2Chx3dof Magnetrometer supported M-Series Random Sequence Generator Servo Control

Dependencies:   mbed

Sampling Frequency

Sampling Frequency in main.cpp

#define SampleFreq     200   // [Hz]

Auto Stop Setting

Auto-stop Timer 15sec after

    // auto-stop when 15sec after
    if(smpl_cnt>3000){stop_dump();}

The number of 3000 means Sample Count. The number is given by SampleFreq[Hz] * Auto-Stop Time [sec].

M-Series Random Sequence

M-series Random Update Term in main.cpp

// M-series update flag
#define  M_TERM  200;

Unit is sample count.

cf.) 200 equals to 200 [samples] which equals to 1 [second] where SampleFreq = 200 [Hz}.

See above.

M-Series Random Servo Control

Revision:
0:4656a133ed1a
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/MPU9250_SPI/MPU9250.cpp	Mon Feb 01 17:11:03 2021 +0000
@@ -0,0 +1,403 @@
+/*CODED by Qiyong Mu on 21/06/2014
+kylongmu@msn.com
+
+revised by Masahiro Furukawa
+m.furukawa@ist.osaka-u.ac.jp 10/05/2018
+*/
+
+#include <mbed.h>
+#include "MPU9250.h"
+
+mpu9250_spi::mpu9250_spi(SPI& _spi, PinName _cs) : spi(_spi), cs(_cs) {}
+
+unsigned int mpu9250_spi::WriteReg( uint8_t WriteAddr, uint8_t WriteData )
+{
+    unsigned int temp_val;
+    select();
+    spi.write(WriteAddr);
+    temp_val=spi.write(WriteData);
+    deselect();
+    wait_us(50);
+    return temp_val;
+}
+unsigned int  mpu9250_spi::ReadReg( uint8_t WriteAddr, uint8_t WriteData )
+{
+    return WriteReg(WriteAddr | READ_FLAG,WriteData);
+}
+void mpu9250_spi::ReadRegs( uint8_t ReadAddr, uint8_t *ReadBuf, unsigned int Bytes )
+{
+    unsigned int  i = 0;
+
+    select();
+    spi.write(ReadAddr | READ_FLAG);
+    for(i=0; i<Bytes; i++)
+        ReadBuf[i] = spi.write(0x00);
+    deselect();
+    wait_us(50);
+}
+
+/*-----------------------------------------------------------------------------------------------
+                                    INITIALIZATION
+usage: call this function at startup, giving the sample rate divider (raging from 0 to 255) and
+low pass filter value; suitable values are:
+BITS_DLPF_CFG_256HZ_NOLPF2
+BITS_DLPF_CFG_188HZ
+BITS_DLPF_CFG_98HZ
+BITS_DLPF_CFG_42HZ
+BITS_DLPF_CFG_20HZ
+BITS_DLPF_CFG_10HZ 
+BITS_DLPF_CFG_5HZ 
+BITS_DLPF_CFG_2100HZ_NOLPF
+returns 1 if an error occurred
+-----------------------------------------------------------------------------------------------*/
+#define MPU_InitRegNum 17
+
+bool mpu9250_spi::init(int sample_rate_div,int low_pass_filter){
+    uint8_t i = 0;
+    uint8_t MPU_Init_Data[MPU_InitRegNum][2] = {
+        {0x80, MPUREG_PWR_MGMT_1},          // Reset Device
+        {0x01, MPUREG_PWR_MGMT_1},          // Clock Source
+        {0x00, MPUREG_PWR_MGMT_2},          // Enable Acc & Gyro
+        //{low_pass_filter | 0x40, MPUREG_CONFIG},   // [FIFO enabled] Use DLPF set Gyroscope bandwidth 184Hz, temperature bandwidth 188Hz
+        
+        //{BITS_DLPF_CFG_256HZ_NOLPF2 , MPUREG_CONFIG},   // no DLPF
+        //{BITS_DLPF_CFG_188HZ , MPUREG_CONFIG},   // Use DLPF set Gyroscope bandwidth 184Hz, temperature bandwidth 188Hz
+        {BITS_DLPF_CFG_5HZ , MPUREG_CONFIG},   // Use DLPF set Gyroscope bandwidth 5Hz, temperature bandwidth 5Hz
+        
+        {0x00, MPUREG_GYRO_CONFIG},         // +-250dps = 0x00*  +-2000dps = 0x18
+        {0x00, MPUREG_ACCEL_CONFIG},        //   +-2G   = 0x00*     +-4G   = 0x08  +-16G = 0x18
+        
+        //{0x09, MPUREG_ACCEL_CONFIG_2},    // [ERROR] in accel_fchoice_b. (old comment->)Set Acc Data Rates, Enable Acc LPF , Bandwidth 184Hz
+        //{0x06, MPUREG_ACCEL_CONFIG_2},      // Set Acc Data Rates, Enable Acc LPF , Bandwidth 5Hz
+        //{0x02, MPUREG_ACCEL_CONFIG_2},      // Set Acc Data Rates, Enable Acc LPF , Bandwidth 99Hz
+        {0x01, MPUREG_ACCEL_CONFIG_2},      // Set Acc Data Rates, Enable Acc LPF , Bandwidth 218Hz
+        
+        {0x00, MPUREG_INT_PIN_CFG},         // Masahiro Furukawa // NO INTERRUPT Aug 87, 2018
+        //{0x40, MPUREG_I2C_MST_CTRL},      // I2C Speed 348 kHz
+        //{0x20, MPUREG_USER_CTRL},         // Enable AUX
+        {0x20, MPUREG_USER_CTRL},           // I2C Master mode
+        {0x0D, MPUREG_I2C_MST_CTRL},        // I2C configuration multi-master  IIC 400KHz
+        
+        {AK8963_I2C_ADDR, MPUREG_I2C_SLV0_ADDR},  //Set the I2C slave addres of AK8963 and set for write.
+        //{0x09, MPUREG_I2C_SLV4_CTRL},
+        //{0x81, MPUREG_I2C_MST_DELAY_CTRL}, //Enable I2C delay
+
+        {AK8963_CNTL2, MPUREG_I2C_SLV0_REG}, //I2C slave 0 register address from where to begin data transfer
+        {0x01, MPUREG_I2C_SLV0_DO},          // Reset AK8963
+        {0x81, MPUREG_I2C_SLV0_CTRL},        //Enable I2C and set 1 byte
+
+        {AK8963_CNTL1, MPUREG_I2C_SLV0_REG}, //I2C slave 0 register address from where to begin data transfer
+        {0x12, MPUREG_I2C_SLV0_DO},          // Register value to continuous measurement in 16bit
+        {0x81, MPUREG_I2C_SLV0_CTRL}         //Enable I2C and set 1 byte
+        
+    };
+    spi.format(8,0);
+    //spi.frequency(1000000);
+    spi.frequency(1000000);
+
+    for(i=0; i<MPU_InitRegNum; i++) {
+        WriteReg(MPU_Init_Data[i][1], MPU_Init_Data[i][0]);
+        wait(0.001);  //I2C must slow down the write speed, otherwise it won't work
+    }
+    
+    //AK8963_calib_Magnetometer();  //Can't load this function here , strange problem?
+    return 0;
+}
+/*-----------------------------------------------------------------------------------------------
+                                ACCELEROMETER SCALE
+usage: call this function at startup, after initialization, to set the right range for the
+accelerometers. Suitable ranges are:
+BITS_FS_2G
+BITS_FS_4G
+BITS_FS_8G
+BITS_FS_16G
+returns the range set (2,4,8 or 16)
+-----------------------------------------------------------------------------------------------*/
+unsigned int mpu9250_spi::set_acc_scale(int scale){
+    unsigned int temp_scale;
+    WriteReg(MPUREG_ACCEL_CONFIG, scale);
+    
+    switch (scale){
+        case BITS_FS_2G:
+            acc_divider=16384;
+        break;
+        case BITS_FS_4G:
+            acc_divider=8192;
+        break;
+        case BITS_FS_8G:
+            acc_divider=4096;
+        break;
+        case BITS_FS_16G:
+            acc_divider=2048;
+        break;   
+    }
+    temp_scale=WriteReg(MPUREG_ACCEL_CONFIG|READ_FLAG, 0x00);
+    
+    switch (temp_scale){
+        case BITS_FS_2G:
+            temp_scale=2;
+        break;
+        case BITS_FS_4G:
+            temp_scale=4;
+        break;
+        case BITS_FS_8G:
+            temp_scale=8;
+        break;
+        case BITS_FS_16G:
+            temp_scale=16;
+        break;   
+    }
+    return temp_scale;
+}
+
+
+/*-----------------------------------------------------------------------------------------------
+                                GYROSCOPE SCALE
+usage: call this function at startup, after initialization, to set the right range for the
+gyroscopes. Suitable ranges are:
+BITS_FS_250DPS
+BITS_FS_500DPS
+BITS_FS_1000DPS
+BITS_FS_2000DPS
+returns the range set (250,500,1000 or 2000)
+-----------------------------------------------------------------------------------------------*/
+unsigned int mpu9250_spi::set_gyro_scale(int scale){
+    unsigned int temp_scale;
+    WriteReg(MPUREG_GYRO_CONFIG, scale);
+    switch (scale){
+        case BITS_FS_250DPS:
+            gyro_divider=131;
+        break;
+        case BITS_FS_500DPS:
+            gyro_divider=65.5;
+        break;
+        case BITS_FS_1000DPS:
+            gyro_divider=32.8;
+        break;
+        case BITS_FS_2000DPS:
+            gyro_divider=16.4;
+        break;   
+    }
+    temp_scale=WriteReg(MPUREG_GYRO_CONFIG|READ_FLAG, 0x00);
+    switch (temp_scale){
+        case BITS_FS_250DPS:
+            temp_scale=250;
+        break;
+        case BITS_FS_500DPS:
+            temp_scale=500;
+        break;
+        case BITS_FS_1000DPS:
+            temp_scale=1000;
+        break;
+        case BITS_FS_2000DPS:
+            temp_scale=2000;
+        break;   
+    }
+    return temp_scale;
+}
+
+
+/*-----------------------------------------------------------------------------------------------
+                                WHO AM I?
+usage: call this function to know if SPI is working correctly. It checks the I2C address of the
+mpu9250 which should be 104 when in SPI mode.
+returns the I2C address (104)
+-----------------------------------------------------------------------------------------------*/
+unsigned int mpu9250_spi::whoami(){
+    unsigned int response;
+    response=WriteReg(MPUREG_WHOAMI|READ_FLAG, 0x00);
+    return response;
+}
+
+
+/*-----------------------------------------------------------------------------------------------
+                                READ ACCELEROMETER
+usage: call this function to read accelerometer data. Axis represents selected axis:
+0 -> X axis
+1 -> Y axis
+2 -> Z axis
+-----------------------------------------------------------------------------------------------*/
+void mpu9250_spi::read_acc()
+{
+    //int16_t bit_data;
+//    float data;
+//    int i;
+    ReadRegs(MPUREG_ACCEL_XOUT_H,accelerometer_response,6);    
+//    for(i=0; i<3; i++) {
+//        bit_data=((int16_t)accelerometer_response[i*2]<<8)|accelerometer_response[i*2+1];
+//        data=(float)bit_data;
+//        accelerometer_data[i]=data/acc_divider;
+//        
+//    }
+    
+}
+
+/*-----------------------------------------------------------------------------------------------
+                                READ GYROSCOPE
+usage: call this function to read gyroscope data. Axis represents selected axis:
+0 -> X axis
+1 -> Y axis
+2 -> Z axis
+-----------------------------------------------------------------------------------------------*/
+void mpu9250_spi::read_rot()
+{
+//    int16_t bit_data;
+//    float data;
+//    int i;
+    ReadRegs(MPUREG_GYRO_XOUT_H,gyroscope_response,6);
+//    for(i=0; i<3; i++) {
+//        bit_data=((int16_t)gyroscope_response[i*2]<<8)|gyroscope_response[i*2+1];
+//        data=(float)bit_data;
+//        gyroscope_data[i]=data/gyro_divider;
+//    }
+
+}
+
+/*-----------------------------------------------------------------------------------------------
+                                READ TEMPERATURE
+usage: call this function to read temperature data. 
+returns the value in °C
+-----------------------------------------------------------------------------------------------*/
+void mpu9250_spi::read_temp(){
+    uint8_t response[2];
+    int16_t bit_data;
+    float data;
+    ReadRegs(MPUREG_TEMP_OUT_H,response,2);
+
+    bit_data=((int16_t)response[0]<<8)|response[1];
+    data=(float)bit_data;
+    Temperature=(data/340)+36.53;
+    deselect();
+}
+
+/*-----------------------------------------------------------------------------------------------
+                                READ ACCELEROMETER CALIBRATION
+usage: call this function to read accelerometer data. Axis represents selected axis:
+0 -> X axis
+1 -> Y axis
+2 -> Z axis
+returns Factory Trim value
+-----------------------------------------------------------------------------------------------*/
+void mpu9250_spi::calib_acc()
+{
+    uint8_t response[4];
+    int temp_scale;
+    //READ CURRENT ACC SCALE
+    temp_scale=WriteReg(MPUREG_ACCEL_CONFIG|READ_FLAG, 0x00);
+    set_acc_scale(BITS_FS_8G);
+    //ENABLE SELF TEST need modify
+    //temp_scale=WriteReg(MPUREG_ACCEL_CONFIG, 0x80>>axis);
+
+    ReadRegs(MPUREG_SELF_TEST_X,response,4);
+    calib_data[0]=((response[0]&11100000)>>3)|((response[3]&00110000)>>4);
+    calib_data[1]=((response[1]&11100000)>>3)|((response[3]&00001100)>>2);
+    calib_data[2]=((response[2]&11100000)>>3)|((response[3]&00000011));
+
+    set_acc_scale(temp_scale);
+}
+uint8_t mpu9250_spi::AK8963_whoami(){
+    uint8_t response;
+    WriteReg(MPUREG_I2C_SLV0_ADDR,AK8963_I2C_ADDR|READ_FLAG); //Set the I2C slave addres of AK8963 and set for read.
+    WriteReg(MPUREG_I2C_SLV0_REG, AK8963_WIA); //I2C slave 0 register address from where to begin data transfer
+    WriteReg(MPUREG_I2C_SLV0_CTRL, 0x81); //Read 1 byte from the magnetometer
+
+    //WriteReg(MPUREG_I2C_SLV0_CTRL, 0x81);    //Enable I2C and set bytes
+    wait(0.01);
+    response=WriteReg(MPUREG_EXT_SENS_DATA_00|READ_FLAG, 0x00);    //Read I2C 
+    //ReadRegs(MPUREG_EXT_SENS_DATA_00,response,1);
+    //response=WriteReg(MPUREG_I2C_SLV0_DO, 0x00);    //Read I2C 
+
+    return response;
+}
+void mpu9250_spi::AK8963_calib_Magnetometer(){
+    uint8_t response[3];
+    float data;
+    int i;
+
+    WriteReg(MPUREG_I2C_SLV0_ADDR,AK8963_I2C_ADDR|READ_FLAG); //Set the I2C slave addres of AK8963 and set for read.
+    WriteReg(MPUREG_I2C_SLV0_REG, AK8963_ASAX); //I2C slave 0 register address from where to begin data transfer
+    WriteReg(MPUREG_I2C_SLV0_CTRL, 0x83); //Read 3 bytes from the magnetometer
+
+    //WriteReg(MPUREG_I2C_SLV0_CTRL, 0x81);    //Enable I2C and set bytes
+    wait(0.001);
+    //response[0]=WriteReg(MPUREG_EXT_SENS_DATA_01|READ_FLAG, 0x00);    //Read I2C 
+    ReadRegs(MPUREG_EXT_SENS_DATA_00,response,3);
+    
+    //response=WriteReg(MPUREG_I2C_SLV0_DO, 0x00);    //Read I2C 
+    for(i=0; i<3; i++) {
+        data=response[i];
+        Magnetometer_ASA[i]=((data-128)/256+1)*Magnetometer_Sensitivity_Scale_Factor;
+        
+    }
+}
+void mpu9250_spi::AK8963_read_Magnetometer(){
+    uint8_t response[7];
+    int16_t bit_data;
+    float data;
+    int i;
+
+    WriteReg(MPUREG_I2C_SLV0_ADDR,AK8963_I2C_ADDR|READ_FLAG); //Set the I2C slave addres of AK8963 and set for read.
+    WriteReg(MPUREG_I2C_SLV0_REG, AK8963_HXL); //I2C slave 0 register address from where to begin data transfer
+    WriteReg(MPUREG_I2C_SLV0_CTRL, 0x87); //Read 6 bytes from the magnetometer
+
+    wait(0.001);
+    ReadRegs(MPUREG_EXT_SENS_DATA_00,response,7);
+    //must start your read from AK8963A register 0x03 and read seven bytes so that upon read of ST2 register 0x09 the AK8963A will unlatch the data registers for the next measurement.
+    for(i=0; i<3; i++) {
+        bit_data=((int16_t)response[i*2+1]<<8)|response[i*2];
+        data=(float)bit_data;
+        Magnetometer[i]=data*Magnetometer_ASA[i];
+    }
+}
+void mpu9250_spi::read_all(){
+    uint8_t response[21];
+    int16_t bit_data;
+    float data;
+    int i;
+
+    //Send I2C command at first
+    WriteReg(MPUREG_I2C_SLV0_ADDR,AK8963_I2C_ADDR|READ_FLAG); //Set the I2C slave addres of AK8963 and set for read.
+    WriteReg(MPUREG_I2C_SLV0_REG, AK8963_HXL); //I2C slave 0 register address from where to begin data transfer
+    WriteReg(MPUREG_I2C_SLV0_CTRL, 0x87); //Read 7 bytes from the magnetometer
+    //must start your read from AK8963A register 0x03 and read seven bytes so that upon read of ST2 register 0x09 the AK8963A will unlatch the data registers for the next measurement.
+
+    wait(0.001);
+    ReadRegs(MPUREG_ACCEL_XOUT_H,response,21);
+    //Get accelerometer value
+    for(i=0; i<3; i++) {
+        bit_data=((int16_t)response[i*2]<<8)|response[i*2+1];
+        data=(float)bit_data;
+        accelerometer_data[i]=data/acc_divider;
+    }
+    //Get temperature
+    bit_data=((int16_t)response[i*2]<<8)|response[i*2+1];
+    data=(float)bit_data;
+    Temperature=((data-21)/333.87)+21;
+    //Get gyroscop value
+    for(i=4; i<7; i++) {
+        bit_data=((int16_t)response[i*2]<<8)|response[i*2+1];
+        data=(float)bit_data;
+        gyroscope_data[i-4]=data/gyro_divider;
+        //printf("%+4.2f \n",data);
+    }
+    //Get Magnetometer value
+    for(i=7; i<10; i++) {
+        bit_data=((int16_t)response[i*2+1]<<8)|response[i*2];
+        data=(float)bit_data;
+        Magnetometer[i-7]=data*Magnetometer_ASA[i-7];
+
+    }
+}
+
+/*-----------------------------------------------------------------------------------------------
+                                SPI SELECT AND DESELECT
+usage: enable and disable mpu9250 communication bus
+-----------------------------------------------------------------------------------------------*/
+void mpu9250_spi::select() {
+    //Set CS low to start transmission (interrupts conversion)
+    cs = 0;
+}
+void mpu9250_spi::deselect() {
+    //Set CS high to stop transmission (restarts conversion)
+    cs = 1;
+}
\ No newline at end of file