Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
DW1000/DW1000.cpp
- Committer:
- millanea
- Date:
- 2015-07-07
- Revision:
- 0:99928431bb44
File content as of revision 0:99928431bb44:
#include "DW1000.h"
DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS) {
setCallbacks(NULL, NULL);
deselect(); // Chip must be deselected first
spi.format(8,0); // Setup the spi for standard 8 bit data and SPI-Mode 0 (GPIO5, GPIO6 open circuit or ground on DW1000)
spi.frequency(5000000); // with a 1MHz clock rate (worked up to 49MHz in our Test)
resetAll(); // we do a soft reset of the DW1000 everytime the driver starts
// Configuration TODO: make method for that
// User Manual "2.5.5 Default Configurations that should be modified" p. 22
//Those values are for the standard mode (6.8Mbps, 5, 16Mhz, 32 Symbols) and are INCOMPLETE!
// writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870);
// writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907);
// writeRegister32(DW1000_DRX_CONF, 0x08, 0x311A002D);
// writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD);
// writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607);
// writeRegister32(DW1000_TX_POWER, 0, 0x0E082848);
// writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0);
// writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0);
// writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6);
//Those values are for the 110kbps mode (5, 16MHz, 1024 Symbols) and are quite complete
writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870); //AGC_TUNE1 for 16MHz PRF
writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907); //AGC_TUNE2 (Universal)
writeRegister16(DW1000_AGC_CTRL, 0x12, 0x0055); //AGC_TUNE3 (Universal)
writeRegister16(DW1000_DRX_CONF, 0x02, 0x000A); //DRX_TUNE0b for 110kbps
writeRegister16(DW1000_DRX_CONF, 0x04, 0x0087); //DRX_TUNE1a for 16MHz PRF
writeRegister16(DW1000_DRX_CONF, 0x06, 0x0064); //DRX_TUNE1b for 110kbps & > 1024 symbols
writeRegister32(DW1000_DRX_CONF, 0x08, 0x351A009A); //PAC size for 1024 symbols preamble & 16MHz PRF
//writeRegister32(DW1000_DRX_CONF, 0x08, 0x371A011D); //PAC size for 2048 symbols preamble
writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD); //LDE_CFG1
writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607); //LDE_CFG2 for 16MHz PRF
writeRegister32(DW1000_TX_POWER, 0, 0x28282828); //Power for channel 5
writeRegister8(DW1000_RF_CONF, 0x0B, 0xD8); //RF_RXCTRLH for channel 5
writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0); //RF_TXCTRL for channel 5
writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0); //TC_PGDELAY for channel 5
writeRegister32 (DW1000_FS_CTRL, 0x07, 0x0800041D); //FS_PLLCFG for channel 5
writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6); //FS_PLLTUNE for channel 5
loadLDE(); // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned off or there's receiving malfunction see User Manual LDELOAD on p22 & p158
// 110kbps CAUTION: a lot of other registers have to be set for an optimized operation on 110kbps
writeRegister16(DW1000_TX_FCTRL, 1, 0x0800 | 0x0100 | 0x0080); // use 1024 symbols preamble (0x0800) (previously 2048 - 0x2800), 16MHz pulse repetition frequency (0x0100), 110kbps bit rate (0x0080) see p.69 of DW1000 User Manual
writeRegister8(DW1000_SYS_CFG, 2, 0x44); // enable special receiving option for 110kbps (disable smartTxPower)!! (0x44) see p.64 of DW1000 User Manual [DO NOT enable 1024 byte frames (0x03) becuase it generates disturbance of ranging don't know why...]
writeRegister16(DW1000_TX_ANTD, 0, 16384); // set TX and RX Antenna delay to neutral because we calibrate afterwards
writeRegister16(DW1000_LDE_CTRL, 0x1804, 16384); // = 2^14 a quarter of the range of the 16-Bit register which corresponds to zero calibration in a round trip (TX1+RX2+TX2+RX1)
writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error
irq.rise(this, &DW1000::ISR); // attach interrupt handler to rising edge of interrupt pin from DW1000
}
void DW1000::setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void)) {
bool RX = false;
bool TX = false;
if (callbackRX) {
DW1000::callbackRX.attach(callbackRX);
RX = true;
}
if (callbackTX) {
DW1000::callbackTX.attach(callbackTX);
TX = true;
}
setInterrupt(RX,TX);
}
uint32_t DW1000::getDeviceID() {
uint32_t result;
readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4);
return result;
}
uint64_t DW1000::getEUI() {
uint64_t result;
readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8);
return result;
}
void DW1000::setEUI(uint64_t EUI) {
writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8);
}
float DW1000::getVoltage() {
uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00}; // algorithm form User Manual p57
writeRegister(DW1000_RF_CONF, 0x11, buffer, 2);
writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1);
writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1);
writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1);
readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2); // get the 8-Bit readings for Voltage and Temperature
float Voltage = buffer[5] * 0.0057 + 2.3;
//float Temperature = buffer[6] * 1.13 - 113.0; // TODO: getTemperature was always ~35 degree with better formula/calibration
return Voltage;
}
uint64_t DW1000::getStatus() {
return readRegister40(DW1000_SYS_STATUS, 0);
}
uint64_t DW1000::getRXTimestamp() {
return readRegister40(DW1000_RX_TIME, 0);
}
uint64_t DW1000::getTXTimestamp() {
return readRegister40(DW1000_TX_TIME, 0);
}
void DW1000::sendString(char* message) {
sendFrame((uint8_t*)message, strlen(message)+1);
}
void DW1000::receiveString(char* message) {
readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)message, getFramelength()); // get data from buffer
}
void DW1000::sendFrame(uint8_t* message, uint16_t length) {
//if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames
writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer
uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame
length += 2; // including 2 CRC Bytes
length = ((backup & 0xFC) << 8) | (length & 0x03FF);
writeRegister16(DW1000_TX_FCTRL, 0, length);
stopTRX(); // stop receiving
writeRegister8(DW1000_SYS_CTRL, 0, 0x02); // trigger sending process by setting the TXSTRT bit
startRX(); // enable receiver again
}
void DW1000::sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp) {
//if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames
writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer
uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame
length += 2; // including 2 CRC Bytes
length = ((backup & 0xFC) << 8) | (length & 0x03FF);
writeRegister16(DW1000_TX_FCTRL, 0, length);
writeRegister40(DW1000_DX_TIME, 0, TxTimestamp); //write the timestamp on which to send the message
stopTRX(); // stop receiving
writeRegister8(DW1000_SYS_CTRL, 0, 0x02 | 0x04); // trigger sending process by setting the TXSTRT and TXDLYS bit
startRX(); // enable receiver again
}
void DW1000::startRX() {
writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01); // start listening for preamble by setting the RXENAB bit
}
void DW1000::stopTRX() {
writeRegister8(DW1000_SYS_CTRL, 0, 0x40); // disable tranceiver go back to idle mode
}
// PRIVATE Methods ------------------------------------------------------------------------------------
void DW1000::loadLDE() { // initialise LDE algorithm LDELOAD User Manual p22
writeRegister16(DW1000_PMSC, 0, 0x0301); // set clock to XTAL so OTP is reliable
writeRegister16(DW1000_OTP_IF, 0x06, 0x8000); // set LDELOAD bit in OTP
wait_us(150);
writeRegister16(DW1000_PMSC, 0, 0x0200); // recover to PLL clock
}
void DW1000::resetRX() {
writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset
writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset
}
void DW1000::resetAll() {
writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL
writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset
wait_us(10); // wait for PLL to lock
writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset
}
void DW1000::setInterrupt(bool RX, bool TX) {
writeRegister16(DW1000_SYS_MASK, 0, RX*0x4000 | TX*0x0080); // RX good frame 0x4000, TX done 0x0080
}
void DW1000::ISR() {
uint64_t status = getStatus();
if (status & 0x4000) { // a frame was received
callbackRX.call();
writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits
}
if (status & 0x80) { // sending complete
callbackTX.call();
writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits
}
}
uint16_t DW1000::getFramelength() {
uint16_t framelength = readRegister16(DW1000_RX_FINFO, 0); // get framelength
framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes
return framelength;
}
// SPI Interface ------------------------------------------------------------------------------------
uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) {
uint8_t result;
readRegister(reg, subaddress, &result, 1);
return result;
}
uint16_t DW1000::readRegister16(uint8_t reg, uint16_t subaddress) {
uint16_t result;
readRegister(reg, subaddress, (uint8_t*)&result, 2);
return result;
}
uint64_t DW1000::readRegister40(uint8_t reg, uint16_t subaddress) {
uint64_t result;
readRegister(reg, subaddress, (uint8_t*)&result, 5);
result &= 0xFFFFFFFFFF; // only 40-Bit
return result;
}
void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) {
writeRegister(reg, subaddress, &buffer, 1);
}
void DW1000::writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer) {
writeRegister(reg, subaddress, (uint8_t*)&buffer, 2);
}
void DW1000::writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer) {
writeRegister(reg, subaddress, (uint8_t*)&buffer, 4);
}
void DW1000::writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer) {
writeRegister(reg, subaddress, (uint8_t*)&buffer, 5);
}
void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) {
setupTransaction(reg, subaddress, false);
for(int i=0; i<length; i++) // get data
buffer[i] = spi.write(0x00);
deselect();
}
void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) {
setupTransaction(reg, subaddress, true);
for(int i=0; i<length; i++) // put data
spi.write(buffer[i]);
deselect();
}
void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) {
reg |= (write * DW1000_WRITE_FLAG); // set read/write flag
select();
if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte
spi.write(reg | DW1000_SUBADDRESS_FLAG);
if (subaddress > 0x7F) { // sub address too long, we need to set flag and send third header byte
spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG); // and
spi.write((uint8_t)(subaddress >> 7));
} else {
spi.write((uint8_t)subaddress);
}
} else {
spi.write(reg); // say which register address we want to access
}
}
void DW1000::select() { // always called to start an SPI transmission
irq.disable_irq(); // disable interrupts from DW1000 during SPI becaus this leads to crashes! TODO: if you have other interrupt handlers attached on the micro controller, they could also interfere.
cs = 0; // set Cable Select pin low to start transmission
}
void DW1000::deselect() { // always called to end an SPI transmission
cs = 1; // set Cable Select pin high to stop transmission
irq.enable_irq(); // reenable the interrupt handler
}