2Chx3dof Magnetrometer supported M-Series Random Sequence Generator Servo Control

Dependencies:   mbed

Sampling Frequency

Sampling Frequency in main.cpp

#define SampleFreq     200   // [Hz]

Auto Stop Setting

Auto-stop Timer 15sec after

    // auto-stop when 15sec after
    if(smpl_cnt>3000){stop_dump();}

The number of 3000 means Sample Count. The number is given by SampleFreq[Hz] * Auto-Stop Time [sec].

M-Series Random Sequence

M-series Random Update Term in main.cpp

// M-series update flag
#define  M_TERM  200;

Unit is sample count.

cf.) 200 equals to 200 [samples] which equals to 1 [second] where SampleFreq = 200 [Hz}.

See above.

M-Series Random Servo Control

Committer:
mfurukawa
Date:
Tue Feb 02 14:29:33 2021 +0000
Branch:
MPU-9250-MagSensServo
Revision:
4:e1d7947336f4
Parent:
3:70be84fad39e
Child:
5:521f1c79123d
LED_flash notice method added

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mfurukawa 0:4656a133ed1a 1 /**
mfurukawa 0:4656a133ed1a 2 * Masahiro FURUKAWA - m.furukawa@ist.osaka-u.ac.jp
mfurukawa 0:4656a133ed1a 3 *
mfurukawa 0:4656a133ed1a 4 * Dec 26, 2017
mfurukawa 0:4656a133ed1a 5 * Aug 29, 2018
mfurukawa 0:4656a133ed1a 6 * Dec 17, 2019 @ Digital Low Pass Filter 5Hz -> No LPF
mfurukawa 0:4656a133ed1a 7 @ ACC range 2G -> 4G
mfurukawa 0:4656a133ed1a 8 @ GYRO range 250 -> 500 Degree per second
mfurukawa 0:4656a133ed1a 9 @ Deleted magnet sensor checking
mfurukawa 0:4656a133ed1a 10 @ Set Acc Data Rates, Enable Acc LPF , Bandwidth 218Hz
mfurukawa 0:4656a133ed1a 11 @ Use DLPF set Gyroscope bandwidth 5Hz, temperature bandwidth 5Hz
mfurukawa 3:70be84fad39e 12 * Feb 1, 2021 @Magnetro Meter Ch1 & Ch3,
mfurukawa 3:70be84fad39e 13 Servo Motor PWM (p22),
mfurukawa 3:70be84fad39e 14 2000DPS, 2G, DLP 5Hz
mfurukawa 0:4656a133ed1a 15 *
mfurukawa 0:4656a133ed1a 16 * MPU9250 9DoF Sensor (Extended to Ch1 ~ Ch4)
mfurukawa 0:4656a133ed1a 17 *
mfurukawa 0:4656a133ed1a 18 **/
mfurukawa 0:4656a133ed1a 19
mfurukawa 0:4656a133ed1a 20 /*
mfurukawa 0:4656a133ed1a 21 https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
mfurukawa 0:4656a133ed1a 22
mfurukawa 0:4656a133ed1a 23 3.3 Magnetometer Specifications
mfurukawa 0:4656a133ed1a 24
mfurukawa 0:4656a133ed1a 25 Typical Operating Circuit of section 4.2,
mfurukawa 0:4656a133ed1a 26 VDD = 2.5V,
mfurukawa 0:4656a133ed1a 27 VDDIO = 2.5V,
mfurukawa 0:4656a133ed1a 28 TA=25°C, unless otherwise noted.
mfurukawa 0:4656a133ed1a 29
mfurukawa 0:4656a133ed1a 30 PARAMETER CONDITIONS MIN TYP MAX UNITS
mfurukawa 0:4656a133ed1a 31 MAGNETOMETER SENSITIVITY
mfurukawa 0:4656a133ed1a 32 Full-Scale Range ±4800 µT
mfurukawa 0:4656a133ed1a 33 ADC Word Length 14 bits
mfurukawa 0:4656a133ed1a 34 Sensitivity Scale Factor 0.6 µT / LSB
mfurukawa 0:4656a133ed1a 35 ZERO-FIELD OUTPUT
mfurukawa 0:4656a133ed1a 36 Initial Calibration Tolerance ±500 LSB
mfurukawa 0:4656a133ed1a 37 */
mfurukawa 0:4656a133ed1a 38
mfurukawa 0:4656a133ed1a 39
mfurukawa 0:4656a133ed1a 40 #include "mbed.h"
mfurukawa 0:4656a133ed1a 41 #include "MPU9250.h"
mfurukawa 1:3bcd844dd707 42 #include "KST_Servo.h"
mfurukawa 1:3bcd844dd707 43 #include "M-Series.h"
mfurukawa 3:70be84fad39e 44 #include "error_led_flash.h"
mfurukawa 0:4656a133ed1a 45
mfurukawa 0:4656a133ed1a 46 /* MPU9250 Library
mfurukawa 0:4656a133ed1a 47 *
mfurukawa 0:4656a133ed1a 48 * https://developer.mbed.org/users/kylongmu/code/MPU9250_SPI_Test/file/5839d1b118bc/main.cpp
mfurukawa 0:4656a133ed1a 49 *
mfurukawa 0:4656a133ed1a 50 * MOSI (Master Out Slave In) p5
mfurukawa 0:4656a133ed1a 51 * MISO (Master In Slave Out p6
mfurukawa 0:4656a133ed1a 52 * SCK (Serial Clock) p7
mfurukawa 0:4656a133ed1a 53 * ~CS (Chip Select) p8 -> p30
mfurukawa 0:4656a133ed1a 54 */
mfurukawa 0:4656a133ed1a 55
mfurukawa 0:4656a133ed1a 56 // define serial objects
mfurukawa 0:4656a133ed1a 57 Serial pc(USBTX, USBRX);
mfurukawa 0:4656a133ed1a 58
mfurukawa 0:4656a133ed1a 59 Ticker ticker;
mfurukawa 0:4656a133ed1a 60 Timer timer;
mfurukawa 0:4656a133ed1a 61
mfurukawa 3:70be84fad39e 62 #define SampleFreq 200 // [Hz]
mfurukawa 0:4656a133ed1a 63 #define nCh 4 // number of ch
mfurukawa 0:4656a133ed1a 64 #define baudRate 921600 //921600 / 115200
mfurukawa 0:4656a133ed1a 65
mfurukawa 0:4656a133ed1a 66 unsigned int counter = 0;
mfurukawa 0:4656a133ed1a 67 unsigned int usCycle = 1000000/SampleFreq ;
mfurukawa 0:4656a133ed1a 68
mfurukawa 0:4656a133ed1a 69 int errFlag = 0;
mfurukawa 0:4656a133ed1a 70
mfurukawa 0:4656a133ed1a 71 //define the mpu9250 object
mfurukawa 1:3bcd844dd707 72 mpu9250_spi *imu[nCh];
mfurukawa 0:4656a133ed1a 73
mfurukawa 0:4656a133ed1a 74 // define SPI object for imu objects
mfurukawa 1:3bcd844dd707 75 SPI spi1(p5, p6, p7);
mfurukawa 1:3bcd844dd707 76 SPI spi2(p11, p12, p13);
mfurukawa 1:3bcd844dd707 77 // pins already used for SPI Chip selector pin
mfurukawa 1:3bcd844dd707 78 // p21, p23, p29, p30
mfurukawa 1:3bcd844dd707 79
mfurukawa 1:3bcd844dd707 80 // Servo Motor Control
mfurukawa 1:3bcd844dd707 81 PwmOut pwm_(p22);
mfurukawa 1:3bcd844dd707 82
mfurukawa 1:3bcd844dd707 83 // M-Series Random Sequence
mfurukawa 2:3470f2c07582 84 Mseries m;
mfurukawa 1:3bcd844dd707 85
mfurukawa 3:70be84fad39e 86 #define BINARY_MODE 0
mfurukawa 3:70be84fad39e 87 #define ASCII_MODE 1
mfurukawa 3:70be84fad39e 88 int send_mode = BINARY_MODE;
mfurukawa 0:4656a133ed1a 89
mfurukawa 0:4656a133ed1a 90
mfurukawa 3:70be84fad39e 91 void servo_test(void)
mfurukawa 3:70be84fad39e 92 {
mfurukawa 3:70be84fad39e 93 while(1) {
mfurukawa 3:70be84fad39e 94 if(m.update())
mfurukawa 3:70be84fad39e 95 pwm_.pulsewidth_us(KST_SERVO_USEC_MIN);
mfurukawa 3:70be84fad39e 96 else
mfurukawa 3:70be84fad39e 97 pwm_.pulsewidth_us(KST_SERVO_USEC_90);
mfurukawa 3:70be84fad39e 98 wait(.5);
mfurukawa 0:4656a133ed1a 99
mfurukawa 3:70be84fad39e 100 }
mfurukawa 3:70be84fad39e 101 }
mfurukawa 3:70be84fad39e 102 void init_sensor(void)
mfurukawa 3:70be84fad39e 103 {
mfurukawa 0:4656a133ed1a 104 for(int i=0; i<nCh; i++) {
mfurukawa 0:4656a133ed1a 105
mfurukawa 0:4656a133ed1a 106 imu[0]->deselect();
mfurukawa 0:4656a133ed1a 107 imu[1]->deselect();
mfurukawa 0:4656a133ed1a 108 imu[2]->deselect();
mfurukawa 0:4656a133ed1a 109 imu[3]->deselect();
mfurukawa 0:4656a133ed1a 110
mfurukawa 0:4656a133ed1a 111 imu[i]->select();
mfurukawa 0:4656a133ed1a 112
mfurukawa 0:4656a133ed1a 113 //INIT the mpu9250
mfurukawa 0:4656a133ed1a 114 //if(imu[i]->init(1,BITS_DLPF_CFG_188HZ))
mfurukawa 3:70be84fad39e 115 if(imu[i]->init(1,BITS_DLPF_CFG_5HZ)) {
mfurukawa 3:70be84fad39e 116 //if(imu[i]->init(1,BITS_DLPF_CFG_256HZ_NOLPF2)) {
mfurukawa 0:4656a133ed1a 117 printf("\nCH %d\n\nCouldn't initialize MPU9250 via SPI!", i+1);
mfurukawa 0:4656a133ed1a 118 wait(90);
mfurukawa 0:4656a133ed1a 119 }
mfurukawa 0:4656a133ed1a 120
mfurukawa 0:4656a133ed1a 121 //output the I2C address to know if SPI is working, it should be 104
mfurukawa 0:4656a133ed1a 122 printf("\nCH %d\nWHOAMI = 0x%2x\n",i+1, imu[i]->whoami());
mfurukawa 0:4656a133ed1a 123
mfurukawa 0:4656a133ed1a 124 if(imu[i]->whoami() != 0x71) {
mfurukawa 0:4656a133ed1a 125 printf(" *** ERROR *** acc and gyro sensor does not respond correctly!\n");
mfurukawa 0:4656a133ed1a 126 errFlag |= 0x01<<(i*2);
mfurukawa 4:e1d7947336f4 127
mfurukawa 3:70be84fad39e 128 if(i==0||i==2) LED_flash_error_notice(i);
mfurukawa 0:4656a133ed1a 129 continue;
mfurukawa 0:4656a133ed1a 130 }
mfurukawa 0:4656a133ed1a 131
mfurukawa 3:70be84fad39e 132 printf("Gyro_scale = %u[DPS]\n",imu[i]->set_gyro_scale(BITS_FS_2000DPS)); //Set 500DPS scale range for gyros //0706 wada 500to2000
mfurukawa 0:4656a133ed1a 133 wait_ms(20);
mfurukawa 0:4656a133ed1a 134
mfurukawa 3:70be84fad39e 135 printf("Acc_scale = %u[G]\n",imu[i]->set_acc_scale(BITS_FS_2G)); //Set 4G scale range for accs //0706 wada 4to16
mfurukawa 0:4656a133ed1a 136 wait_ms(20);
mfurukawa 0:4656a133ed1a 137
mfurukawa 0:4656a133ed1a 138 printf("AK8963 WHIAM = 0x%2x\n",imu[i]->AK8963_whoami());
mfurukawa 0:4656a133ed1a 139
mfurukawa 0:4656a133ed1a 140 if(imu[i]->AK8963_whoami() != 0x48) {
mfurukawa 0:4656a133ed1a 141 printf(" *** ERROR *** magnetrometer does not respond correctly!\n");
mfurukawa 0:4656a133ed1a 142 errFlag |= 0x02<<(i*2);
mfurukawa 4:e1d7947336f4 143
mfurukawa 3:70be84fad39e 144 if(i==0||i==2) LED_flash_error_notice(i);
mfurukawa 0:4656a133ed1a 145 continue;
mfurukawa 0:4656a133ed1a 146 }
mfurukawa 0:4656a133ed1a 147
mfurukawa 0:4656a133ed1a 148 imu[i]->AK8963_calib_Magnetometer();
mfurukawa 0:4656a133ed1a 149 wait_ms(100);
mfurukawa 0:4656a133ed1a 150 printf("Calibrated Magnetrometer\n");
mfurukawa 0:4656a133ed1a 151 }
mfurukawa 1:3bcd844dd707 152
mfurukawa 3:70be84fad39e 153 }
mfurukawa 1:3bcd844dd707 154
mfurukawa 3:70be84fad39e 155 void init(void)
mfurukawa 3:70be84fad39e 156 {
mfurukawa 2:3470f2c07582 157 // servo requires a 20ms period
mfurukawa 2:3470f2c07582 158 pwm_.period_ms(20);
mfurukawa 1:3bcd844dd707 159
mfurukawa 3:70be84fad39e 160 pc.baud(baudRate);
mfurukawa 3:70be84fad39e 161
mfurukawa 3:70be84fad39e 162 printf("\nrev Feb 1, 2021 for Magnetrometer by Masahiro Furukawa\n");
mfurukawa 1:3bcd844dd707 163
mfurukawa 3:70be84fad39e 164 imu[3] = new mpu9250_spi(spi2, p21);
mfurukawa 3:70be84fad39e 165 imu[2] = new mpu9250_spi(spi2, p23);
mfurukawa 3:70be84fad39e 166 imu[1] = new mpu9250_spi(spi1, p29);
mfurukawa 3:70be84fad39e 167 imu[0] = new mpu9250_spi(spi1, p30);
mfurukawa 3:70be84fad39e 168
mfurukawa 3:70be84fad39e 169 init_sensor();
mfurukawa 3:70be84fad39e 170
mfurukawa 3:70be84fad39e 171 // servo_test();
mfurukawa 3:70be84fad39e 172
mfurukawa 3:70be84fad39e 173 printf("\nHit Key [t] to start. Hit Key [r] to finish. [s] for binary sending.\n");
mfurukawa 3:70be84fad39e 174
mfurukawa 0:4656a133ed1a 175 }
mfurukawa 0:4656a133ed1a 176
mfurukawa 0:4656a133ed1a 177 void eventFunc(void)
mfurukawa 0:4656a133ed1a 178 {
mfurukawa 0:4656a133ed1a 179 // limitation on sending bytes at 921600bps - 92bits(under 100us/sample)
mfurukawa 0:4656a133ed1a 180 // requirement : 1kHz sampling
mfurukawa 0:4656a133ed1a 181 // = 921.5 bits/sample
mfurukawa 0:4656a133ed1a 182 // = 115.1 bytes/sample
mfurukawa 0:4656a133ed1a 183 // = 50 bytes/axis (2byte/axis)
mfurukawa 0:4656a133ed1a 184
mfurukawa 0:4656a133ed1a 185 // 2 byte * 6 axes * 4 ch = 48 bytes/sample
mfurukawa 0:4656a133ed1a 186
mfurukawa 0:4656a133ed1a 187 imu[0]->select();
mfurukawa 0:4656a133ed1a 188 imu[1]->deselect();
mfurukawa 0:4656a133ed1a 189 imu[2]->select();
mfurukawa 0:4656a133ed1a 190 imu[3]->deselect();
mfurukawa 0:4656a133ed1a 191
mfurukawa 3:70be84fad39e 192 imu[0]->read_acc();
mfurukawa 3:70be84fad39e 193 imu[0]->read_rot();
mfurukawa 0:4656a133ed1a 194 imu[0]->AK8963_read_Magnetometer();
mfurukawa 3:70be84fad39e 195
mfurukawa 3:70be84fad39e 196 imu[2]->read_acc();
mfurukawa 3:70be84fad39e 197 imu[2]->read_rot();
mfurukawa 0:4656a133ed1a 198 imu[2]->AK8963_read_Magnetometer();
mfurukawa 0:4656a133ed1a 199
mfurukawa 3:70be84fad39e 200 // imu[0]->deselect();
mfurukawa 3:70be84fad39e 201 // imu[1]->select();
mfurukawa 3:70be84fad39e 202 // imu[2]->deselect();
mfurukawa 3:70be84fad39e 203 // imu[3]->select();
mfurukawa 3:70be84fad39e 204
mfurukawa 3:70be84fad39e 205 // imu[1]->read_acc();
mfurukawa 3:70be84fad39e 206 // imu[1]->read_rot();
mfurukawa 3:70be84fad39e 207 // imu[1]->AK8963_read_Magnetometer();
mfurukawa 3:70be84fad39e 208
mfurukawa 3:70be84fad39e 209 // imu[3]->read_acc();
mfurukawa 3:70be84fad39e 210 // imu[3]->read_rot();
mfurukawa 3:70be84fad39e 211 // imu[3]->AK8963_read_Magnetometer();
mfurukawa 3:70be84fad39e 212
mfurukawa 3:70be84fad39e 213
mfurukawa 3:70be84fad39e 214 switch(send_mode) {
mfurukawa 0:4656a133ed1a 215
mfurukawa 3:70be84fad39e 216 case ASCII_MODE:
mfurukawa 3:70be84fad39e 217
mfurukawa 3:70be84fad39e 218 for(int i=0; i<3; i+=2) {
mfurukawa 3:70be84fad39e 219 for(int j=0; j<3; j++) printf("%1.3f, ",imu[i]->Magnetometer[j] / 1000.0f);
mfurukawa 3:70be84fad39e 220 }
mfurukawa 3:70be84fad39e 221 printf("[mT]");
mfurukawa 3:70be84fad39e 222 break;
mfurukawa 0:4656a133ed1a 223
mfurukawa 3:70be84fad39e 224 case BINARY_MODE:
mfurukawa 3:70be84fad39e 225
mfurukawa 3:70be84fad39e 226 for(int i=0; i<3; i+=2) {
mfurukawa 3:70be84fad39e 227 for(int j=0; j<6; j++) putc(imu[i]->accelerometer_response[j], stdout);
mfurukawa 3:70be84fad39e 228 for(int j=0; j<6; j++) putc(imu[i]->gyroscope_response[j], stdout);
mfurukawa 3:70be84fad39e 229 }
mfurukawa 3:70be84fad39e 230 break;
mfurukawa 0:4656a133ed1a 231 }
mfurukawa 0:4656a133ed1a 232
mfurukawa 0:4656a133ed1a 233 putc(13, stdout); //0x0d CR(復帰)
mfurukawa 0:4656a133ed1a 234 putc(10, stdout); //0x0a LF(改行)
mfurukawa 0:4656a133ed1a 235 }
mfurukawa 0:4656a133ed1a 236
mfurukawa 0:4656a133ed1a 237 int main()
mfurukawa 0:4656a133ed1a 238 {
mfurukawa 0:4656a133ed1a 239 // make instances and check sensors
mfurukawa 0:4656a133ed1a 240 init();
mfurukawa 0:4656a133ed1a 241
mfurukawa 0:4656a133ed1a 242 char c;
mfurukawa 0:4656a133ed1a 243
mfurukawa 0:4656a133ed1a 244 while(1) {
mfurukawa 0:4656a133ed1a 245 if(pc.readable()) {
mfurukawa 0:4656a133ed1a 246 c = pc.getc();
mfurukawa 0:4656a133ed1a 247
mfurukawa 3:70be84fad39e 248 switch(c) {
mfurukawa 3:70be84fad39e 249 case 'r':
mfurukawa 3:70be84fad39e 250 ticker.detach();
mfurukawa 3:70be84fad39e 251 break;
mfurukawa 3:70be84fad39e 252
mfurukawa 3:70be84fad39e 253 case 'R':
mfurukawa 3:70be84fad39e 254 init_sensor();
mfurukawa 3:70be84fad39e 255 break;
mfurukawa 3:70be84fad39e 256
mfurukawa 3:70be84fad39e 257 case 't':
mfurukawa 3:70be84fad39e 258 send_mode = ASCII_MODE;
mfurukawa 3:70be84fad39e 259 ticker.attach_us(eventFunc, 1000000.0f/SampleFreq);
mfurukawa 3:70be84fad39e 260 break;
mfurukawa 3:70be84fad39e 261
mfurukawa 3:70be84fad39e 262 case 's':
mfurukawa 3:70be84fad39e 263 send_mode = BINARY_MODE;
mfurukawa 3:70be84fad39e 264 ticker.attach_us(eventFunc, 1000000.0f/SampleFreq);
mfurukawa 3:70be84fad39e 265 break;
mfurukawa 0:4656a133ed1a 266 }
mfurukawa 0:4656a133ed1a 267 }
mfurukawa 0:4656a133ed1a 268 }
mfurukawa 0:4656a133ed1a 269 }