564 { suspended_ = suspended; }
mjr 5:a70c0bce770d 565
mjr 5:a70c0bce770d 566 // are we suspended?
mjr 5:a70c0bce770d 567 int suspended_;
mjr 5:a70c0bce770d 568 };
mjr 5:a70c0bce770d 569
mjr 5:a70c0bce770d 570 // ---------------------------------------------------------------------------
mjr 6:cc35eb643e8f 571 //
mjr 6:cc35eb643e8f 572 // Some simple math service routines
mjr 6:cc35eb643e8f 573 //
mjr 6:cc35eb643e8f 574
mjr 6:cc35eb643e8f 575 inline float square(float x) { return x*x; }
mjr 6:cc35eb643e8f 576 inline float round(float x) { return x > 0 ? floor(x + 0.5) : ceil(x - 0.5); }
mjr 6:cc35eb643e8f 577
mjr 6:cc35eb643e8f 578 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 579 //
mjr 5:a70c0bce770d 580 // Accelerometer (MMA8451Q)
mjr 5:a70c0bce770d 581 //
mjr 5:a70c0bce770d 582
mjr 5:a70c0bce770d 583 // The MMA8451Q is the KL25Z's on-board 3-axis accelerometer.
mjr 5:a70c0bce770d 584 //
mjr 5:a70c0bce770d 585 // This is a custom wrapper for the library code to interface to the
mjr 6:cc35eb643e8f 586 // MMA8451Q. This class encapsulates an interrupt handler and
mjr 6:cc35eb643e8f 587 // automatic calibration.
mjr 5:a70c0bce770d 588 //
mjr 5:a70c0bce770d 589 // We install an interrupt handler on the accelerometer "data ready"
mjr 6:cc35eb643e8f 590 // interrupt to ensure that we fetch each sample immediately when it
mjr 6:cc35eb643e8f 591 // becomes available. The accelerometer data rate is fiarly high
mjr 6:cc35eb643e8f 592 // (800 Hz), so it's not practical to keep up with it by polling.
mjr 6:cc35eb643e8f 593 // Using an interrupt handler lets us respond quickly and read
mjr 6:cc35eb643e8f 594 // every sample.
mjr 5:a70c0bce770d 595 //
mjr 6:cc35eb643e8f 596 // We automatically calibrate the accelerometer so that it's not
mjr 6:cc35eb643e8f 597 // necessary to get it exactly level when installing it, and so
mjr 6:cc35eb643e8f 598 // that it's also not necessary to calibrate it manually. There's
mjr 6:cc35eb643e8f 599 // lots of experience that tells us that manual calibration is a
mjr 6:cc35eb643e8f 600 // terrible solution, mostly because cabinets tend to shift slightly
mjr 6:cc35eb643e8f 601 // during use, requiring frequent recalibration. Instead, we
mjr 6:cc35eb643e8f 602 // calibrate automatically. We continuously monitor the acceleration
mjr 6:cc35eb643e8f 603 // data, watching for periods of constant (or nearly constant) values.
mjr 6:cc35eb643e8f 604 // Any time it appears that the machine has been at rest for a while
mjr 6:cc35eb643e8f 605 // (about 5 seconds), we'll average the readings during that rest
mjr 6:cc35eb643e8f 606 // period and use the result as the level rest position. This is
mjr 6:cc35eb643e8f 607 // is ongoing, so we'll quickly find the center point again if the
mjr 6:cc35eb643e8f 608 // machine is moved during play (by an especially aggressive bout
mjr 6:cc35eb643e8f 609 // of nudging, say).
mjr 5:a70c0bce770d 610 //
mjr 5:a70c0bce770d 611
mjr 6:cc35eb643e8f 612 // accelerometer input history item, for gathering calibration data
mjr 6:cc35eb643e8f 613 struct AccHist
mjr 5:a70c0bce770d 614 {
mjr 6:cc35eb643e8f 615 AccHist() { x = y = d = 0.0; xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 616 void set(float x, float y, AccHist *prv)
mjr 6:cc35eb643e8f 617 {
mjr 6:cc35eb643e8f 618 // save the raw position
mjr 6:cc35eb643e8f 619 this->x = x;
mjr 6:cc35eb643e8f 620 this->y = y;
mjr 6:cc35eb643e8f 621 this->d = distance(prv);
mjr 6:cc35eb643e8f 622 }
mjr 6:cc35eb643e8f 623
mjr 6:cc35eb643e8f 624 // reading for this entry
mjr 5:a70c0bce770d 625 float x, y;
mjr 5:a70c0bce770d 626
mjr 6:cc35eb643e8f 627 // distance from previous entry
mjr 6:cc35eb643e8f 628 float d;
mjr 5:a70c0bce770d 629
mjr 6:cc35eb643e8f 630 // total and count of samples averaged over this period
mjr 6:cc35eb643e8f 631 float xtot, ytot;
mjr 6:cc35eb643e8f 632 int cnt;
mjr 6:cc35eb643e8f 633
mjr 6:cc35eb643e8f 634 void clearAvg() { xtot = ytot = 0.0; cnt = 0; }
mjr 6:cc35eb643e8f 635 void addAvg(float x, float y) { xtot += x; ytot += y; ++cnt; }
mjr 6:cc35eb643e8f 636 float xAvg() const { return xtot/cnt; }
mjr 6:cc35eb643e8f 637 float yAvg() const { return ytot/cnt; }
mjr 5:a70c0bce770d 638
mjr 6:cc35eb643e8f 639 float distance(AccHist *p)
mjr 6:cc35eb643e8f 640 { return sqrt(square(p->x - x) + square(p->y - y)); }
mjr 5:a70c0bce770d 641 };
mjr 5:a70c0bce770d 642
mjr 5:a70c0bce770d 643 // accelerometer wrapper class
mjr 3:3514575d4f86 644 class Accel
mjr 3:3514575d4f86 645 {
mjr 3:3514575d4f86 646 public:
mjr 3:3514575d4f86 647 Accel(PinName sda, PinName scl, int i2cAddr, PinName irqPin)
mjr 3:3514575d4f86 648 : mma_(sda, scl, i2cAddr), intIn_(irqPin)
mjr 3:3514575d4f86 649 {
mjr 5:a70c0bce770d 650 // remember the interrupt pin assignment
mjr 5:a70c0bce770d 651 irqPin_ = irqPin;
mjr 5:a70c0bce770d 652
mjr 5:a70c0bce770d 653 // reset and initialize
mjr 5:a70c0bce770d 654 reset();
mjr 5:a70c0bce770d 655 }
mjr 5:a70c0bce770d 656
mjr 5:a70c0bce770d 657 void reset()
mjr 5:a70c0bce770d 658 {
mjr 6:cc35eb643e8f 659 // clear the center point
mjr 6:cc35eb643e8f 660 cx_ = cy_ = 0.0;
mjr 6:cc35eb643e8f 661
mjr 6:cc35eb643e8f 662 // start the calibration timer
mjr 5:a70c0bce770d 663 tCenter_.start();
mjr 5:a70c0bce770d 664 iAccPrv_ = nAccPrv_ = 0;
mjr 6:cc35eb643e8f 665
mjr 5:a70c0bce770d 666 // reset and initialize the MMA8451Q
mjr 5:a70c0bce770d 667 mma_.init();
mjr 6:cc35eb643e8f 668
mjr 6:cc35eb643e8f 669 // set the initial integrated velocity reading to zero
mjr 6:cc35eb643e8f 670 vx_ = vy_ = 0;
mjr 3:3514575d4f86 671
mjr 6:cc35eb643e8f 672 // set up our accelerometer interrupt handling
mjr 6:cc35eb643e8f 673 intIn_.rise(this, &Accel::isr);
mjr 5:a70c0bce770d 674 mma_.setInterruptMode(irqPin_ == PTA14 ? 1 : 2);
mjr 3:3514575d4f86 675
mjr 3:3514575d4f86 676 // read the current registers to clear the data ready flag
mjr 6:cc35eb643e8f 677 mma_.getAccXYZ(ax_, ay_, az_);
mjr 3:3514575d4f86 678
mjr 3:3514575d4f86 679 // start our timers
mjr 3:3514575d4f86 680 tGet_.start();
mjr 3:3514575d4f86 681 tInt_.start();
mjr 3:3514575d4f86 682 }
mjr 3:3514575d4f86 683
mjr 9:fd65b0a94720 684 void get(int &x, int &y)
mjr 3:3514575d4f86 685 {
mjr 3:3514575d4f86 686 // disable interrupts while manipulating the shared data
mjr 3:3514575d4f86 687 __disable_irq();
mjr 3:3514575d4f86 688
mjr 3:3514575d4f86 689 // read the shared data and store locally for calculations
mjr 6:cc35eb643e8f 690 float ax = ax_, ay = ay_;
mjr 6:cc35eb643e8f 691 float vx = vx_, vy = vy_;
mjr 5:a70c0bce770d 692
mjr 6:cc35eb643e8f 693 // reset the velocity sum for the next run
mjr 6:cc35eb643e8f 694 vx_ = vy_ = 0;
mjr 3:3514575d4f86 695
mjr 3:3514575d4f86 696 // get the time since the last get() sample
mjr 3:3514575d4f86 697 float dt = tGet_.read_us()/1.0e6;
mjr 3:3514575d4f86 698 tGet_.reset();
mjr 3:3514575d4f86 699
mjr 3:3514575d4f86 700 // done manipulating the shared data
mjr 3:3514575d4f86 701 __enable_irq();
mjr 3:3514575d4f86 702
mjr 6:cc35eb643e8f 703 // adjust the readings for the integration time
mjr 6:cc35eb643e8f 704 vx /= dt;
mjr 6:cc35eb643e8f 705 vy /= dt;
mjr 6:cc35eb643e8f 706
mjr 6:cc35eb643e8f 707 // add this sample to the current calibration interval's running total
mjr 6:cc35eb643e8f 708 AccHist *p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 709 p->addAvg(ax, ay);
mjr 6:cc35eb643e8f 710
mjr 5:a70c0bce770d 711 // check for auto-centering every so often
mjr 5:a70c0bce770d 712 if (tCenter_.read_ms() > 1000)
mjr 5:a70c0bce770d 713 {
mjr 5:a70c0bce770d 714 // add the latest raw sample to the history list
mjr 6:cc35eb643e8f 715 AccHist *prv = p;
mjr 5:a70c0bce770d 716 iAccPrv_ = (iAccPrv_ + 1) % maxAccPrv;
mjr 6:cc35eb643e8f 717 p = accPrv_ + iAccPrv_;
mjr 6:cc35eb643e8f 718 p->set(ax, ay, prv);
mjr 5:a70c0bce770d 719
mjr 5:a70c0bce770d 720 // if we have a full complement, check for stability
mjr 5:a70c0bce770d 721 if (nAccPrv_ >= maxAccPrv)
mjr 5:a70c0bce770d 722 {
mjr 5:a70c0bce770d 723 // check if we've been stable for all recent samples
mjr 6:cc35eb643e8f 724 static const float accTol = .01;
mjr 6:cc35eb643e8f 725 AccHist *p0 = accPrv_;
mjr 6:cc35eb643e8f 726 if (p0[0].d < accTol
mjr 6:cc35eb643e8f 727 && p0[1].d < accTol
mjr 6:cc35eb643e8f 728 && p0[2].d < accTol
mjr 6:cc35eb643e8f 729 && p0[3].d < accTol
mjr 6:cc35eb643e8f 730 && p0[4].d < accTol)
mjr 5:a70c0bce770d 731 {
mjr 6:cc35eb643e8f 732 // Figure the new calibration point as the average of
mjr 6:cc35eb643e8f 733 // the samples over the rest period
mjr 6:cc35eb643e8f 734 cx_ = (p0[0].xAvg() + p0[1].xAvg() + p0[2].xAvg() + p0[3].xAvg() + p0[4].xAvg())/5.0;
mjr 6:cc35eb643e8f 735 cy_ = (p0[0].yAvg() + p0[1].yAvg() + p0[2].yAvg() + p0[3].yAvg() + p0[4].yAvg())/5.0;
mjr 5:a70c0bce770d 736 }
mjr 5:a70c0bce770d 737 }
mjr 5:a70c0bce770d 738 else
mjr 5:a70c0bce770d 739 {
mjr 5:a70c0bce770d 740 // not enough samples yet; just up the count
mjr 5:a70c0bce770d 741 ++nAccPrv_;
mjr 5:a70c0bce770d 742 }
mjr 6:cc35eb643e8f 743
mjr 6:cc35eb643e8f 744 // clear the new item's running totals
mjr 6:cc35eb643e8f 745 p->clearAvg();
mjr 5:a70c0bce770d 746
mjr 5:a70c0bce770d 747 // reset the timer
mjr 5:a70c0bce770d 748 tCenter_.reset();
mjr 5:a70c0bce770d 749 }
mjr 5:a70c0bce770d 750
mjr 6:cc35eb643e8f 751 // report our integrated velocity reading in x,y
mjr 6:cc35eb643e8f 752 x = rawToReport(vx);
mjr 6:cc35eb643e8f 753 y = rawToReport(vy);
mjr 5:a70c0bce770d 754
mjr 6:cc35eb643e8f 755 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 756 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 757 printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
mjr 6:cc35eb643e8f 758 #endif
mjr 3:3514575d4f86 759 }
mjr 3:3514575d4f86 760
mjr 3:3514575d4f86 761 private:
mjr 6:cc35eb643e8f 762 // adjust a raw acceleration figure to a usb report value
mjr 6:cc35eb643e8f 763 int rawToReport(float v)
mjr 5:a70c0bce770d 764 {
mjr 6:cc35eb643e8f 765 // scale to the joystick report range and round to integer
mjr 6:cc35eb643e8f 766 int i = int(round(v*JOYMAX));
mjr 5:a70c0bce770d 767
mjr 6:cc35eb643e8f 768 // if it's near the center, scale it roughly as 20*(i/20)^2,
mjr 6:cc35eb643e8f 769 // to suppress noise near the rest position
mjr 6:cc35eb643e8f 770 static const int filter[] = {
mjr 6:cc35eb643e8f 771 -18, -16, -14, -13, -11, -10, -8, -7, -6, -5, -4, -3, -2, -2, -1, -1, 0, 0, 0, 0,
mjr 6:cc35eb643e8f 772 0,
mjr 6:cc35eb643e8f 773 0, 0, 0, 0, 1, 1, 2, 2, 3, 4, 5, 6, 7, 8, 10, 11, 13, 14, 16, 18
mjr 6:cc35eb643e8f 774 };
mjr 6:cc35eb643e8f 775 return (i > 20 || i < -20 ? i : filter[i+20]);
mjr 5:a70c0bce770d 776 }
mjr 5:a70c0bce770d 777
mjr 3:3514575d4f86 778 // interrupt handler
mjr 3:3514575d4f86 779 void isr()
mjr 3:3514575d4f86 780 {
mjr 3:3514575d4f86 781 // Read the axes. Note that we have to read all three axes
mjr 3:3514575d4f86 782 // (even though we only really use x and y) in order to clear
mjr 3:3514575d4f86 783 // the "data ready" status bit in the accelerometer. The
mjr 3:3514575d4f86 784 // interrupt only occurs when the "ready" bit transitions from
mjr 3:3514575d4f86 785 // off to on, so we have to make sure it's off.
mjr 5:a70c0bce770d 786 float x, y, z;
mjr 5:a70c0bce770d 787 mma_.getAccXYZ(x, y, z);
mjr 3:3514575d4f86 788
mjr 3:3514575d4f86 789 // calculate the time since the last interrupt
mjr 3:3514575d4f86 790 float dt = tInt_.read_us()/1.0e6;
mjr 3:3514575d4f86 791 tInt_.reset();
mjr 6:cc35eb643e8f 792
mjr 6:cc35eb643e8f 793 // integrate the time slice from the previous reading to this reading
mjr 6:cc35eb643e8f 794 vx_ += (x + ax_ - 2*cx_)*dt/2;
mjr 6:cc35eb643e8f 795 vy_ += (y + ay_ - 2*cy_)*dt/2;
mjr 3:3514575d4f86 796
mjr 6:cc35eb643e8f 797 // store the updates
mjr 6:cc35eb643e8f 798 ax_ = x;
mjr 6:cc35eb643e8f 799 ay_ = y;
mjr 6:cc35eb643e8f 800 az_ = z;
mjr 3:3514575d4f86 801 }
mjr 3:3514575d4f86 802
mjr 3:3514575d4f86 803 // underlying accelerometer object
mjr 3:3514575d4f86 804 MMA8451Q mma_;
mjr 3:3514575d4f86 805
mjr 5:a70c0bce770d 806 // last raw acceleration readings
mjr 6:cc35eb643e8f 807 float ax_, ay_, az_;
mjr 5:a70c0bce770d 808
mjr 6:cc35eb643e8f 809 // integrated velocity reading since last get()
mjr 6:cc35eb643e8f 810 float vx_, vy_;
mjr 6:cc35eb643e8f 811
mjr 3:3514575d4f86 812 // timer for measuring time between get() samples
mjr 3:3514575d4f86 813 Timer tGet_;
mjr 3:3514575d4f86 814
mjr 3:3514575d4f86 815 // timer for measuring time between interrupts
mjr 3:3514575d4f86 816 Timer tInt_;
mjr 5:a70c0bce770d 817
mjr 6:cc35eb643e8f 818 // Calibration reference point for accelerometer. This is the
mjr 6:cc35eb643e8f 819 // average reading on the accelerometer when in the neutral position
mjr 6:cc35eb643e8f 820 // at rest.
mjr 6:cc35eb643e8f 821 float cx_, cy_;
mjr 5:a70c0bce770d 822
mjr 5:a70c0bce770d 823 // timer for atuo-centering
mjr 5:a70c0bce770d 824 Timer tCenter_;
mjr 6:cc35eb643e8f 825
mjr 6:cc35eb643e8f 826 // Auto-centering history. This is a separate history list that
mjr 6:cc35eb643e8f 827 // records results spaced out sparesely over time, so that we can
mjr 6:cc35eb643e8f 828 // watch for long-lasting periods of rest. When we observe nearly
mjr 6:cc35eb643e8f 829 // no motion for an extended period (on the order of 5 seconds), we
mjr 6:cc35eb643e8f 830 // take this to mean that the cabinet is at rest in its neutral
mjr 6:cc35eb643e8f 831 // position, so we take this as the calibration zero point for the
mjr 6:cc35eb643e8f 832 // accelerometer. We update this history continuously, which allows
mjr 6:cc35eb643e8f 833 // us to continuously re-calibrate the accelerometer. This ensures
mjr 6:cc35eb643e8f 834 // that we'll automatically adjust to any actual changes in the
mjr 6:cc35eb643e8f 835 // cabinet's orientation (e.g., if it gets moved slightly by an
mjr 6:cc35eb643e8f 836 // especially strong nudge) as well as any systematic drift in the
mjr 6:cc35eb643e8f 837 // accelerometer measurement bias (e.g., from temperature changes).
mjr 5:a70c0bce770d 838 int iAccPrv_, nAccPrv_;
mjr 5:a70c0bce770d 839 static const int maxAccPrv = 5;
mjr 6:cc35eb643e8f 840 AccHist accPrv_[maxAccPrv];
mjr 6:cc35eb643e8f 841
mjr 5:a70c0bce770d 842 // interurupt pin name
mjr 5:a70c0bce770d 843 PinName irqPin_;
mjr 5:a70c0bce770d 844
mjr 5:a70c0bce770d 845 // interrupt router
mjr 5:a70c0bce770d 846 InterruptIn intIn_;
mjr 3:3514575d4f86 847 };
mjr 3:3514575d4f86 848
mjr 5:a70c0bce770d 849
mjr 5:a70c0bce770d 850 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 851 //
mjr 5:a70c0bce770d 852 // Clear the I2C bus for the MMA8451!. This seems necessary some of the time
mjr 5:a70c0bce770d 853 // for reasons that aren't clear to me. Doing a hard power cycle has the same
mjr 5:a70c0bce770d 854 // effect, but when we do a soft reset, the hardware sometimes seems to leave
mjr 5:a70c0bce770d 855 // the MMA's SDA line stuck low. Forcing a series of 9 clock pulses through
mjr 5:a70c0bce770d 856 // the SCL line is supposed to clear this conidtion.
mjr 5:a70c0bce770d 857 //
mjr 5:a70c0bce770d 858 void clear_i2c()
mjr 5:a70c0bce770d 859 {
mjr 5:a70c0bce770d 860 // assume a general-purpose output pin to the I2C clock
mjr 5:a70c0bce770d 861 DigitalOut scl(MMA8451_SCL_PIN);
mjr 5:a70c0bce770d 862 DigitalIn sda(MMA8451_SDA_PIN);
mjr 5:a70c0bce770d 863
mjr 5:a70c0bce770d 864 // clock the SCL 9 times
mjr 5:a70c0bce770d 865 for (int i = 0 ; i < 9 ; ++i)
mjr 5:a70c0bce770d 866 {
mjr 5:a70c0bce770d 867 scl = 1;
mjr 5:a70c0bce770d 868 wait_us(20);
mjr 5:a70c0bce770d 869 scl = 0;
mjr 5:a70c0bce770d 870 wait_us(20);
mjr 5:a70c0bce770d 871 }
mjr 5:a70c0bce770d 872 }
mjr 5:a70c0bce770d 873
mjr 5:a70c0bce770d 874 // ---------------------------------------------------------------------------
mjr 5:a70c0bce770d 875 //
mjr 5:a70c0bce770d 876 // Main program loop. This is invoked on startup and runs forever. Our
mjr 5:a70c0bce770d 877 // main work is to read our devices (the accelerometer and the CCD), process
mjr 5:a70c0bce770d 878 // the readings into nudge and plunger position data, and send the results
mjr 5:a70c0bce770d 879 // to the host computer via the USB joystick interface. We also monitor
mjr 5:a70c0bce770d 880 // the USB connection for incoming LedWiz commands and process those into
mjr 5:a70c0bce770d 881 // port outputs.
mjr 5:a70c0bce770d 882 //
mjr 0:5acbbe3f4cf4 883 int main(void)
mjr 0:5acbbe3f4cf4 884 {
mjr 1:d913e0afb2ac 885 // turn off our on-board indicator LED
mjr 4:02c7cd7b2183 886 ledR = 1;
mjr 4:02c7cd7b2183 887 ledG = 1;
mjr 4:02c7cd7b2183 888 ledB = 1;
mjr 1:d913e0afb2ac 889
mjr 6:cc35eb643e8f 890 // initialize the LedWiz ports
mjr 6:cc35eb643e8f 891 initLwOut();
mjr 6:cc35eb643e8f 892
mjr 6:cc35eb643e8f 893 // we don't need a reset yet
mjr 6:cc35eb643e8f 894 bool needReset = false;
mjr 6:cc35eb643e8f 895
mjr 5:a70c0bce770d 896 // clear the I2C bus for the accelerometer
mjr 5:a70c0bce770d 897 clear_i2c();
mjr 5:a70c0bce770d 898
mjr 2:c174f9ee414a 899 // set up a flash memory controller
mjr 2:c174f9ee414a 900 FreescaleIAP iap;
mjr 2:c174f9ee414a 901
mjr 2:c174f9ee414a 902 // use the last sector of flash for our non-volatile memory structure
mjr 2:c174f9ee414a 903 int flash_addr = (iap.flash_size() - SECTOR_SIZE);
mjr 2:c174f9ee414a 904 NVM *flash = (NVM *)flash_addr;
mjr 2:c174f9ee414a 905 NVM cfg;
mjr 2:c174f9ee414a 906
mjr 2:c174f9ee414a 907 // check for valid flash
mjr 6:cc35eb643e8f 908 bool flash_valid = flash->valid();
mjr 2:c174f9ee414a 909
mjr 2:c174f9ee414a 910 // if the flash is valid, load it; otherwise initialize to defaults
mjr 2:c174f9ee414a 911 if (flash_valid) {
mjr 2:c174f9ee414a 912 memcpy(&cfg, flash, sizeof(cfg));
mjr 6:cc35eb643e8f 913 printf("Flash restored: plunger cal=%d, min=%d, zero=%d, max=%d\r\n",
mjr 6:cc35eb643e8f 914 cfg.d.plungerCal, cfg.d.plungerMin, cfg.d.plungerZero, cfg.d.plungerMax);
mjr 2:c174f9ee414a 915 }
mjr 2:c174f9ee414a 916 else {
mjr 2:c174f9ee414a 917 printf("Factory reset\r\n");
mjr 2:c174f9ee414a 918 cfg.d.sig = cfg.SIGNATURE;
mjr 2:c174f9ee414a 919 cfg.d.vsn = cfg.VERSION;
mjr 6:cc35eb643e8f 920 cfg.d.plungerCal = 0;
mjr 6:cc35eb643e8f 921 cfg.d.plungerZero = 0;
mjr 2:c174f9ee414a 922 cfg.d.plungerMin = 0;
mjr 2:c174f9ee414a 923 cfg.d.plungerMax = npix;
mjr 6:cc35eb643e8f 924 cfg.d.ledWizUnitNo = DEFAULT_LEDWIZ_UNIT_NUMBER;
mjr 6:cc35eb643e8f 925 cfg.d.ccdEnabled = true;
mjr 2:c174f9ee414a 926 }
mjr 1:d913e0afb2ac 927
mjr 6:cc35eb643e8f 928 // Create the joystick USB client. Note that we use the LedWiz unit
mjr 6:cc35eb643e8f 929 // number from the saved configuration.
mjr 6:cc35eb643e8f 930 MyUSBJoystick js(
mjr 6:cc35eb643e8f 931 USB_VENDOR_ID,
mjr 6:cc35eb643e8f 932 USB_PRODUCT_ID | cfg.d.ledWizUnitNo,
mjr 6:cc35eb643e8f 933 USB_VERSION_NO);
mjr 6:cc35eb643e8f 934
mjr 1:d913e0afb2ac 935 // plunger calibration button debounce timer
mjr 1:d913e0afb2ac 936 Timer calBtnTimer;
mjr 1:d913e0afb2ac 937 calBtnTimer.start();
mjr 1:d913e0afb2ac 938 int calBtnLit = false;
mjr 1:d913e0afb2ac 939
mjr 1:d913e0afb2ac 940 // Calibration button state:
mjr 1:d913e0afb2ac 941 // 0 = not pushed
mjr 1:d913e0afb2ac 942 // 1 = pushed, not yet debounced
mjr 1:d913e0afb2ac 943 // 2 = pushed, debounced, waiting for hold time
mjr 1:d913e0afb2ac 944 // 3 = pushed, hold time completed - in calibration mode
mjr 1:d913e0afb2ac 945 int calBtnState = 0;
mjr 1:d913e0afb2ac 946
mjr 1:d913e0afb2ac 947 // set up a timer for our heartbeat indicator
mjr 1:d913e0afb2ac 948 Timer hbTimer;
mjr 1:d913e0afb2ac 949 hbTimer.start();
mjr 1:d913e0afb2ac 950 int hb = 0;
mjr 5:a70c0bce770d 951 uint16_t hbcnt = 0;
mjr 1:d913e0afb2ac 952
mjr 1:d913e0afb2ac 953 // set a timer for accelerometer auto-centering
mjr 1:d913e0afb2ac 954 Timer acTimer;
mjr 1:d913e0afb2ac 955 acTimer.start();
mjr 1:d913e0afb2ac 956
mjr 0:5acbbe3f4cf4 957 // create the accelerometer object
mjr 5:a70c0bce770d 958 Accel accel(MMA8451_SCL_PIN, MMA8451_SDA_PIN, MMA8451_I2C_ADDRESS, MMA8451_INT_PIN);
mjr 0:5acbbe3f4cf4 959
mjr 0:5acbbe3f4cf4 960 // create the CCD array object
mjr 1:d913e0afb2ac 961 TSL1410R ccd(PTE20, PTE21, PTB0);
mjr 2:c174f9ee414a 962
mjr 1:d913e0afb2ac 963 // last accelerometer report, in mouse coordinates
mjr 6:cc35eb643e8f 964 int x = 0, y = 0, z = 0;
mjr 6:cc35eb643e8f 965
mjr 6:cc35eb643e8f 966 // previous two plunger readings, for "debouncing" the results (z0 is
mjr 6:cc35eb643e8f 967 // the most recent, z1 is the one before that)
mjr 6:cc35eb643e8f 968 int z0 = 0, z1 = 0, z2 = 0;
mjr 6:cc35eb643e8f 969
mjr 6:cc35eb643e8f 970 // Firing in progress: we set this when we detect the start of rapid
mjr 6:cc35eb643e8f 971 // plunger movement from a retracted position towards the rest position.
mjr 6:cc35eb643e8f 972 // The actual plunger spring return speed seems to be too slow for VP,
mjr 6:cc35eb643e8f 973 // so when we detect the start of this motion, we immediately tell VP
mjr 6:cc35eb643e8f 974 // to return the plunger to rest, then we monitor the real plunger
mjr 6:cc35eb643e8f 975 // until it atcually stops.
mjr 9:fd65b0a94720 976 int firing = 0;
mjr 2:c174f9ee414a 977
mjr 2:c174f9ee414a 978 // start the first CCD integration cycle
mjr 2:c174f9ee414a 979 ccd.clear();
mjr 9:fd65b0a94720 980
mjr 9:fd65b0a94720 981 // Device status. We report this on each update so that the host config
mjr 9:fd65b0a94720 982 // tool can detect our current settings. This is a bit mask consisting
mjr 9:fd65b0a94720 983 // of these bits:
mjr 9:fd65b0a94720 984 // 0x01 -> plunger sensor enabled
mjr 9:fd65b0a94720 985 uint16_t statusFlags = (cfg.d.ccdEnabled ? 0x01 : 0x00);
mjr 1:d913e0afb2ac 986
mjr 1:d913e0afb2ac 987 // we're all set up - now just loop, processing sensor reports and
mjr 1:d913e0afb2ac 988 // host requests
mjr 0:5acbbe3f4cf4 989 for (;;)
mjr 0:5acbbe3f4cf4 990 {
mjr 0:5acbbe3f4cf4 991 // Look for an incoming report. Continue processing input as
mjr 0:5acbbe3f4cf4 992 // long as there's anything pending - this ensures that we
mjr 0:5acbbe3f4cf4 993 // handle input in as timely a fashion as possible by deferring
mjr 0:5acbbe3f4cf4 994 // output tasks as long as there's input to process.
mjr 0:5acbbe3f4cf4 995 HID_REPORT report;
mjr 6:cc35eb643e8f 996 while (js.readNB(&report))
mjr 0:5acbbe3f4cf4 997 {
mjr 6:cc35eb643e8f 998 // all Led-Wiz reports are 8 bytes exactly
mjr 6:cc35eb643e8f 999 if (report.length == 8)
mjr 1:d913e0afb2ac 1000 {
mjr 6:cc35eb643e8f 1001 uint8_t *data = report.data;
mjr 6:cc35eb643e8f 1002 if (data[0] == 64)
mjr 0:5acbbe3f4cf4 1003 {
mjr 6:cc35eb643e8f 1004 // LWZ-SBA - first four bytes are bit-packed on/off flags
mjr 6:cc35eb643e8f 1005 // for the outputs; 5th byte is the pulse speed (0-7)
mjr 6:cc35eb643e8f 1006 //printf("LWZ-SBA %02x %02x %02x %02x ; %02x\r\n",
mjr 6:cc35eb643e8f 1007 // data[1], data[2], data[3], data[4], data[5]);
mjr 0:5acbbe3f4cf4 1008
mjr 6:cc35eb643e8f 1009 // update all on/off states
mjr 6:cc35eb643e8f 1010 for (int i = 0, bit = 1, ri = 1 ; i < 32 ; ++i, bit <<= 1)
mjr 6:cc35eb643e8f 1011 {
mjr 6:cc35eb643e8f 1012 if (bit == 0x100) {
mjr 6:cc35eb643e8f 1013 bit = 1;
mjr 6:cc35eb643e8f 1014 ++ri;
mjr 6:cc35eb643e8f 1015 }
mjr 6:cc35eb643e8f 1016 wizOn[i] = ((data[ri] & bit) != 0);
mjr 6:cc35eb643e8f 1017 }
mjr 6:cc35eb643e8f 1018
mjr 6:cc35eb643e8f 1019 // update the physical outputs
mjr 1:d913e0afb2ac 1020 updateWizOuts();
mjr 6:cc35eb643e8f 1021
mjr 6:cc35eb643e8f 1022 // reset the PBA counter
mjr 6:cc35eb643e8f 1023 pbaIdx = 0;
mjr 6:cc35eb643e8f 1024 }
mjr 6:cc35eb643e8f 1025 else if (data[0] == 65)
mjr 6:cc35eb643e8f 1026 {
mjr 6:cc35eb643e8f 1027 // Private control message. This isn't an LedWiz message - it's
mjr 6:cc35eb643e8f 1028 // an extension for this device. 65 is an invalid PBA setting,
mjr 6:cc35eb643e8f 1029 // and isn't used for any other LedWiz message, so we appropriate
mjr 6:cc35eb643e8f 1030 // it for our own private use. The first byte specifies the
mjr 6:cc35eb643e8f 1031 // message type.
mjr 6:cc35eb643e8f 1032 if (data[1] == 1)
mjr 6:cc35eb643e8f 1033 {
mjr 9:fd65b0a94720 1034 // 1 = Set Configuration:
mjr 6:cc35eb643e8f 1035 // data[2] = LedWiz unit number (0x00 to 0x0f)
mjr 6:cc35eb643e8f 1036 // data[3] = feature enable bit mask:
mjr 6:cc35eb643e8f 1037 // 0x01 = enable CCD
mjr 6:cc35eb643e8f 1038
mjr 6:cc35eb643e8f 1039 // we'll need a reset if the LedWiz unit number is changing
mjr 6:cc35eb643e8f 1040 uint8_t newUnitNo = data[2] & 0x0f;
mjr 6:cc35eb643e8f 1041 needReset |= (newUnitNo != cfg.d.ledWizUnitNo);
mjr 6:cc35eb643e8f 1042
mjr 6:cc35eb643e8f 1043 // set the configuration parameters from the message
mjr 6:cc35eb643e8f 1044 cfg.d.ledWizUnitNo = newUnitNo;
mjr 6:cc35eb643e8f 1045 cfg.d.ccdEnabled = data[3] & 0x01;
mjr 6:cc35eb643e8f 1046
mjr 9:fd65b0a94720 1047 // update the status flags
mjr 9:fd65b0a94720 1048 statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
mjr 9:fd65b0a94720 1049
mjr 9:fd65b0a94720 1050 // if the ccd is no longer enabled, use 0 for z reports
mjr 9:fd65b0a94720 1051 if (!cfg.d.ccdEnabled)
mjr 9:fd65b0a94720 1052 z = 0;
mjr 9:fd65b0a94720 1053
mjr 6:cc35eb643e8f 1054 // save the configuration
mjr 6:cc35eb643e8f 1055 cfg.save(iap, flash_addr);
mjr 6:cc35eb643e8f 1056 }
mjr 9:fd65b0a94720 1057 else if (data[1] == 2)
mjr 9:fd65b0a94720 1058 {
mjr 9:fd65b0a94720 1059 // 2 = Calibrate plunger
mjr 9:fd65b0a94720 1060 // (No parameters)
mjr 9:fd65b0a94720 1061
mjr 9:fd65b0a94720 1062 // enter calibration mode
mjr 9:fd65b0a94720 1063 calBtnState = 3;
mjr 9:fd65b0a94720 1064 calBtnTimer.reset();
mjr 9:fd65b0a94720 1065 cfg.resetPlunger();
mjr 9:fd65b0a94720 1066 }
mjr 6:cc35eb643e8f 1067 }
mjr 6:cc35eb643e8f 1068 else
mjr 6:cc35eb643e8f 1069 {
mjr 6:cc35eb643e8f 1070 // LWZ-PBA - full state dump; each byte is one output
mjr 6:cc35eb643e8f 1071 // in the current bank. pbaIdx keeps track of the bank;
mjr 6:cc35eb643e8f 1072 // this is incremented implicitly by each PBA message.
mjr 6:cc35eb643e8f 1073 //printf("LWZ-PBA[%d] %02x %02x %02x %02x %02x %02x %02x %02x\r\n",
mjr 6:cc35eb643e8f 1074 // pbaIdx, data[0], data[1], data[2], data[3], data[4], data[5], data[6], data[7]);
mjr 6:cc35eb643e8f 1075
mjr 6:cc35eb643e8f 1076 // update all output profile settings
mjr 6:cc35eb643e8f 1077 for (int i = 0 ; i < 8 ; ++i)
mjr 6:cc35eb643e8f 1078 wizVal[pbaIdx + i] = data[i];
mjr 6:cc35eb643e8f 1079
mjr 6:cc35eb643e8f 1080 // update the physical LED state if this is the last bank
mjr 6:cc35eb643e8f 1081 if (pbaIdx == 24)
mjr 6:cc35eb643e8f 1082 updateWizOuts();
mjr 6:cc35eb643e8f 1083
mjr 6:cc35eb643e8f 1084 // advance to the next bank
mjr 6:cc35eb643e8f 1085 pbaIdx = (pbaIdx + 8) & 31;
mjr 6:cc35eb643e8f 1086 }
mjr 0:5acbbe3f4cf4 1087 }
mjr 0:5acbbe3f4cf4 1088 }
mjr 1:d913e0afb2ac 1089
mjr 1:d913e0afb2ac 1090 // check for plunger calibration
mjr 1:d913e0afb2ac 1091 if (!calBtn)
mjr 0:5acbbe3f4cf4 1092 {
mjr 1:d913e0afb2ac 1093 // check the state
mjr 1:d913e0afb2ac 1094 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1095 {
mjr 1:d913e0afb2ac 1096 case 0:
mjr 1:d913e0afb2ac 1097 // button not yet pushed - start debouncing
mjr 1:d913e0afb2ac 1098 calBtnTimer.reset();
mjr 1:d913e0afb2ac 1099 calBtnState = 1;
mjr 1:d913e0afb2ac 1100 break;
mjr 1:d913e0afb2ac 1101
mjr 1:d913e0afb2ac 1102 case 1:
mjr 1:d913e0afb2ac 1103 // pushed, not yet debounced - if the debounce time has
mjr 1:d913e0afb2ac 1104 // passed, start the hold period
mjr 9:fd65b0a94720 1105 if (calBtnTimer.read_ms() > 50)
mjr 1:d913e0afb2ac 1106 calBtnState = 2;
mjr 1:d913e0afb2ac 1107 break;
mjr 1:d913e0afb2ac 1108
mjr 1:d913e0afb2ac 1109 case 2:
mjr 1:d913e0afb2ac 1110 // in the hold period - if the button has been held down
mjr 1:d913e0afb2ac 1111 // for the entire hold period, move to calibration mode
mjr 9:fd65b0a94720 1112 if (calBtnTimer.read_ms() > 2050)
mjr 1:d913e0afb2ac 1113 {
mjr 1:d913e0afb2ac 1114 // enter calibration mode
mjr 1:d913e0afb2ac 1115 calBtnState = 3;
mjr 9:fd65b0a94720 1116 calBtnTimer.reset();
mjr 9:fd65b0a94720 1117 cfg.resetPlunger();
mjr 1:d913e0afb2ac 1118 }
mjr 1:d913e0afb2ac 1119 break;
mjr 2:c174f9ee414a 1120
mjr 2:c174f9ee414a 1121 case 3:
mjr 9:fd65b0a94720 1122 // Already in calibration mode - pushing the button here
mjr 9:fd65b0a94720 1123 // doesn't change the current state, but we won't leave this
mjr 9:fd65b0a94720 1124 // state as long as it's held down. So nothing changes here.
mjr 2:c174f9ee414a 1125 break;
mjr 0:5acbbe3f4cf4 1126 }
mjr 0:5acbbe3f4cf4 1127 }
mjr 1:d913e0afb2ac 1128 else
mjr 1:d913e0afb2ac 1129 {
mjr 2:c174f9ee414a 1130 // Button released. If we're in calibration mode, and
mjr 2:c174f9ee414a 1131 // the calibration time has elapsed, end the calibration
mjr 2:c174f9ee414a 1132 // and save the results to flash.
mjr 2:c174f9ee414a 1133 //
mjr 2:c174f9ee414a 1134 // Otherwise, return to the base state without saving anything.
mjr 2:c174f9ee414a 1135 // If the button is released before we make it to calibration
mjr 2:c174f9ee414a 1136 // mode, it simply cancels the attempt.
mjr 9:fd65b0a94720 1137 if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
mjr 2:c174f9ee414a 1138 {
mjr 2:c174f9ee414a 1139 // exit calibration mode
mjr 1:d913e0afb2ac 1140 calBtnState = 0;
mjr 2:c174f9ee414a 1141
mjr 6:cc35eb643e8f 1142 // save the updated configuration
mjr 6:cc35eb643e8f 1143 cfg.d.plungerCal = 1;
mjr 6:cc35eb643e8f 1144 cfg.save(iap, flash_addr);
mjr 2:c174f9ee414a 1145
mjr 2:c174f9ee414a 1146 // the flash state is now valid
mjr 2:c174f9ee414a 1147 flash_valid = true;
mjr 2:c174f9ee414a 1148 }
mjr 2:c174f9ee414a 1149 else if (calBtnState != 3)
mjr 2:c174f9ee414a 1150 {
mjr 2:c174f9ee414a 1151 // didn't make it to calibration mode - cancel the operation
mjr 1:d913e0afb2ac 1152 calBtnState = 0;
mjr 2:c174f9ee414a 1153 }
mjr 1:d913e0afb2ac 1154 }
mjr 1:d913e0afb2ac 1155
mjr 1:d913e0afb2ac 1156 // light/flash the calibration button light, if applicable
mjr 1:d913e0afb2ac 1157 int newCalBtnLit = calBtnLit;
mjr 1:d913e0afb2ac 1158 switch (calBtnState)
mjr 0:5acbbe3f4cf4 1159 {
mjr 1:d913e0afb2ac 1160 case 2:
mjr 1:d913e0afb2ac 1161 // in the hold period - flash the light
mjr 9:fd65b0a94720 1162 newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
mjr 1:d913e0afb2ac 1163 break;
mjr 1:d913e0afb2ac 1164
mjr 1:d913e0afb2ac 1165 case 3:
mjr 1:d913e0afb2ac 1166 // calibration mode - show steady on
mjr 1:d913e0afb2ac 1167 newCalBtnLit = true;
mjr 1:d913e0afb2ac 1168 break;
mjr 1:d913e0afb2ac 1169
mjr 1:d913e0afb2ac 1170 default:
mjr 1:d913e0afb2ac 1171 // not calibrating/holding - show steady off
mjr 1:d913e0afb2ac 1172 newCalBtnLit = false;
mjr 1:d913e0afb2ac 1173 break;
mjr 1:d913e0afb2ac 1174 }
mjr 3:3514575d4f86 1175
mjr 3:3514575d4f86 1176 // light or flash the external calibration button LED, and
mjr 3:3514575d4f86 1177 // do the same with the on-board blue LED
mjr 1:d913e0afb2ac 1178 if (calBtnLit != newCalBtnLit)
mjr 1:d913e0afb2ac 1179 {
mjr 1:d913e0afb2ac 1180 calBtnLit = newCalBtnLit;
mjr 2:c174f9ee414a 1181 if (calBtnLit) {
mjr 2:c174f9ee414a 1182 calBtnLed = 1;
mjr 4:02c7cd7b2183 1183 ledR = 1;
mjr 4:02c7cd7b2183 1184 ledG = 1;
mjr 9:fd65b0a94720 1185 ledB = 0;
mjr 2:c174f9ee414a 1186 }
mjr 2:c174f9ee414a 1187 else {
mjr 2:c174f9ee414a 1188 calBtnLed = 0;
mjr 4:02c7cd7b2183 1189 ledR = 1;
mjr 4:02c7cd7b2183 1190 ledG = 1;
mjr 9:fd65b0a94720 1191 ledB = 1;
mjr 2:c174f9ee414a 1192 }
mjr 1:d913e0afb2ac 1193 }
mjr 1:d913e0afb2ac 1194
mjr 6:cc35eb643e8f 1195 // read the plunger sensor, if it's enabled
mjr 6:cc35eb643e8f 1196 if (cfg.d.ccdEnabled)
mjr 6:cc35eb643e8f 1197 {
mjr 6:cc35eb643e8f 1198 // start with the previous reading, in case we don't have a
mjr 6:cc35eb643e8f 1199 // clear result on this frame
mjr 6:cc35eb643e8f 1200 int znew = z;
mjr 2:c174f9ee414a 1201
mjr 6:cc35eb643e8f 1202 // read the array
mjr 6:cc35eb643e8f 1203 uint16_t pix[npix];
mjr 6:cc35eb643e8f 1204 ccd.read(pix, npix);
mjr 6:cc35eb643e8f 1205
mjr 6:cc35eb643e8f 1206 // get the average brightness at each end of the sensor
mjr 6:cc35eb643e8f 1207 long avg1 = (long(pix[0]) + long(pix[1]) + long(pix[2]) + long(pix[3]) + long(pix[4]))/5;
mjr 6:cc35eb643e8f 1208 long avg2 = (long(pix[npix-1]) + long(pix[npix-2]) + long(pix[npix-3]) + long(pix[npix-4]) + long(pix[npix-5]))/5;
mjr 6:cc35eb643e8f 1209
mjr 6:cc35eb643e8f 1210 // figure the midpoint in the brightness; multiply by 3 so that we can
mjr 6:cc35eb643e8f 1211 // compare sums of three pixels at a time to smooth out noise
mjr 6:cc35eb643e8f 1212 long midpt = (avg1 + avg2)/2 * 3;
mjr 6:cc35eb643e8f 1213
mjr 6:cc35eb643e8f 1214 // Work from the bright end to the dark end. VP interprets the
mjr 6:cc35eb643e8f 1215 // Z axis value as the amount the plunger is pulled: zero is the
mjr 6:cc35eb643e8f 1216 // rest position, and the axis maximum is fully pulled. So we
mjr 6:cc35eb643e8f 1217 // essentially want to report how much of the sensor is lit,
mjr 6:cc35eb643e8f 1218 // since this increases as the plunger is pulled back.
mjr 6:cc35eb643e8f 1219 int si = 1, di = 1;
mjr 6:cc35eb643e8f 1220 if (avg1 < avg2)
mjr 6:cc35eb643e8f 1221 si = npix - 2, di = -1;
mjr 6:cc35eb643e8f 1222
mjr 6:cc35eb643e8f 1223 // If the bright end and dark end don't differ by enough, skip this
mjr 6:cc35eb643e8f 1224 // reading entirely - we must have an overexposed or underexposed frame.
mjr 6:cc35eb643e8f 1225 // Otherwise proceed with the scan.
mjr 6:cc35eb643e8f 1226 if (labs(avg1 - avg2) > 0x1000)
mjr 6:cc35eb643e8f 1227 {
mjr 6:cc35eb643e8f 1228 uint16_t *pixp = pix + si;
mjr 6:cc35eb643e8f 1229 for (int n = 1 ; n < npix - 1 ; ++n, pixp += di)
mjr 6:cc35eb643e8f 1230 {
mjr 6:cc35eb643e8f 1231 // if we've crossed the midpoint, report this position
mjr 6:cc35eb643e8f 1232 if (long(pixp[-1]) + long(pixp[0]) + long(pixp[1]) < midpt)
mjr 6:cc35eb643e8f 1233 {
mjr 6:cc35eb643e8f 1234 // note the new position
mjr 6:cc35eb643e8f 1235 int pos = n;
mjr 6:cc35eb643e8f 1236
mjr 6:cc35eb643e8f 1237 // Calibrate, or apply calibration, depending on the mode.
mjr 6:cc35eb643e8f 1238 // In either case, normalize to our range. VP appears to
mjr 6:cc35eb643e8f 1239 // ignore negative Z axis values.
mjr 6:cc35eb643e8f 1240 if (calBtnState == 3)
mjr 6:cc35eb643e8f 1241 {
mjr 6:cc35eb643e8f 1242 // calibrating - note if we're expanding the calibration envelope
mjr 6:cc35eb643e8f 1243 if (pos < cfg.d.plungerMin)
mjr 6:cc35eb643e8f 1244 cfg.d.plungerMin = pos;
mjr 6:cc35eb643e8f 1245 if (pos < cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1246 cfg.d.plungerZero = pos;
mjr 6:cc35eb643e8f 1247 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1248 cfg.d.plungerMax = pos;
mjr 6:cc35eb643e8f 1249
mjr 6:cc35eb643e8f 1250 // normalize to the full physical range while calibrating
mjr 6:cc35eb643e8f 1251 znew = int(round(float(pos)/npix * JOYMAX));
mjr 6:cc35eb643e8f 1252 }
mjr 6:cc35eb643e8f 1253 else
mjr 6:cc35eb643e8f 1254 {
mjr 6:cc35eb643e8f 1255 // Running normally - normalize to the calibration range. Note
mjr 6:cc35eb643e8f 1256 // that values below the zero point are allowed - the zero point
mjr 6:cc35eb643e8f 1257 // represents the park position, where the plunger sits when at
mjr 6:cc35eb643e8f 1258 // rest, but a mechanical plunger has a smmall amount of travel
mjr 6:cc35eb643e8f 1259 // in the "push" direction. We represent forward travel with
mjr 6:cc35eb643e8f 1260 // negative z values.
mjr 6:cc35eb643e8f 1261 if (pos > cfg.d.plungerMax)
mjr 6:cc35eb643e8f 1262 pos = cfg.d.plungerMax;
mjr 6:cc35eb643e8f 1263 znew = int(round(float(pos - cfg.d.plungerZero)
mjr 6:cc35eb643e8f 1264 / (cfg.d.plungerMax - cfg.d.plungerZero + 1) * JOYMAX));
mjr 6:cc35eb643e8f 1265 }
mjr 6:cc35eb643e8f 1266
mjr 6:cc35eb643e8f 1267 // done
mjr 6:cc35eb643e8f 1268 break;
mjr 6:cc35eb643e8f 1269 }
mjr 6:cc35eb643e8f 1270 }
mjr 6:cc35eb643e8f 1271 }
mjr 7:100a25f8bf56 1272
mjr 7:100a25f8bf56 1273 // Determine if the plunger is being fired - i.e., if the player
mjr 7:100a25f8bf56 1274 // has just released the plunger from a retracted position.
mjr 6:cc35eb643e8f 1275 //
mjr 7:100a25f8bf56 1276 // We treat firing as an event. That is, we tell VP when the
mjr 7:100a25f8bf56 1277 // plunger is fired, and then stop sending data until the firing
mjr 7:100a25f8bf56 1278 // is complete, allowing VP to carry out the firing motion using
mjr 7:100a25f8bf56 1279 // its internal model plunger rather than trying to track the
mjr 7:100a25f8bf56 1280 // intermediate positions of the mechanical plunger throughout
mjr 9:fd65b0a94720 1281 // the firing motion. This is essential because the firing
mjr 9:fd65b0a94720 1282 // motion is too fast for us to track - in the time it takes us
mjr 9:fd65b0a94720 1283 // to read one frame, the plunger can make it all the way to the
mjr 9:fd65b0a94720 1284 // zero position and bounce back halfway. Fortunately, the range
mjr 9:fd65b0a94720 1285 // of motions for the plunger is limited, so if we see any rapid
mjr 9:fd65b0a94720 1286 // change of position toward the rest position, it's reasonably
mjr 9:fd65b0a94720 1287 // safe to interpret it as a firing event.
mjr 9:fd65b0a94720 1288 //
mjr 9:fd65b0a94720 1289 // This isn't foolproof. The user can trick us by doing a
mjr 9:fd65b0a94720 1290 // controlled rapid forward push but stopping short of the rest
mjr 9:fd65b0a94720 1291 // position. We'll misinterpret that as a firing event. But
mjr 9:fd65b0a94720 1292 // that's not a natural motion that a user would make with a
mjr 9:fd65b0a94720 1293 // plunger, so it's probably an acceptable false positive.
mjr 9:fd65b0a94720 1294 //
mjr 9:fd65b0a94720 1295 // Possible future enhancement: we could add a second physical
mjr 9:fd65b0a94720 1296 // sensor that detects when the plunger reaches the zero position
mjr 9:fd65b0a94720 1297 // and asserts an interrupt. In the interrupt handler, set a
mjr 9:fd65b0a94720 1298 // flag indicating the zero position signal. On each scan of
mjr 9:fd65b0a94720 1299 // the CCD, also check that flag; if it's set, enter firing
mjr 9:fd65b0a94720 1300 // event mode just as we do now. The key here is that the
mjr 9:fd65b0a94720 1301 // secondary sensor would have to be something much faster
mjr 9:fd65b0a94720 1302 // than our CCD scan - it would have to react on, say, the
mjr 9:fd65b0a94720 1303 // millisecond time scale. A simple mechanical switch or a
mjr 9:fd65b0a94720 1304 // proximity sensor could work. This would let us detect
mjr 9:fd65b0a94720 1305 // with certainty when the plunger physically fires, eliminating
mjr 9:fd65b0a94720 1306 // the case where the use can fool us with motion that's fast
mjr 9:fd65b0a94720 1307 // enough to look like a release but doesn't actually reach the
mjr 9:fd65b0a94720 1308 // starting position.
mjr 6:cc35eb643e8f 1309 //
mjr 7:100a25f8bf56 1310 // To detremine when a firing even occurs, we watch for rapid
mjr 7:100a25f8bf56 1311 // motion from a retracted position towards the rest position -
mjr 7:100a25f8bf56 1312 // that is, large position changes in the negative direction over
mjr 7:100a25f8bf56 1313 // a couple of consecutive readings. When we see a rapid move
mjr 7:100a25f8bf56 1314 // toward zero, we set our internal 'firing' flag, immediately
mjr 7:100a25f8bf56 1315 // report to VP that the plunger has returned to the zero
mjr 7:100a25f8bf56 1316 // position, and then suspend reports until the mechanical
mjr 7:100a25f8bf56 1317 // readings indicate that the plunger has come to rest (indicated
mjr 7:100a25f8bf56 1318 // by several readings in a row at roughly the same position).
mjr 9:fd65b0a94720 1319 //
mjr 9:fd65b0a94720 1320 // Tolerance for firing is 1/3 of the current pull distance, or
mjr 9:fd65b0a94720 1321 // about 1/2", whichever is greater. Making this value too small
mjr 9:fd65b0a94720 1322 // makes for too many false positives. Empirically, 1/4" is too
mjr 9:fd65b0a94720 1323 // twitchy, so set a floor at about 1/2". But we can be less
mjr 9:fd65b0a94720 1324 // sensitive the further back the plunger is pulled, since even
mjr 9:fd65b0a94720 1325 // a long pull will snap back quickly. Note that JOYMAX always
mjr 9:fd65b0a94720 1326 // corresponds to about 3", no matter how many pixels we're
mjr 9:fd65b0a94720 1327 // reading, since the physical sensor is about 3" long; so we
mjr 9:fd65b0a94720 1328 // factor out the pixel count calculate (approximate) physical
mjr 9:fd65b0a94720 1329 // distances based on the normalized axis range.
mjr 9:fd65b0a94720 1330 //
mjr 9:fd65b0a94720 1331 // Firing pattern: when firing, don't simply report a solid 0,
mjr 9:fd65b0a94720 1332 // but instead report a series of pseudo-bouces. This looks
mjr 9:fd65b0a94720 1333 // more realistic, beacause the real plunger is also bouncing
mjr 9:fd65b0a94720 1334 // around during this time. To get maximum firing power in
mjr 9:fd65b0a94720 1335 // the simulation, though, our pseudo-bounces are tiny cmopared
mjr 9:fd65b0a94720 1336 // to the real thing.
mjr 9:fd65b0a94720 1337 const int restTol = JOYMAX/24;
mjr 9:fd65b0a94720 1338 int fireTol = z/3 > JOYMAX/6 ? z/3 : JOYMAX/6;
mjr 9:fd65b0a94720 1339 static const int firePattern[] = {
mjr 9:fd65b0a94720 1340 -JOYMAX/12, -JOYMAX/12, -JOYMAX/12,
mjr 9:fd65b0a94720 1341 0, 0, 0,
mjr 9:fd65b0a94720 1342 JOYMAX/16, JOYMAX/16, JOYMAX/16,
mjr 9:fd65b0a94720 1343 0, 0, 0,
mjr 9:fd65b0a94720 1344 -JOYMAX/20, -JOYMAX/20, -JOYMAX/20,
mjr 9:fd65b0a94720 1345 0, 0, 0,
mjr 9:fd65b0a94720 1346 JOYMAX/24, JOYMAX/24, JOYMAX/24,
mjr 9:fd65b0a94720 1347 0, 0, 0,
mjr 9:fd65b0a94720 1348 -JOYMAX/30, -JOYMAX/30, -JOYMAX/30
mjr 9:fd65b0a94720 1349 };
mjr 9:fd65b0a94720 1350 if (firing != 0)
mjr 6:cc35eb643e8f 1351 {
mjr 6:cc35eb643e8f 1352 // Firing in progress - we've already told VP to send its
mjr 6:cc35eb643e8f 1353 // model plunger all the way back to the rest position, so
mjr 6:cc35eb643e8f 1354 // send no further reports until the mechanical plunger
mjr 6:cc35eb643e8f 1355 // actually comes to rest somewhere.
mjr 6:cc35eb643e8f 1356 if (abs(z0 - z2) < restTol && abs(znew - z2) < restTol)
mjr 6:cc35eb643e8f 1357 {
mjr 6:cc35eb643e8f 1358 // the plunger is back at rest - firing is done
mjr 9:fd65b0a94720 1359 firing = 0;
mjr 6:cc35eb643e8f 1360
mjr 6:cc35eb643e8f 1361 // resume normal reporting
mjr 6:cc35eb643e8f 1362 z = z2;
mjr 6:cc35eb643e8f 1363 }
mjr 9:fd65b0a94720 1364 else if (firing < countof(firePattern))
mjr 9:fd65b0a94720 1365 {
mjr 9:fd65b0a94720 1366 // firing - report the next position in the pseudo-bounce
mjr 9:fd65b0a94720 1367 // pattern
mjr 9:fd65b0a94720 1368 z = firePattern[firing++];
mjr 9:fd65b0a94720 1369 }
mjr 9:fd65b0a94720 1370 else
mjr 9:fd65b0a94720 1371 {
mjr 9:fd65b0a94720 1372 // firing, out of pseudo-bounce items - just report the
mjr 9:fd65b0a94720 1373 // rest position
mjr 9:fd65b0a94720 1374 z = 0;
mjr 9:fd65b0a94720 1375 }
mjr 6:cc35eb643e8f 1376 }
mjr 6:cc35eb643e8f 1377 else if (z0 < z2 && z1 < z2 && znew < z2
mjr 6:cc35eb643e8f 1378 && (z0 < z2 - fireTol
mjr 6:cc35eb643e8f 1379 || z1 < z2 - fireTol
mjr 6:cc35eb643e8f 1380 || znew < z2 - fireTol))
mjr 6:cc35eb643e8f 1381 {
mjr 6:cc35eb643e8f 1382 // Big jumps toward rest position in last two readings -
mjr 6:cc35eb643e8f 1383 // firing has begun. Report an immediate return to the
mjr 6:cc35eb643e8f 1384 // rest position, and send no further reports until the
mjr 6:cc35eb643e8f 1385 // physical plunger has come to rest. This effectively
mjr 6:cc35eb643e8f 1386 // detaches VP's model plunger from the real world for
mjr 6:cc35eb643e8f 1387 // the duration of the spring return, letting VP evolve
mjr 6:cc35eb643e8f 1388 // its model without trying to synchronize with the
mjr 6:cc35eb643e8f 1389 // mechanical version. The release motion is too fast
mjr 6:cc35eb643e8f 1390 // for that to work well; we can't take samples quickly
mjr 6:cc35eb643e8f 1391 // enough to get prcise velocity or acceleration
mjr 6:cc35eb643e8f 1392 // readings. It's better to let VP figure the speed
mjr 6:cc35eb643e8f 1393 // and acceleration through modeling. Plus, that lets
mjr 6:cc35eb643e8f 1394 // each virtual table set the desired parameters for its
mjr 6:cc35eb643e8f 1395 // virtual plunger, rather than imposing the actual
mjr 6:cc35eb643e8f 1396 // mechanical charateristics of the physical plunger on
mjr 6:cc35eb643e8f 1397 // every table.
mjr 9:fd65b0a94720 1398 firing = 1;
mjr 9:fd65b0a94720 1399
mjr 9:fd65b0a94720 1400 // report the first firing pattern position
mjr 9:fd65b0a94720 1401 z = firePattern[0];
mjr 6:cc35eb643e8f 1402 }
mjr 6:cc35eb643e8f 1403 else
mjr 6:cc35eb643e8f 1404 {
mjr 6:cc35eb643e8f 1405 // everything normal; report the 3rd recent position on
mjr 6:cc35eb643e8f 1406 // tape delay
mjr 6:cc35eb643e8f 1407 z = z2;
mjr 6:cc35eb643e8f 1408 }
mjr 6:cc35eb643e8f 1409
mjr 6:cc35eb643e8f 1410 // shift in the new reading
mjr 6:cc35eb643e8f 1411 z2 = z1;
mjr 6:cc35eb643e8f 1412 z1 = z0;
mjr 6:cc35eb643e8f 1413 z0 = znew;
mjr 2:c174f9ee414a 1414 }
mjr 9:fd65b0a94720 1415 else
mjr 9:fd65b0a94720 1416 {
mjr 9:fd65b0a94720 1417 // plunger disabled - pause 10ms to throttle updates to a
mjr 9:fd65b0a94720 1418 // reasonable pace
mjr 9:fd65b0a94720 1419 wait_ms(10);
mjr 9:fd65b0a94720 1420 }
mjr 6:cc35eb643e8f 1421
mjr 1:d913e0afb2ac 1422 // read the accelerometer
mjr 9:fd65b0a94720 1423 int xa, ya;
mjr 9:fd65b0a94720 1424 accel.get(xa, ya);
mjr 1:d913e0afb2ac 1425
mjr 6:cc35eb643e8f 1426 // confine the results to our joystick axis range
mjr 6:cc35eb643e8f 1427 if (xa < -JOYMAX) xa = -JOYMAX;
mjr 6:cc35eb643e8f 1428 if (xa > JOYMAX) xa = JOYMAX;
mjr 6:cc35eb643e8f 1429 if (ya < -JOYMAX) ya = -JOYMAX;
mjr 6:cc35eb643e8f 1430 if (ya > JOYMAX) ya = JOYMAX;
mjr 1:d913e0afb2ac 1431
mjr 6:cc35eb643e8f 1432 // store the updated accelerometer coordinates
mjr 6:cc35eb643e8f 1433 x = xa;
mjr 6:cc35eb643e8f 1434 y = ya;
mjr 6:cc35eb643e8f 1435
mjr 8:c732e279ee29 1436 // Send the status report. Note that the nominal x and y axes
mjr 8:c732e279ee29 1437 // are reversed - this makes it more intuitive to set up in VP.
mjr 8:c732e279ee29 1438 // If we mount the Freesale card flat on the floor of the cabinet
mjr 8:c732e279ee29 1439 // with the USB connectors facing the front of the cabinet, this
mjr 8:c732e279ee29 1440 // arrangement of our nominal axes aligns with VP's standard
mjr 8:c732e279ee29 1441 // setting, so that we can configure VP with X Axis = X on the
mjr 8:c732e279ee29 1442 // joystick and Y Axis = Y on the joystick.
mjr 9:fd65b0a94720 1443 js.update(y, x, z, 0, statusFlags);
mjr 1:d913e0afb2ac 1444
mjr 6:cc35eb643e8f 1445 #ifdef DEBUG_PRINTF
mjr 6:cc35eb643e8f 1446 if (x != 0 || y != 0)
mjr 6:cc35eb643e8f 1447 printf("%d,%d\r\n", x, y);
mjr 6:cc35eb643e8f 1448 #endif
mjr 6:cc35eb643e8f 1449
mjr 6:cc35eb643e8f 1450 // provide a visual status indication on the on-board LED
mjr 5:a70c0bce770d 1451 if (calBtnState < 2 && hbTimer.read_ms() > 1000)
mjr 1:d913e0afb2ac 1452 {
mjr 5:a70c0bce770d 1453 if (js.isSuspended() || !js.isConnected())
mjr 2:c174f9ee414a 1454 {
mjr 5:a70c0bce770d 1455 // suspended - turn off the LED
mjr 4:02c7cd7b2183 1456 ledR = 1;
mjr 4:02c7cd7b2183 1457 ledG = 1;
mjr 4:02c7cd7b2183 1458 ledB = 1;
mjr 5:a70c0bce770d 1459
mjr 5:a70c0bce770d 1460 // show a status flash every so often
mjr 5:a70c0bce770d 1461 if (hbcnt % 3 == 0)
mjr 5:a70c0bce770d 1462 {
mjr 6:cc35eb643e8f 1463 // disconnected = red/red flash; suspended = red
mjr 5:a70c0bce770d 1464 for (int n = js.isConnected() ? 1 : 2 ; n > 0 ; --n)
mjr 5:a70c0bce770d 1465 {
mjr 5:a70c0bce770d 1466 ledR = 0;
mjr 5:a70c0bce770d 1467 wait(0.05);
mjr 5:a70c0bce770d 1468 ledR = 1;
mjr 5:a70c0bce770d 1469 wait(0.25);
mjr 5:a70c0bce770d 1470 }
mjr 5:a70c0bce770d 1471 }
mjr 2:c174f9ee414a 1472 }
mjr 6:cc35eb643e8f 1473 else if (needReset)
mjr 2:c174f9ee414a 1474 {
mjr 6:cc35eb643e8f 1475 // connected, need to reset due to changes in config parameters -
mjr 6:cc35eb643e8f 1476 // flash red/green
mjr 6:cc35eb643e8f 1477 hb = !hb;
mjr 6:cc35eb643e8f 1478 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1479 ledG = (hb ? 1 : 0);
mjr 6:cc35eb643e8f 1480 ledB = 0;
mjr 6:cc35eb643e8f 1481 }
mjr 6:cc35eb643e8f 1482 else if (cfg.d.ccdEnabled && !cfg.d.plungerCal)
mjr 6:cc35eb643e8f 1483 {
mjr 6:cc35eb643e8f 1484 // connected, plunger calibration needed - flash yellow/green
mjr 6:cc35eb643e8f 1485 hb = !hb;
mjr 6:cc35eb643e8f 1486 ledR = (hb ? 0 : 1);
mjr 6:cc35eb643e8f 1487 ledG = 0;
mjr 6:cc35eb643e8f 1488 ledB = 1;
mjr 6:cc35eb643e8f 1489 }
mjr 6:cc35eb643e8f 1490 else
mjr 6:cc35eb643e8f 1491 {
mjr 6:cc35eb643e8f 1492 // connected - flash blue/green
mjr 2:c174f9ee414a 1493 hb = !hb;
mjr 4:02c7cd7b2183 1494 ledR = 1;
mjr 4:02c7cd7b2183 1495 ledG = (hb ? 0 : 1);
mjr 4:02c7cd7b2183 1496 ledB = (hb ? 1 : 0);
mjr 2:c174f9ee414a 1497 }
mjr 1:d913e0afb2ac 1498
mjr 1:d913e0afb2ac 1499 // reset the heartbeat timer
mjr 1:d913e0afb2ac 1500 hbTimer.reset();
mjr 5:a70c0bce770d 1501 ++hbcnt;
mjr 1:d913e0afb2ac 1502 }
mjr 1:d913e0afb2ac 1503 }
mjr 0:5acbbe3f4cf4 1504 }