2Chx3dof Magnetrometer supported M-Series Random Sequence Generator Servo Control

Dependencies:   mbed

Sampling Frequency

Sampling Frequency in main.cpp

#define SampleFreq     200   // [Hz]

Auto Stop Setting

Auto-stop Timer 15sec after

    // auto-stop when 15sec after
    if(smpl_cnt>3000){stop_dump();}

The number of 3000 means Sample Count. The number is given by SampleFreq[Hz] * Auto-Stop Time [sec].

M-Series Random Sequence

M-series Random Update Term in main.cpp

// M-series update flag
#define  M_TERM  200;

Unit is sample count.

cf.) 200 equals to 200 [samples] which equals to 1 [second] where SampleFreq = 200 [Hz}.

See above.

M-Series Random Servo Control

Committer:
mfurukawa
Date:
Tue Feb 02 17:12:57 2021 +0000
Branch:
MPU-9250-MagSensServo
Revision:
8:07c3cb01a5b6
Parent:
7:a711da20a262
Child:
9:b32312aacbba
M-Sequence register(16), tap(4), Maximum-Length Validated

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mfurukawa 0:4656a133ed1a 1 /**
mfurukawa 0:4656a133ed1a 2 * Masahiro FURUKAWA - m.furukawa@ist.osaka-u.ac.jp
mfurukawa 0:4656a133ed1a 3 *
mfurukawa 0:4656a133ed1a 4 * Dec 26, 2017
mfurukawa 0:4656a133ed1a 5 * Aug 29, 2018
mfurukawa 0:4656a133ed1a 6 * Dec 17, 2019 @ Digital Low Pass Filter 5Hz -> No LPF
mfurukawa 0:4656a133ed1a 7 @ ACC range 2G -> 4G
mfurukawa 0:4656a133ed1a 8 @ GYRO range 250 -> 500 Degree per second
mfurukawa 0:4656a133ed1a 9 @ Deleted magnet sensor checking
mfurukawa 0:4656a133ed1a 10 @ Set Acc Data Rates, Enable Acc LPF , Bandwidth 218Hz
mfurukawa 0:4656a133ed1a 11 @ Use DLPF set Gyroscope bandwidth 5Hz, temperature bandwidth 5Hz
mfurukawa 8:07c3cb01a5b6 12 * Feb 1, 2021 @ Magnetro Meter Ch1 & Ch3,
mfurukawa 8:07c3cb01a5b6 13 @ 2000DPS, 2G, DLP 5Hz
mfurukawa 8:07c3cb01a5b6 14 @ M-Series Random Sequence Added
mfurukawa 8:07c3cb01a5b6 15 @ Servo Motor PWM (p22),
mfurukawa 8:07c3cb01a5b6 16 @ Text Dump is prioritized
mfurukawa 8:07c3cb01a5b6 17 @ LED Flashing to appeal ERROR State
mfurukawa 0:4656a133ed1a 18 *
mfurukawa 0:4656a133ed1a 19 * MPU9250 9DoF Sensor (Extended to Ch1 ~ Ch4)
mfurukawa 0:4656a133ed1a 20 *
mfurukawa 0:4656a133ed1a 21 **/
mfurukawa 0:4656a133ed1a 22
mfurukawa 0:4656a133ed1a 23 /*
mfurukawa 0:4656a133ed1a 24 https://invensense.tdk.com/wp-content/uploads/2015/02/PS-MPU-9250A-01-v1.1.pdf
mfurukawa 0:4656a133ed1a 25
mfurukawa 0:4656a133ed1a 26 3.3 Magnetometer Specifications
mfurukawa 0:4656a133ed1a 27
mfurukawa 0:4656a133ed1a 28 Typical Operating Circuit of section 4.2,
mfurukawa 0:4656a133ed1a 29 VDD = 2.5V,
mfurukawa 0:4656a133ed1a 30 VDDIO = 2.5V,
mfurukawa 0:4656a133ed1a 31 TA=25°C, unless otherwise noted.
mfurukawa 0:4656a133ed1a 32
mfurukawa 0:4656a133ed1a 33 PARAMETER CONDITIONS MIN TYP MAX UNITS
mfurukawa 0:4656a133ed1a 34 MAGNETOMETER SENSITIVITY
mfurukawa 0:4656a133ed1a 35 Full-Scale Range ±4800 µT
mfurukawa 0:4656a133ed1a 36 ADC Word Length 14 bits
mfurukawa 0:4656a133ed1a 37 Sensitivity Scale Factor 0.6 µT / LSB
mfurukawa 0:4656a133ed1a 38 ZERO-FIELD OUTPUT
mfurukawa 0:4656a133ed1a 39 Initial Calibration Tolerance ±500 LSB
mfurukawa 0:4656a133ed1a 40 */
mfurukawa 0:4656a133ed1a 41
mfurukawa 0:4656a133ed1a 42
mfurukawa 0:4656a133ed1a 43 #include "mbed.h"
mfurukawa 0:4656a133ed1a 44 #include "MPU9250.h"
mfurukawa 1:3bcd844dd707 45 #include "KST_Servo.h"
mfurukawa 1:3bcd844dd707 46 #include "M-Series.h"
mfurukawa 3:70be84fad39e 47 #include "error_led_flash.h"
mfurukawa 0:4656a133ed1a 48
mfurukawa 0:4656a133ed1a 49 /* MPU9250 Library
mfurukawa 0:4656a133ed1a 50 *
mfurukawa 0:4656a133ed1a 51 * https://developer.mbed.org/users/kylongmu/code/MPU9250_SPI_Test/file/5839d1b118bc/main.cpp
mfurukawa 0:4656a133ed1a 52 *
mfurukawa 0:4656a133ed1a 53 * MOSI (Master Out Slave In) p5
mfurukawa 0:4656a133ed1a 54 * MISO (Master In Slave Out p6
mfurukawa 0:4656a133ed1a 55 * SCK (Serial Clock) p7
mfurukawa 0:4656a133ed1a 56 * ~CS (Chip Select) p8 -> p30
mfurukawa 0:4656a133ed1a 57 */
mfurukawa 0:4656a133ed1a 58
mfurukawa 0:4656a133ed1a 59 // define serial objects
mfurukawa 0:4656a133ed1a 60 Serial pc(USBTX, USBRX);
mfurukawa 0:4656a133ed1a 61
mfurukawa 6:493df7718ecb 62 long int smpl_cnt = 0;
mfurukawa 0:4656a133ed1a 63 Ticker ticker;
mfurukawa 0:4656a133ed1a 64 Timer timer;
mfurukawa 0:4656a133ed1a 65
mfurukawa 3:70be84fad39e 66 #define SampleFreq 200 // [Hz]
mfurukawa 0:4656a133ed1a 67 #define nCh 4 // number of ch
mfurukawa 0:4656a133ed1a 68 #define baudRate 921600 //921600 / 115200
mfurukawa 0:4656a133ed1a 69
mfurukawa 0:4656a133ed1a 70 unsigned int counter = 0;
mfurukawa 0:4656a133ed1a 71 unsigned int usCycle = 1000000/SampleFreq ;
mfurukawa 0:4656a133ed1a 72
mfurukawa 0:4656a133ed1a 73 int errFlag = 0;
mfurukawa 0:4656a133ed1a 74
mfurukawa 0:4656a133ed1a 75 //define the mpu9250 object
mfurukawa 1:3bcd844dd707 76 mpu9250_spi *imu[nCh];
mfurukawa 0:4656a133ed1a 77
mfurukawa 0:4656a133ed1a 78 // define SPI object for imu objects
mfurukawa 1:3bcd844dd707 79 SPI spi1(p5, p6, p7);
mfurukawa 1:3bcd844dd707 80 SPI spi2(p11, p12, p13);
mfurukawa 1:3bcd844dd707 81 // pins already used for SPI Chip selector pin
mfurukawa 1:3bcd844dd707 82 // p21, p23, p29, p30
mfurukawa 1:3bcd844dd707 83
mfurukawa 1:3bcd844dd707 84 // Servo Motor Control
mfurukawa 1:3bcd844dd707 85 PwmOut pwm_(p22);
mfurukawa 1:3bcd844dd707 86
mfurukawa 1:3bcd844dd707 87 // M-Series Random Sequence
mfurukawa 2:3470f2c07582 88 Mseries m;
mfurukawa 1:3bcd844dd707 89
mfurukawa 8:07c3cb01a5b6 90 // M-series update flag
mfurukawa 8:07c3cb01a5b6 91 int m_flag = 0;
mfurukawa 8:07c3cb01a5b6 92
mfurukawa 3:70be84fad39e 93 #define BINARY_MODE 0
mfurukawa 3:70be84fad39e 94 #define ASCII_MODE 1
mfurukawa 3:70be84fad39e 95 int send_mode = BINARY_MODE;
mfurukawa 0:4656a133ed1a 96
mfurukawa 8:07c3cb01a5b6 97 #define CSV_TITLE_COLUMN "smpl_cnt,time[sec],M_stat,accX,accY,accZ,gyroX,gyroY,gyroZ,magX,magY,magZ,accX,accY,accZ,gyroX,gyroY,gyroZ,magX,magY,magZ,\r\n"
mfurukawa 6:493df7718ecb 98
mfurukawa 0:4656a133ed1a 99
mfurukawa 3:70be84fad39e 100 void servo_test(void)
mfurukawa 3:70be84fad39e 101 {
mfurukawa 3:70be84fad39e 102 while(1) {
mfurukawa 3:70be84fad39e 103 if(m.update())
mfurukawa 3:70be84fad39e 104 pwm_.pulsewidth_us(KST_SERVO_USEC_MIN);
mfurukawa 3:70be84fad39e 105 else
mfurukawa 3:70be84fad39e 106 pwm_.pulsewidth_us(KST_SERVO_USEC_90);
mfurukawa 3:70be84fad39e 107 wait(.5);
mfurukawa 0:4656a133ed1a 108
mfurukawa 3:70be84fad39e 109 }
mfurukawa 3:70be84fad39e 110 }
mfurukawa 3:70be84fad39e 111 void init_sensor(void)
mfurukawa 3:70be84fad39e 112 {
mfurukawa 0:4656a133ed1a 113 for(int i=0; i<nCh; i++) {
mfurukawa 0:4656a133ed1a 114
mfurukawa 0:4656a133ed1a 115 imu[0]->deselect();
mfurukawa 0:4656a133ed1a 116 imu[1]->deselect();
mfurukawa 0:4656a133ed1a 117 imu[2]->deselect();
mfurukawa 0:4656a133ed1a 118 imu[3]->deselect();
mfurukawa 0:4656a133ed1a 119
mfurukawa 0:4656a133ed1a 120 imu[i]->select();
mfurukawa 0:4656a133ed1a 121
mfurukawa 0:4656a133ed1a 122 //INIT the mpu9250
mfurukawa 0:4656a133ed1a 123 //if(imu[i]->init(1,BITS_DLPF_CFG_188HZ))
mfurukawa 3:70be84fad39e 124 if(imu[i]->init(1,BITS_DLPF_CFG_5HZ)) {
mfurukawa 3:70be84fad39e 125 //if(imu[i]->init(1,BITS_DLPF_CFG_256HZ_NOLPF2)) {
mfurukawa 0:4656a133ed1a 126 printf("\nCH %d\n\nCouldn't initialize MPU9250 via SPI!", i+1);
mfurukawa 0:4656a133ed1a 127 wait(90);
mfurukawa 0:4656a133ed1a 128 }
mfurukawa 0:4656a133ed1a 129
mfurukawa 0:4656a133ed1a 130 //output the I2C address to know if SPI is working, it should be 104
mfurukawa 0:4656a133ed1a 131 printf("\nCH %d\nWHOAMI = 0x%2x\n",i+1, imu[i]->whoami());
mfurukawa 0:4656a133ed1a 132
mfurukawa 0:4656a133ed1a 133 if(imu[i]->whoami() != 0x71) {
mfurukawa 0:4656a133ed1a 134 printf(" *** ERROR *** acc and gyro sensor does not respond correctly!\n");
mfurukawa 0:4656a133ed1a 135 errFlag |= 0x01<<(i*2);
mfurukawa 6:493df7718ecb 136
mfurukawa 3:70be84fad39e 137 if(i==0||i==2) LED_flash_error_notice(i);
mfurukawa 0:4656a133ed1a 138 continue;
mfurukawa 0:4656a133ed1a 139 }
mfurukawa 0:4656a133ed1a 140
mfurukawa 3:70be84fad39e 141 printf("Gyro_scale = %u[DPS]\n",imu[i]->set_gyro_scale(BITS_FS_2000DPS)); //Set 500DPS scale range for gyros //0706 wada 500to2000
mfurukawa 0:4656a133ed1a 142 wait_ms(20);
mfurukawa 0:4656a133ed1a 143
mfurukawa 3:70be84fad39e 144 printf("Acc_scale = %u[G]\n",imu[i]->set_acc_scale(BITS_FS_2G)); //Set 4G scale range for accs //0706 wada 4to16
mfurukawa 0:4656a133ed1a 145 wait_ms(20);
mfurukawa 0:4656a133ed1a 146
mfurukawa 0:4656a133ed1a 147 printf("AK8963 WHIAM = 0x%2x\n",imu[i]->AK8963_whoami());
mfurukawa 0:4656a133ed1a 148
mfurukawa 0:4656a133ed1a 149 if(imu[i]->AK8963_whoami() != 0x48) {
mfurukawa 0:4656a133ed1a 150 printf(" *** ERROR *** magnetrometer does not respond correctly!\n");
mfurukawa 0:4656a133ed1a 151 errFlag |= 0x02<<(i*2);
mfurukawa 6:493df7718ecb 152
mfurukawa 3:70be84fad39e 153 if(i==0||i==2) LED_flash_error_notice(i);
mfurukawa 0:4656a133ed1a 154 continue;
mfurukawa 0:4656a133ed1a 155 }
mfurukawa 6:493df7718ecb 156
mfurukawa 5:521f1c79123d 157 imu[i]->calib_acc();
mfurukawa 5:521f1c79123d 158 wait_ms(100);
mfurukawa 5:521f1c79123d 159 printf("Calibrated Acc\n");
mfurukawa 6:493df7718ecb 160
mfurukawa 0:4656a133ed1a 161 imu[i]->AK8963_calib_Magnetometer();
mfurukawa 0:4656a133ed1a 162 wait_ms(100);
mfurukawa 0:4656a133ed1a 163 printf("Calibrated Magnetrometer\n");
mfurukawa 0:4656a133ed1a 164 }
mfurukawa 1:3bcd844dd707 165
mfurukawa 3:70be84fad39e 166 }
mfurukawa 1:3bcd844dd707 167
mfurukawa 3:70be84fad39e 168 void init(void)
mfurukawa 3:70be84fad39e 169 {
mfurukawa 2:3470f2c07582 170 // servo requires a 20ms period
mfurukawa 2:3470f2c07582 171 pwm_.period_ms(20);
mfurukawa 1:3bcd844dd707 172
mfurukawa 3:70be84fad39e 173 pc.baud(baudRate);
mfurukawa 3:70be84fad39e 174
mfurukawa 3:70be84fad39e 175 printf("\nrev Feb 1, 2021 for Magnetrometer by Masahiro Furukawa\n");
mfurukawa 1:3bcd844dd707 176
mfurukawa 3:70be84fad39e 177 imu[3] = new mpu9250_spi(spi2, p21);
mfurukawa 3:70be84fad39e 178 imu[2] = new mpu9250_spi(spi2, p23);
mfurukawa 3:70be84fad39e 179 imu[1] = new mpu9250_spi(spi1, p29);
mfurukawa 3:70be84fad39e 180 imu[0] = new mpu9250_spi(spi1, p30);
mfurukawa 3:70be84fad39e 181
mfurukawa 3:70be84fad39e 182 init_sensor();
mfurukawa 3:70be84fad39e 183
mfurukawa 3:70be84fad39e 184 // servo_test();
mfurukawa 6:493df7718ecb 185
mfurukawa 3:70be84fad39e 186 printf("\nHit Key [t] to start. Hit Key [r] to finish. [s] for binary sending.\n");
mfurukawa 3:70be84fad39e 187
mfurukawa 6:493df7718ecb 188 // fixed channel usage (only Ch1, Ch3 is connected)
mfurukawa 6:493df7718ecb 189 imu[0]->select(); // Ch1
mfurukawa 6:493df7718ecb 190 imu[1]->deselect();
mfurukawa 6:493df7718ecb 191 imu[2]->select(); // Ch3
mfurukawa 6:493df7718ecb 192 imu[3]->deselect();
mfurukawa 6:493df7718ecb 193
mfurukawa 0:4656a133ed1a 194 }
mfurukawa 0:4656a133ed1a 195
mfurukawa 0:4656a133ed1a 196 void eventFunc(void)
mfurukawa 0:4656a133ed1a 197 {
mfurukawa 6:493df7718ecb 198 int t_ms = timer.read_ms() - 5; // initial call takes 5ms
mfurukawa 6:493df7718ecb 199
mfurukawa 8:07c3cb01a5b6 200
mfurukawa 8:07c3cb01a5b6 201
mfurukawa 0:4656a133ed1a 202 // limitation on sending bytes at 921600bps - 92bits(under 100us/sample)
mfurukawa 0:4656a133ed1a 203 // requirement : 1kHz sampling
mfurukawa 0:4656a133ed1a 204 // = 921.5 bits/sample
mfurukawa 0:4656a133ed1a 205 // = 115.1 bytes/sample
mfurukawa 0:4656a133ed1a 206 // = 50 bytes/axis (2byte/axis)
mfurukawa 0:4656a133ed1a 207
mfurukawa 0:4656a133ed1a 208 // 2 byte * 6 axes * 4 ch = 48 bytes/sample
mfurukawa 0:4656a133ed1a 209
mfurukawa 5:521f1c79123d 210 // imu[0]->read_acc();
mfurukawa 5:521f1c79123d 211 // imu[0]->read_rot();
mfurukawa 5:521f1c79123d 212 // imu[0]->AK8963_read_Magnetometer();
mfurukawa 5:521f1c79123d 213 //
mfurukawa 5:521f1c79123d 214 // imu[2]->read_acc();
mfurukawa 5:521f1c79123d 215 // imu[2]->read_rot();
mfurukawa 5:521f1c79123d 216 // imu[2]->AK8963_read_Magnetometer();
mfurukawa 6:493df7718ecb 217
mfurukawa 6:493df7718ecb 218 // measurement step takes 3ms
mfurukawa 5:521f1c79123d 219 imu[0]->read_all();
mfurukawa 5:521f1c79123d 220 imu[2]->read_all();
mfurukawa 6:493df7718ecb 221
mfurukawa 3:70be84fad39e 222 // imu[0]->deselect();
mfurukawa 3:70be84fad39e 223 // imu[1]->select();
mfurukawa 3:70be84fad39e 224 // imu[2]->deselect();
mfurukawa 3:70be84fad39e 225 // imu[3]->select();
mfurukawa 3:70be84fad39e 226
mfurukawa 3:70be84fad39e 227 // imu[1]->read_acc();
mfurukawa 3:70be84fad39e 228 // imu[1]->read_rot();
mfurukawa 3:70be84fad39e 229 // imu[1]->AK8963_read_Magnetometer();
mfurukawa 3:70be84fad39e 230
mfurukawa 3:70be84fad39e 231 // imu[3]->read_acc();
mfurukawa 3:70be84fad39e 232 // imu[3]->read_rot();
mfurukawa 3:70be84fad39e 233 // imu[3]->AK8963_read_Magnetometer();
mfurukawa 3:70be84fad39e 234
mfurukawa 3:70be84fad39e 235 switch(send_mode) {
mfurukawa 0:4656a133ed1a 236
mfurukawa 3:70be84fad39e 237 case ASCII_MODE:
mfurukawa 6:493df7718ecb 238 printf("%ld,",smpl_cnt++);
mfurukawa 6:493df7718ecb 239 printf("%1.3f,",t_ms/1000.0f);
mfurukawa 8:07c3cb01a5b6 240 printf("%d,",m.update());
mfurukawa 3:70be84fad39e 241 for(int i=0; i<3; i+=2) {
mfurukawa 6:493df7718ecb 242 for(int j=0; j<3; j++) printf("%1.3f,",imu[i]->accelerometer_data[j]);
mfurukawa 6:493df7718ecb 243 for(int j=0; j<3; j++) printf("%1.3f,",imu[i]->gyroscope_data[j]);
mfurukawa 6:493df7718ecb 244 for(int j=0; j<3; j++) printf("%1.3f,",imu[i]->Magnetometer[j] / 1000.0f);
mfurukawa 3:70be84fad39e 245 }
mfurukawa 5:521f1c79123d 246 // printf("[mT]");
mfurukawa 3:70be84fad39e 247 break;
mfurukawa 0:4656a133ed1a 248
mfurukawa 3:70be84fad39e 249 case BINARY_MODE:
mfurukawa 3:70be84fad39e 250
mfurukawa 6:493df7718ecb 251 // TO BE IMPLEMENTED ...
mfurukawa 6:493df7718ecb 252 // for(int i=0; i<3; i+=2) {
mfurukawa 6:493df7718ecb 253 // for(int j=0; j<6; j++) putc(imu[i]->accelerometer_response[j], stdout);
mfurukawa 6:493df7718ecb 254 // for(int j=0; j<6; j++) putc(imu[i]->gyroscope_response[j], stdout);
mfurukawa 6:493df7718ecb 255 // }
mfurukawa 3:70be84fad39e 256 break;
mfurukawa 0:4656a133ed1a 257 }
mfurukawa 0:4656a133ed1a 258
mfurukawa 0:4656a133ed1a 259 putc(13, stdout); //0x0d CR(復帰)
mfurukawa 0:4656a133ed1a 260 putc(10, stdout); //0x0a LF(改行)
mfurukawa 0:4656a133ed1a 261 }
mfurukawa 0:4656a133ed1a 262
mfurukawa 0:4656a133ed1a 263 int main()
mfurukawa 0:4656a133ed1a 264 {
mfurukawa 0:4656a133ed1a 265 // make instances and check sensors
mfurukawa 0:4656a133ed1a 266 init();
mfurukawa 0:4656a133ed1a 267
mfurukawa 0:4656a133ed1a 268 char c;
mfurukawa 0:4656a133ed1a 269
mfurukawa 0:4656a133ed1a 270 while(1) {
mfurukawa 0:4656a133ed1a 271 if(pc.readable()) {
mfurukawa 0:4656a133ed1a 272 c = pc.getc();
mfurukawa 0:4656a133ed1a 273
mfurukawa 3:70be84fad39e 274 switch(c) {
mfurukawa 3:70be84fad39e 275 case 'r':
mfurukawa 3:70be84fad39e 276 ticker.detach();
mfurukawa 6:493df7718ecb 277 timer.stop();
mfurukawa 6:493df7718ecb 278 smpl_cnt = 0;
mfurukawa 3:70be84fad39e 279 break;
mfurukawa 3:70be84fad39e 280
mfurukawa 3:70be84fad39e 281 case 'R':
mfurukawa 6:493df7718ecb 282 smpl_cnt = 0;
mfurukawa 3:70be84fad39e 283 init_sensor();
mfurukawa 6:493df7718ecb 284 timer.stop();
mfurukawa 6:493df7718ecb 285 timer.reset();
mfurukawa 3:70be84fad39e 286 break;
mfurukawa 6:493df7718ecb 287
mfurukawa 3:70be84fad39e 288 case 't':
mfurukawa 8:07c3cb01a5b6 289 printf(CSV_TITLE_COLUMN);
mfurukawa 6:493df7718ecb 290 smpl_cnt = 0;
mfurukawa 8:07c3cb01a5b6 291 m.init();
mfurukawa 6:493df7718ecb 292 timer.reset();
mfurukawa 6:493df7718ecb 293 timer.start();
mfurukawa 3:70be84fad39e 294 send_mode = ASCII_MODE;
mfurukawa 6:493df7718ecb 295 ticker.attach_us(eventFunc, 1000000/SampleFreq);
mfurukawa 6:493df7718ecb 296 break;
mfurukawa 6:493df7718ecb 297
mfurukawa 6:493df7718ecb 298 case 'c':
mfurukawa 8:07c3cb01a5b6 299 printf(CSV_TITLE_COLUMN);
mfurukawa 3:70be84fad39e 300 break;
mfurukawa 3:70be84fad39e 301
mfurukawa 3:70be84fad39e 302 case 's':
mfurukawa 6:493df7718ecb 303 smpl_cnt = 0;
mfurukawa 6:493df7718ecb 304 timer.reset();
mfurukawa 6:493df7718ecb 305 timer.start();
mfurukawa 3:70be84fad39e 306 send_mode = BINARY_MODE;
mfurukawa 6:493df7718ecb 307 ticker.attach_us(eventFunc, 1000000/SampleFreq);
mfurukawa 3:70be84fad39e 308 break;
mfurukawa 0:4656a133ed1a 309 }
mfurukawa 0:4656a133ed1a 310 }
mfurukawa 0:4656a133ed1a 311 }
mfurukawa 0:4656a133ed1a 312 }