An input/output controller for virtual pinball machines, with plunger position tracking, accelerometer-based nudge sensing, button input encoding, and feedback device control.

Dependencies:   USBDevice mbed FastAnalogIn FastIO FastPWM SimpleDMA

/media/uploads/mjr/pinscape_no_background_small_L7Miwr6.jpg

The Pinscape Controller is a special-purpose software project that I wrote for my virtual pinball machine.

New version: V2 is now available! The information below is for version 1, which will continue to be available for people who prefer the original setup.

What exactly is a virtual pinball machine? It's basically a video-game pinball emulator built to look like a real pinball machine. (The picture at right is the one I built.) You start with a standard pinball cabinet, either built from scratch or salvaged from a real machine. Inside, you install a PC motherboard to run the software, and install TVs in place of the playfield and backglass. Several Windows pinball programs can take advantage of this setup, including the open-source project Visual Pinball, which has hundreds of tables available. Building one of these makes a great DIY project, and it's a good way to add to your skills at woodworking, computers, and electronics. Check out the Cabinet Builders' Forum on vpforums.org for lots of examples and advice.

This controller project is a key piece in my setup that helps integrate the video game into the pinball cabinet. It handles several input/output tasks that are unique to virtual pinball machines. First, it lets you connect a mechanical plunger to the software, so you can launch the ball like on a real machine. Second, it sends "nudge" data to the software, based on readings from an accelerometer. This lets you interact with the game physically, which makes the playing experience more realistic and immersive. Third, the software can handle button input (for wiring flipper buttons and other cabinet buttons), and fourth, it can control output devices (for tactile feedback, button lights, flashers, and other special effects).

Documentation

The Hardware Build Guide (PDF) has detailed instructions on how to set up a Pinscape Controller for your own virtual pinball cabinet.

Update notes

December 2015 version: This version fully supports the new Expansion Board project, but it'll also run without it. The default configuration settings haven't changed, so existing setups should continue to work as before.

August 2015 version: Be sure to get the latest version of the Config Tool for windows if you're upgrading from an older version of the firmware. This update adds support for TSL1412R sensors (a version of the 1410 sensor with a slightly larger pixel array), and a config option to set the mounting orientation of the board in the firmware rather than in VP (for better support for FP and other pinball programs that don't have VP's flexibility for setting the rotation).

Feb/March 2015 software versions: If you have a CCD plunger that you've been using with the older versions, and the plunger stops working (or doesn't work as well) after you update to the latest version, you might need to increase the brightness of your light source slightly. Check the CCD exposure with the Windows config tool to see if it looks too dark. The new software reads the CCD much more quickly than the old versions did. This makes the "shutter speed" faster, which might require a little more light to get the same readings. The CCD is actually really tolerant of varying light levels, so you probably won't have to change anything for the update - I didn't. But if you do have any trouble, have a look at the exposure meter and try a slightly brighter light source if the exposure looks too dark.

Downloads

  • Config tool for Windows (.exe and C# source): this is a Windows program that lets you view the raw pixel data from the CCD sensor, trigger plunger calibration mode, and configure some of the software options on the controller.
  • Custom VP builds: I created modified versions of Visual Pinball 9.9 and Physmod5 that you might want to use in combination with this controller. The modified versions have special handling for plunger calibration specific to the Pinscape Controller, as well as some enhancements to the nudge physics. If you're not using the plunger, you might still want it for the nudge improvements. The modified version also works with any other input controller, so you can get the enhanced nudging effects even if you're using a different plunger/nudge kit. The big change in the modified versions is a "filter" for accelerometer input that's designed to make the response to cabinet nudges more realistic. It also makes the response more subdued than in the standard VP, so it's not to everyone's taste. The downloads include both the updated executables and the source code changes, in case you want to merge the changes into your own custom version(s).

    Note! These features are now standard in the official VP 9.9.1 and VP 10 releases, so you don't need my custom builds if you're using 9.9.1 or 10 or later. I don't think there's any reason to use my 9.9 instead of the official 9.9.1, but I'm leaving it here just in case. In the official VP releases, look for the checkbox "Enable Nudge Filter" in the Keys preferences dialog. (There's no checkbox in my custom builds, though; the filter is simply always on in those.)
  • Output circuit shopping list: This is a saved shopping cart at mouser.com with the parts needed for each output driver, if you want to use the LedWiz emulator feature. Note that quantities in the cart are for one output channel, so multiply everything by the number of channels you plan to use, except that you only need one of the ULN2803 transistor array chips for each eight output circuits.
  • Lemming77's potentiometer mounting bracket and shooter rod connecter: Sketchup designs for 3D-printable parts for mounting a slide potentiometer as the plunger sensor. These were designed for a particular slide potentiometer that used to be available from an Aliexpress.com seller but is no longer listed. You can probably use this design as a starting point for other similar devices; just check the dimensions before committing the design to plastic.

Features

  • Plunger position sensing, using a TAOS TSL 1410R CCD linear array sensor. This sensor is a 1280 x 1 pixel array at 400 dpi, which makes it about 3" long - almost exactly the travel distance of a standard pinball plunger. The idea is that you install the sensor just above (within a few mm of) the shooter rod on the inside of the cabinet, with the CCD window facing down, aligned with and centered on the long axis of the shooter rod, and positioned so that the rest position of the tip is about 1/2" from one end of the window. As you pull back the plunger, the tip will travel down the length of the window, and the maximum retraction point will put the tip just about at the far end of the window. Put a light source below, facing the sensor - I'm using two typical 20 mA blue LEDs about 8" away (near the floor of the cabinet) with good results. The principle of operation is that the shooter rod casts a shadow on the CCD, so pixels behind the rod will register lower brightness than pixels that aren't in the shadow. We scan down the length of the sensor for the edge between darker and brighter, and this tells us how far back the rod has been pulled. We can read the CCD at about 25-30 ms intervals, so we can get rapid updates. We pass the readings reports to VP via our USB joystick reports.

    The hardware build guide includes schematics showing how to wire the CCD to the KL25Z. It's pretty straightforward - five wires between the two devices, no external components needed. Two GPIO ports are used as outputs to send signals to the device and one is used as an ADC in to read the pixel brightness inputs. The config tool has a feature that lets you display the raw pixel readings across the array, so you can test that the CCD is working and adjust the light source to get the right exposure level.

    Alternatively, you can use a slide potentiometer as the plunger sensor. This is a cheaper and somewhat simpler option that seems to work quite nicely, as you can see in Lemming77's video of this setup in action. This option is also explained more fully in the build guide.
  • Nudge sensing via the KL25Z's on-board accelerometer. Mounting the board in your cabinet makes it feel the same accelerations the cabinet experiences when you nudge it. Visual Pinball already knows how to interpret accelerometer input as nudging, so we simply feed the acceleration readings to VP via the joystick interface.
  • Cabinet button wiring. Up to 24 pushbuttons and switches can be wired to the controller for input controls (for example, flipper buttons, the Start button, the tilt bob, coin slot switches, and service door buttons). These appear to Windows as joystick buttons. VP can map joystick buttons to pinball inputs via its keyboard preferences dialog. (You can raise the 24-button limit by editing the source code, but since all of the GPIO pins are allocated, you'll have to reassign pins currently used for other functions.)
  • LedWiz emulation (limited). In addition to emulating a joystick, the device emulates the LedWiz USB interface, so controllers on the PC side such as DirectOutput Framework can recognize it and send it commands to control lights, solenoids, and other feedback devices. 22 GPIO ports are assigned by default as feedback device outputs. This feature has some limitations. The big one is that the KL25Z hardware only has 10 PWM channels, which isn't enough for a fully decked-out cabinet. You also need to build some external power driver circuitry to use this feature, because of the paltry 4mA output capacity of the KL25Z GPIO ports. The build guide includes instructions for a simple and robust output circuit, including part numbers for the exact components you need. It's not hard if you know your way around a soldering iron, but just be aware that it'll take a little work.

Warning: This is not replacement software for the VirtuaPin plunger kit. If you bought the VirtuaPin kit, please don't try to install this software. The VP kit happens to use the same microcontroller board, but the rest of its hardware is incompatible. The VP kit uses a different type of sensor for its plunger and has completely different button wiring, so the Pinscape software won't work properly with it.

Revision:
9:fd65b0a94720
Parent:
8:c732e279ee29
Child:
10:976666ffa4ef
--- a/main.cpp	Fri Aug 08 20:59:39 2014 +0000
+++ b/main.cpp	Mon Aug 18 21:46:10 2014 +0000
@@ -171,7 +171,16 @@
 //    byte 2 = new LedWiz unit number, 0x01 to 0x0f
 //    byte 3 = feature enable bit mask:
 //             0x01 = enable CCD (default = on)
-
+//
+// Plunger calibration mode: the host can activate plunger calibration mode
+// by sending this packet.  This has the same effect as pressing and holding
+// the plunger calibration button for two seconds, to allow activating this
+// mode without attaching a physical button.
+//
+//    length = 8 bytes
+//    byte 0 = 65 (0x41)
+//    byte 1 = 2 (0x02)
+//
  
 #include "mbed.h"
 #include "math.h"
@@ -220,6 +229,22 @@
 const uint16_t USB_VERSION_NO = 0x0006;
 const uint8_t DEFAULT_LEDWIZ_UNIT_NUMBER = 0x07;
 
+// Number of pixels we read from the sensor on each frame.  This can be
+// less than the physical pixel count if desired; we'll read every nth
+// piexl if so.  E.g., with a 1280-pixel physical sensor, if npix is 320,
+// we'll read every 4th pixel.  It takes time to read each pixel, so the
+// fewer pixels we read, the higher the refresh rate we can achieve.
+// It's therefore better not to read more pixels than we have to.
+//
+// VP seems to have an internal resolution in the 8-bit range, so there's
+// no apparent benefit to reading more than 128-256 pixels when using VP.
+// Empirically, 160 pixels seems about right.  The overall travel of a
+// standard pinball plunger is about 3", so 160 pixels gives us resolution
+// of about 1/50".  This seems to take full advantage of VP's modeling
+// ability, and is probably also more precise than a human player's
+// perception of the plunger position.
+const int npix = 160;
+
 // On-board RGB LED elements - we use these for diagnostic displays.
 DigitalOut ledR(LED1), ledG(LED2), ledB(LED3);
 
@@ -302,23 +327,24 @@
     { PTD5, true },      // pin J2-4,  LW port 8  (PWM capable - TPM 0.5 = channel 6)
     { PTD0, true },      // pin J2-6,  LW port 9  (PWM capable - TPM 0.0 = channel 1)
     { PTD3, true },      // pin J2-10, LW port 10 (PWM capable - TPM 0.3 = channel 4)
-    { PTC8, false },     // pin J1-14, LW port 11
-    { PTC9, false },     // pin J1-16, LW port 12
-    { PTC7, false },     // pin J1-1,  LW port 13
-    { PTC0, false },     // pin J1-3,  LW port 14
-    { PTC3, false },     // pin J1-5,  LW port 15
-    { PTC4, false },     // pin J1-7,  LW port 16
-    { PTC5, false },     // pin J1-9,  LW port 17
-    { PTC6, false },     // pin J1-11, LW port 18
-    { PTC10, false },    // pin J1-13, LW port 19
-    { PTC11, false },    // pin J1-15, LW port 20
-    { PTC12, false },    // pin J2-1,  LW port 21
-    { PTC13, false },    // pin J2-3,  LW port 22
-    { PTC16, false },    // pin J2-5,  LW port 23
-    { PTC17, false },    // pin J2-7,  LW port 24
-    { PTA16, false },    // pin J2-9,  LW port 25
-    { PTA17, false },    // pin J2-11, LW port 26
-    { PTE31, false },    // pin J2-13, LW port 27
+    { PTD2, false },     // pin J2-8,  LW port 11
+    { PTC8, false },     // pin J1-14, LW port 12
+    { PTC9, false },     // pin J1-16, LW port 13
+    { PTC7, false },     // pin J1-1,  LW port 14
+    { PTC0, false },     // pin J1-3,  LW port 15
+    { PTC3, false },     // pin J1-5,  LW port 16
+    { PTC4, false },     // pin J1-7,  LW port 17
+    { PTC5, false },     // pin J1-9,  LW port 18
+    { PTC6, false },     // pin J1-11, LW port 19
+    { PTC10, false },    // pin J1-13, LW port 20
+    { PTC11, false },    // pin J1-15, LW port 21
+    { PTC12, false },    // pin J2-1,  LW port 22
+    { PTC13, false },    // pin J2-3,  LW port 23
+    { PTC16, false },    // pin J2-5,  LW port 24
+    { PTC17, false },    // pin J2-7,  LW port 25
+    { PTA16, false },    // pin J2-9,  LW port 26
+    { PTA17, false },    // pin J2-11, LW port 27
+    { PTE31, false },    // pin J2-13, LW port 28
     { PTD6, false },     // pin J2-17, LW port 29
     { PTD7, false },     // pin J2-19, LW port 30
     { PTE0, false },     // pin J2-18, LW port 31
@@ -343,6 +369,12 @@
 
 
 // ---------------------------------------------------------------------------
+// utilities
+
+// number of elements in an array
+#define countof(x) (sizeof(x)/sizeof((x)[0]))
+
+// ---------------------------------------------------------------------------
 //
 // LedWiz emulation
 //
@@ -381,7 +413,7 @@
 // initialize the output pin array
 void initLwOut()
 {
-    for (int i = 0 ; i < sizeof(lwPin) / sizeof(lwPin[0]) ; ++i)
+    for (int i = 0 ; i < countof(lwPin) ; ++i)
     {
         PinName p = ledWizPortMap[i].pin;
         lwPin[i] = (ledWizPortMap[i].isPWM
@@ -467,6 +499,15 @@
         iap.program_flash(addr, this, sizeof(*this));
     }
     
+    // reset calibration data for calibration mode
+    void resetPlunger()
+    {
+        // set extremes for the calibration data
+        d.plungerMax = 0;
+        d.plungerZero = npix;
+        d.plungerMin = npix;
+    }
+    
     // stored data (excluding the checksum)
     struct
     {
@@ -640,7 +681,7 @@
         tInt_.start();
     }
     
-    void get(int &x, int &y, int &rx, int &ry) 
+    void get(int &x, int &y) 
     {
          // disable interrupts while manipulating the shared data
          __disable_irq();
@@ -711,14 +752,6 @@
          x = rawToReport(vx);
          y = rawToReport(vy);
          
-         // apply a small dead zone near the center
-         // if (abs(x) < 6) x = 0;
-         // if (abs(y) < 6) y = 0;
-         
-         // report the calibrated instantaneous acceleration in rx,ry
-         rx = int(round((ax - cx_)*JOYMAX));
-         ry = int(round((ay - cy_)*JOYMAX));
-         
 #ifdef DEBUG_PRINTF
          if (x != 0 || y != 0)        
              printf("%f %f %d %d %f\r\n", vx, vy, x, y, dt);
@@ -874,22 +907,6 @@
     // check for valid flash
     bool flash_valid = flash->valid();
                       
-    // Number of pixels we read from the sensor on each frame.  This can be
-    // less than the physical pixel count if desired; we'll read every nth
-    // piexl if so.  E.g., with a 1280-pixel physical sensor, if npix is 320,
-    // we'll read every 4th pixel.  It takes time to read each pixel, so the
-    // fewer pixels we read, the higher the refresh rate we can achieve.
-    // It's therefore better not to read more pixels than we have to.
-    //
-    // VP seems to have an internal resolution in the 8-bit range, so there's
-    // no apparent benefit to reading more than 128-256 pixels when using VP.
-    // Empirically, 160 pixels seems about right.  The overall travel of a
-    // standard pinball plunger is about 3", so 160 pixels gives us resolution
-    // of about 1/50".  This seems to take full advantage of VP's modeling
-    // ability, and is probably also more precise than a human player's
-    // perception of the plunger position.
-    const int npix = 160;
-
     // if the flash is valid, load it; otherwise initialize to defaults
     if (flash_valid) {
         memcpy(&cfg, flash, sizeof(cfg));
@@ -918,7 +935,6 @@
     // plunger calibration button debounce timer
     Timer calBtnTimer;
     calBtnTimer.start();
-    int calBtnDownTime = 0;
     int calBtnLit = false;
     
     // Calibration button state:
@@ -957,10 +973,16 @@
     // so when we detect the start of this motion, we immediately tell VP
     // to return the plunger to rest, then we monitor the real plunger 
     // until it atcually stops.
-    bool firing = false;
+    int firing = 0;
 
     // start the first CCD integration cycle
     ccd.clear();
+    
+    // Device status.  We report this on each update so that the host config
+    // tool can detect our current settings.  This is a bit mask consisting
+    // of these bits:
+    //    0x01  -> plunger sensor enabled
+    uint16_t statusFlags = (cfg.d.ccdEnabled ? 0x01 : 0x00);
 
     // we're all set up - now just loop, processing sensor reports and 
     // host requests
@@ -1009,7 +1031,7 @@
                     // message type.
                     if (data[1] == 1)
                     {
-                        // Set Configuration:
+                        // 1 = Set Configuration:
                         //     data[2] = LedWiz unit number (0x00 to 0x0f)
                         //     data[3] = feature enable bit mask:
                         //               0x01 = enable CCD
@@ -1022,9 +1044,26 @@
                         cfg.d.ledWizUnitNo = newUnitNo;
                         cfg.d.ccdEnabled = data[3] & 0x01;
                         
+                        // update the status flags
+                        statusFlags = (statusFlags & ~0x01) | (data[3] & 0x01);
+                        
+                        // if the ccd is no longer enabled, use 0 for z reports
+                        if (!cfg.d.ccdEnabled)
+                            z = 0;
+                        
                         // save the configuration
                         cfg.save(iap, flash_addr);
                     }
+                    else if (data[1] == 2)
+                    {
+                        // 2 = Calibrate plunger
+                        // (No parameters)
+                        
+                        // enter calibration mode
+                        calBtnState = 3;
+                        calBtnTimer.reset();
+                        cfg.resetPlunger();
+                    }
                 }
                 else 
                 {
@@ -1057,38 +1096,32 @@
             case 0: 
                 // button not yet pushed - start debouncing
                 calBtnTimer.reset();
-                calBtnDownTime = calBtnTimer.read_ms();
                 calBtnState = 1;
                 break;
                 
             case 1:
                 // pushed, not yet debounced - if the debounce time has
                 // passed, start the hold period
-                if (calBtnTimer.read_ms() - calBtnDownTime > 50)
+                if (calBtnTimer.read_ms() > 50)
                     calBtnState = 2;
                 break;
                 
             case 2:
                 // in the hold period - if the button has been held down
                 // for the entire hold period, move to calibration mode
-                if (calBtnTimer.read_ms() - calBtnDownTime > 2050)
+                if (calBtnTimer.read_ms() > 2050)
                 {
                     // enter calibration mode
                     calBtnState = 3;
-                    
-                    // set extremes for the calibration data, so that the actual
-                    // values we read will set new high/low water marks on the fly
-                    cfg.d.plungerMax = 0;
-                    cfg.d.plungerZero = npix;
-                    cfg.d.plungerMin = npix;
+                    calBtnTimer.reset();
+                    cfg.resetPlunger();
                 }
                 break;
                 
             case 3:
-                // Already in calibration mode - pushing the button in this
-                // state doesn't change the current state, but we won't leave
-                // this state as long as it's held down.  We can simply do
-                // nothing here.
+                // Already in calibration mode - pushing the button here
+                // doesn't change the current state, but we won't leave this
+                // state as long as it's held down.  So nothing changes here.
                 break;
             }
         }
@@ -1101,8 +1134,7 @@
             // Otherwise, return to the base state without saving anything.
             // If the button is released before we make it to calibration
             // mode, it simply cancels the attempt.
-            if (calBtnState == 3
-                && calBtnTimer.read_ms() - calBtnDownTime > 17500)
+            if (calBtnState == 3 && calBtnTimer.read_ms() > 15000)
             {
                 // exit calibration mode
                 calBtnState = 0;
@@ -1127,7 +1159,7 @@
         {
         case 2:
             // in the hold period - flash the light
-            newCalBtnLit = (((calBtnTimer.read_ms() - calBtnDownTime)/250) & 1);
+            newCalBtnLit = ((calBtnTimer.read_ms()/250) & 1);
             break;
             
         case 3:
@@ -1150,13 +1182,13 @@
                 calBtnLed = 1;
                 ledR = 1;
                 ledG = 1;
-                ledB = 1;
+                ledB = 0;
             }
             else {
                 calBtnLed = 0;
                 ledR = 1;
                 ledG = 1;
-                ledB = 0;
+                ledB = 1;
             }
         }
         
@@ -1246,14 +1278,34 @@
             // is complete, allowing VP to carry out the firing motion using
             // its internal model plunger rather than trying to track the
             // intermediate positions of the mechanical plunger throughout
-            // the firing motion.  This has several benefits.  First is that 
-            // our readings aren't very accurate during rapid movement,
-            // because we get too much motion blur.  Second is that the
-            // event approach allows VP to simulate the plunger motion
-            // according to each table's particular plunger settings.
-            // Different tables have different plunger strengths and speeds,
-            // so we want to defer to the model for the physics of the firing
-            // motion within each simulation.
+            // the firing motion.  This is essential because the firing
+            // motion is too fast for us to track - in the time it takes us
+            // to read one frame, the plunger can make it all the way to the
+            // zero position and bounce back halfway.  Fortunately, the range
+            // of motions for the plunger is limited, so if we see any rapid
+            // change of position toward the rest position, it's reasonably
+            // safe to interpret it as a firing event.  
+            //
+            // This isn't foolproof.  The user can trick us by doing a 
+            // controlled rapid forward push but stopping short of the rest 
+            // position.  We'll misinterpret that as a firing event.  But 
+            // that's not a natural motion that a user would make with a
+            // plunger, so it's probably an acceptable false positive.
+            //
+            // Possible future enhancement: we could add a second physical
+            // sensor that detects when the plunger reaches the zero position
+            // and asserts an interrupt.  In the interrupt handler, set a
+            // flag indicating the zero position signal.  On each scan of
+            // the CCD, also check that flag; if it's set, enter firing
+            // event mode just as we do now.  The key here is that the
+            // secondary sensor would have to be something much faster
+            // than our CCD scan - it would have to react on, say, the
+            // millisecond time scale.  A simple mechanical switch or a
+            // proximity sensor could work.  This would let us detect
+            // with certainty when the plunger physically fires, eliminating
+            // the case where the use can fool us with motion that's fast
+            // enough to look like a release but doesn't actually reach the
+            // starting position.
             //
             // To detremine when a firing even occurs, we watch for rapid
             // motion from a retracted position towards the rest position -
@@ -1264,12 +1316,38 @@
             // position, and then suspend reports until the mechanical
             // readings indicate that the plunger has come to rest (indicated
             // by several readings in a row at roughly the same position).
-                    
-            // Check to see if plunger firing is in progress.  If not, check
-            // to see if it looks like we just started firing.
-            const int restTol = JOYMAX/npix * 4;
-            const int fireTol = JOYMAX/npix * 12;
-            if (firing)
+            //
+            // Tolerance for firing is 1/3 of the current pull distance, or
+            // about 1/2", whichever is greater.  Making this value too small
+            // makes for too many false positives.  Empirically, 1/4" is too
+            // twitchy, so set a floor at about 1/2".  But we can be less
+            // sensitive the further back the plunger is pulled, since even
+            // a long pull will snap back quickly.  Note that JOYMAX always
+            // corresponds to about 3", no matter how many pixels we're
+            // reading, since the physical sensor is about 3" long; so we
+            // factor out the pixel count calculate (approximate) physical
+            // distances based on the normalized axis range.
+            // 
+            // Firing pattern: when firing, don't simply report a solid 0,
+            // but instead report a series of pseudo-bouces.  This looks
+            // more realistic, beacause the real plunger is also bouncing
+            // around during this time.  To get maximum firing power in
+            // the simulation, though, our pseudo-bounces are tiny cmopared
+            // to the real thing.
+            const int restTol = JOYMAX/24;
+            int fireTol = z/3 > JOYMAX/6 ? z/3 : JOYMAX/6;
+            static const int firePattern[] = { 
+                -JOYMAX/12, -JOYMAX/12, -JOYMAX/12, 
+                0, 0, 0,
+                JOYMAX/16, JOYMAX/16, JOYMAX/16,
+                0, 0, 0,
+                -JOYMAX/20, -JOYMAX/20, -JOYMAX/20,
+                0, 0, 0, 
+                JOYMAX/24, JOYMAX/24, JOYMAX/24,
+                0, 0, 0,
+                -JOYMAX/30, -JOYMAX/30, -JOYMAX/30 
+            };
+            if (firing != 0)
             {
                 // Firing in progress - we've already told VP to send its
                 // model plunger all the way back to the rest position, so
@@ -1278,11 +1356,23 @@
                 if (abs(z0 - z2) < restTol && abs(znew - z2) < restTol)
                 {
                     // the plunger is back at rest - firing is done
-                    firing = false;
+                    firing = 0;
                     
                     // resume normal reporting
                     z = z2;
                 }
+                else if (firing < countof(firePattern))
+                {
+                    // firing - report the next position in the pseudo-bounce 
+                    // pattern
+                    z = firePattern[firing++];
+                }
+                else
+                {
+                    // firing, out of pseudo-bounce items - just report the
+                    // rest position
+                    z = 0;
+                }
             }
             else if (z0 < z2 && z1 < z2 && znew < z2
                      && (z0 < z2 - fireTol 
@@ -1305,8 +1395,10 @@
                 // virtual plunger, rather than imposing the actual
                 // mechanical charateristics of the physical plunger on
                 // every table.
-                firing = true;
-                z = 0;
+                firing = 1;
+                
+                // report the first firing pattern position
+                z = firePattern[0];
             }
             else
             {
@@ -1320,10 +1412,16 @@
             z1 = z0;
             z0 = znew;
         }
+        else
+        {
+            // plunger disabled - pause 10ms to throttle updates to a
+            // reasonable pace
+            wait_ms(10);
+        }
 
         // read the accelerometer
-        int xa, ya, rxa, rya;
-        accel.get(xa, ya, rxa, rya);
+        int xa, ya;
+        accel.get(xa, ya);
         
         // confine the results to our joystick axis range
         if (xa < -JOYMAX) xa = -JOYMAX;
@@ -1342,7 +1440,7 @@
         // arrangement of our nominal axes aligns with VP's standard
         // setting, so that we can configure VP with X Axis = X on the
         // joystick and Y Axis = Y on the joystick.
-        js.update(y, x, z, rxa, rya, 0);
+        js.update(y, x, z, 0, statusFlags);
         
 #ifdef DEBUG_PRINTF
         if (x != 0 || y != 0)