Basic program to obtain properly-scaled gyro, accelerometer, and magnetometer data from the MPU-9150 9-axis motion sensor. Nine-axis sensor fusion with Sebastian Madgwick's and Mahony's open-source sensor fusion filters running on an STM32F401RE Nucleo board at 84 MHz achieve sensor fusion filter update rates of ~5000 Hz. Additional info at https://github.com/kriswiner/STM32F401.
Dependencies: ST_401_84MHZ mbed
Fork of MPU9150AHRS by
MPU9150.h@0:39935bb3c1a1, 2014-06-29 (annotated)
- Committer:
- onehorse
- Date:
- Sun Jun 29 22:48:08 2014 +0000
- Revision:
- 0:39935bb3c1a1
Basic program to get properly-scaled gyro, accelerometer, and magnetometer data from the MPU9150 9-axis motion sensor. Sensor fusion is performed using Madgwick and Mahony open-source MARG fusion filters.
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
onehorse | 0:39935bb3c1a1 | 1 | #ifndef MPU9150_H |
onehorse | 0:39935bb3c1a1 | 2 | #define MPU9150_H |
onehorse | 0:39935bb3c1a1 | 3 | |
onehorse | 0:39935bb3c1a1 | 4 | #include "mbed.h" |
onehorse | 0:39935bb3c1a1 | 5 | |
onehorse | 0:39935bb3c1a1 | 6 | // Define registers per MPU6050, Register Map and Descriptions, Rev 4.2, 08/19/2013 6 DOF Motion sensor fusion device |
onehorse | 0:39935bb3c1a1 | 7 | // Invensense Inc., www.invensense.com |
onehorse | 0:39935bb3c1a1 | 8 | // See also MPU-9150 Register Map and Descriptions, Revision 4.0, RM-MPU-9150A-00, 9/12/2012 for registers not listed in |
onehorse | 0:39935bb3c1a1 | 9 | // above document; the MPU6050 and MPU 9150 are virtually identical but the latter has an on-board magnetic sensor |
onehorse | 0:39935bb3c1a1 | 10 | // |
onehorse | 0:39935bb3c1a1 | 11 | //Magnetometer Registers |
onehorse | 0:39935bb3c1a1 | 12 | #define WHO_AM_I_AK8975A 0x00 // should return 0x48 |
onehorse | 0:39935bb3c1a1 | 13 | #define INFO 0x01 |
onehorse | 0:39935bb3c1a1 | 14 | #define AK8975A_ST1 0x02 // data ready status bit 0 |
onehorse | 0:39935bb3c1a1 | 15 | #define AK8975A_ADDRESS 0x0C<<1 |
onehorse | 0:39935bb3c1a1 | 16 | #define AK8975A_XOUT_L 0x03 // data |
onehorse | 0:39935bb3c1a1 | 17 | #define AK8975A_XOUT_H 0x04 |
onehorse | 0:39935bb3c1a1 | 18 | #define AK8975A_YOUT_L 0x05 |
onehorse | 0:39935bb3c1a1 | 19 | #define AK8975A_YOUT_H 0x06 |
onehorse | 0:39935bb3c1a1 | 20 | #define AK8975A_ZOUT_L 0x07 |
onehorse | 0:39935bb3c1a1 | 21 | #define AK8975A_ZOUT_H 0x08 |
onehorse | 0:39935bb3c1a1 | 22 | #define AK8975A_ST2 0x09 // Data overflow bit 3 and data read error status bit 2 |
onehorse | 0:39935bb3c1a1 | 23 | #define AK8975A_CNTL 0x0A // Power down (0000), single-measurement (0001), self-test (1000) and Fuse ROM (1111) modes on bits 3:0 |
onehorse | 0:39935bb3c1a1 | 24 | #define AK8975A_ASTC 0x0C // Self test control |
onehorse | 0:39935bb3c1a1 | 25 | #define AK8975A_ASAX 0x10 // Fuse ROM x-axis sensitivity adjustment value |
onehorse | 0:39935bb3c1a1 | 26 | #define AK8975A_ASAY 0x11 // Fuse ROM y-axis sensitivity adjustment value |
onehorse | 0:39935bb3c1a1 | 27 | #define AK8975A_ASAZ 0x12 // Fuse ROM z-axis sensitivity adjustment value |
onehorse | 0:39935bb3c1a1 | 28 | |
onehorse | 0:39935bb3c1a1 | 29 | #define XGOFFS_TC 0x00 // Bit 7 PWR_MODE, bits 6:1 XG_OFFS_TC, bit 0 OTP_BNK_VLD |
onehorse | 0:39935bb3c1a1 | 30 | #define YGOFFS_TC 0x01 |
onehorse | 0:39935bb3c1a1 | 31 | #define ZGOFFS_TC 0x02 |
onehorse | 0:39935bb3c1a1 | 32 | #define X_FINE_GAIN 0x03 // [7:0] fine gain |
onehorse | 0:39935bb3c1a1 | 33 | #define Y_FINE_GAIN 0x04 |
onehorse | 0:39935bb3c1a1 | 34 | #define Z_FINE_GAIN 0x05 |
onehorse | 0:39935bb3c1a1 | 35 | #define XA_OFFSET_H 0x06 // User-defined trim values for accelerometer |
onehorse | 0:39935bb3c1a1 | 36 | #define XA_OFFSET_L_TC 0x07 |
onehorse | 0:39935bb3c1a1 | 37 | #define YA_OFFSET_H 0x08 |
onehorse | 0:39935bb3c1a1 | 38 | #define YA_OFFSET_L_TC 0x09 |
onehorse | 0:39935bb3c1a1 | 39 | #define ZA_OFFSET_H 0x0A |
onehorse | 0:39935bb3c1a1 | 40 | #define ZA_OFFSET_L_TC 0x0B |
onehorse | 0:39935bb3c1a1 | 41 | #define SELF_TEST_X 0x0D |
onehorse | 0:39935bb3c1a1 | 42 | #define SELF_TEST_Y 0x0E |
onehorse | 0:39935bb3c1a1 | 43 | #define SELF_TEST_Z 0x0F |
onehorse | 0:39935bb3c1a1 | 44 | #define SELF_TEST_A 0x10 |
onehorse | 0:39935bb3c1a1 | 45 | #define XG_OFFS_USRH 0x13 // User-defined trim values for gyroscope, populate with calibration routine |
onehorse | 0:39935bb3c1a1 | 46 | #define XG_OFFS_USRL 0x14 |
onehorse | 0:39935bb3c1a1 | 47 | #define YG_OFFS_USRH 0x15 |
onehorse | 0:39935bb3c1a1 | 48 | #define YG_OFFS_USRL 0x16 |
onehorse | 0:39935bb3c1a1 | 49 | #define ZG_OFFS_USRH 0x17 |
onehorse | 0:39935bb3c1a1 | 50 | #define ZG_OFFS_USRL 0x18 |
onehorse | 0:39935bb3c1a1 | 51 | #define SMPLRT_DIV 0x19 |
onehorse | 0:39935bb3c1a1 | 52 | #define CONFIG 0x1A |
onehorse | 0:39935bb3c1a1 | 53 | #define GYRO_CONFIG 0x1B |
onehorse | 0:39935bb3c1a1 | 54 | #define ACCEL_CONFIG 0x1C |
onehorse | 0:39935bb3c1a1 | 55 | #define FF_THR 0x1D // Free-fall |
onehorse | 0:39935bb3c1a1 | 56 | #define FF_DUR 0x1E // Free-fall |
onehorse | 0:39935bb3c1a1 | 57 | #define MOT_THR 0x1F // Motion detection threshold bits [7:0] |
onehorse | 0:39935bb3c1a1 | 58 | #define MOT_DUR 0x20 // Duration counter threshold for motion interrupt generation, 1 kHz rate, LSB = 1 ms |
onehorse | 0:39935bb3c1a1 | 59 | #define ZMOT_THR 0x21 // Zero-motion detection threshold bits [7:0] |
onehorse | 0:39935bb3c1a1 | 60 | #define ZRMOT_DUR 0x22 // Duration counter threshold for zero motion interrupt generation, 16 Hz rate, LSB = 64 ms |
onehorse | 0:39935bb3c1a1 | 61 | #define FIFO_EN 0x23 |
onehorse | 0:39935bb3c1a1 | 62 | #define I2C_MST_CTRL 0x24 |
onehorse | 0:39935bb3c1a1 | 63 | #define I2C_SLV0_ADDR 0x25 |
onehorse | 0:39935bb3c1a1 | 64 | #define I2C_SLV0_REG 0x26 |
onehorse | 0:39935bb3c1a1 | 65 | #define I2C_SLV0_CTRL 0x27 |
onehorse | 0:39935bb3c1a1 | 66 | #define I2C_SLV1_ADDR 0x28 |
onehorse | 0:39935bb3c1a1 | 67 | #define I2C_SLV1_REG 0x29 |
onehorse | 0:39935bb3c1a1 | 68 | #define I2C_SLV1_CTRL 0x2A |
onehorse | 0:39935bb3c1a1 | 69 | #define I2C_SLV2_ADDR 0x2B |
onehorse | 0:39935bb3c1a1 | 70 | #define I2C_SLV2_REG 0x2C |
onehorse | 0:39935bb3c1a1 | 71 | #define I2C_SLV2_CTRL 0x2D |
onehorse | 0:39935bb3c1a1 | 72 | #define I2C_SLV3_ADDR 0x2E |
onehorse | 0:39935bb3c1a1 | 73 | #define I2C_SLV3_REG 0x2F |
onehorse | 0:39935bb3c1a1 | 74 | #define I2C_SLV3_CTRL 0x30 |
onehorse | 0:39935bb3c1a1 | 75 | #define I2C_SLV4_ADDR 0x31 |
onehorse | 0:39935bb3c1a1 | 76 | #define I2C_SLV4_REG 0x32 |
onehorse | 0:39935bb3c1a1 | 77 | #define I2C_SLV4_DO 0x33 |
onehorse | 0:39935bb3c1a1 | 78 | #define I2C_SLV4_CTRL 0x34 |
onehorse | 0:39935bb3c1a1 | 79 | #define I2C_SLV4_DI 0x35 |
onehorse | 0:39935bb3c1a1 | 80 | #define I2C_MST_STATUS 0x36 |
onehorse | 0:39935bb3c1a1 | 81 | #define INT_PIN_CFG 0x37 |
onehorse | 0:39935bb3c1a1 | 82 | #define INT_ENABLE 0x38 |
onehorse | 0:39935bb3c1a1 | 83 | #define DMP_INT_STATUS 0x39 // Check DMP interrupt |
onehorse | 0:39935bb3c1a1 | 84 | #define INT_STATUS 0x3A |
onehorse | 0:39935bb3c1a1 | 85 | #define ACCEL_XOUT_H 0x3B |
onehorse | 0:39935bb3c1a1 | 86 | #define ACCEL_XOUT_L 0x3C |
onehorse | 0:39935bb3c1a1 | 87 | #define ACCEL_YOUT_H 0x3D |
onehorse | 0:39935bb3c1a1 | 88 | #define ACCEL_YOUT_L 0x3E |
onehorse | 0:39935bb3c1a1 | 89 | #define ACCEL_ZOUT_H 0x3F |
onehorse | 0:39935bb3c1a1 | 90 | #define ACCEL_ZOUT_L 0x40 |
onehorse | 0:39935bb3c1a1 | 91 | #define TEMP_OUT_H 0x41 |
onehorse | 0:39935bb3c1a1 | 92 | #define TEMP_OUT_L 0x42 |
onehorse | 0:39935bb3c1a1 | 93 | #define GYRO_XOUT_H 0x43 |
onehorse | 0:39935bb3c1a1 | 94 | #define GYRO_XOUT_L 0x44 |
onehorse | 0:39935bb3c1a1 | 95 | #define GYRO_YOUT_H 0x45 |
onehorse | 0:39935bb3c1a1 | 96 | #define GYRO_YOUT_L 0x46 |
onehorse | 0:39935bb3c1a1 | 97 | #define GYRO_ZOUT_H 0x47 |
onehorse | 0:39935bb3c1a1 | 98 | #define GYRO_ZOUT_L 0x48 |
onehorse | 0:39935bb3c1a1 | 99 | #define EXT_SENS_DATA_00 0x49 |
onehorse | 0:39935bb3c1a1 | 100 | #define EXT_SENS_DATA_01 0x4A |
onehorse | 0:39935bb3c1a1 | 101 | #define EXT_SENS_DATA_02 0x4B |
onehorse | 0:39935bb3c1a1 | 102 | #define EXT_SENS_DATA_03 0x4C |
onehorse | 0:39935bb3c1a1 | 103 | #define EXT_SENS_DATA_04 0x4D |
onehorse | 0:39935bb3c1a1 | 104 | #define EXT_SENS_DATA_05 0x4E |
onehorse | 0:39935bb3c1a1 | 105 | #define EXT_SENS_DATA_06 0x4F |
onehorse | 0:39935bb3c1a1 | 106 | #define EXT_SENS_DATA_07 0x50 |
onehorse | 0:39935bb3c1a1 | 107 | #define EXT_SENS_DATA_08 0x51 |
onehorse | 0:39935bb3c1a1 | 108 | #define EXT_SENS_DATA_09 0x52 |
onehorse | 0:39935bb3c1a1 | 109 | #define EXT_SENS_DATA_10 0x53 |
onehorse | 0:39935bb3c1a1 | 110 | #define EXT_SENS_DATA_11 0x54 |
onehorse | 0:39935bb3c1a1 | 111 | #define EXT_SENS_DATA_12 0x55 |
onehorse | 0:39935bb3c1a1 | 112 | #define EXT_SENS_DATA_13 0x56 |
onehorse | 0:39935bb3c1a1 | 113 | #define EXT_SENS_DATA_14 0x57 |
onehorse | 0:39935bb3c1a1 | 114 | #define EXT_SENS_DATA_15 0x58 |
onehorse | 0:39935bb3c1a1 | 115 | #define EXT_SENS_DATA_16 0x59 |
onehorse | 0:39935bb3c1a1 | 116 | #define EXT_SENS_DATA_17 0x5A |
onehorse | 0:39935bb3c1a1 | 117 | #define EXT_SENS_DATA_18 0x5B |
onehorse | 0:39935bb3c1a1 | 118 | #define EXT_SENS_DATA_19 0x5C |
onehorse | 0:39935bb3c1a1 | 119 | #define EXT_SENS_DATA_20 0x5D |
onehorse | 0:39935bb3c1a1 | 120 | #define EXT_SENS_DATA_21 0x5E |
onehorse | 0:39935bb3c1a1 | 121 | #define EXT_SENS_DATA_22 0x5F |
onehorse | 0:39935bb3c1a1 | 122 | #define EXT_SENS_DATA_23 0x60 |
onehorse | 0:39935bb3c1a1 | 123 | #define MOT_DETECT_STATUS 0x61 |
onehorse | 0:39935bb3c1a1 | 124 | #define I2C_SLV0_DO 0x63 |
onehorse | 0:39935bb3c1a1 | 125 | #define I2C_SLV1_DO 0x64 |
onehorse | 0:39935bb3c1a1 | 126 | #define I2C_SLV2_DO 0x65 |
onehorse | 0:39935bb3c1a1 | 127 | #define I2C_SLV3_DO 0x66 |
onehorse | 0:39935bb3c1a1 | 128 | #define I2C_MST_DELAY_CTRL 0x67 |
onehorse | 0:39935bb3c1a1 | 129 | #define SIGNAL_PATH_RESET 0x68 |
onehorse | 0:39935bb3c1a1 | 130 | #define MOT_DETECT_CTRL 0x69 |
onehorse | 0:39935bb3c1a1 | 131 | #define USER_CTRL 0x6A // Bit 7 enable DMP, bit 3 reset DMP |
onehorse | 0:39935bb3c1a1 | 132 | #define PWR_MGMT_1 0x6B // Device defaults to the SLEEP mode |
onehorse | 0:39935bb3c1a1 | 133 | #define PWR_MGMT_2 0x6C |
onehorse | 0:39935bb3c1a1 | 134 | #define DMP_BANK 0x6D // Activates a specific bank in the DMP |
onehorse | 0:39935bb3c1a1 | 135 | #define DMP_RW_PNT 0x6E // Set read/write pointer to a specific start address in specified DMP bank |
onehorse | 0:39935bb3c1a1 | 136 | #define DMP_REG 0x6F // Register in DMP from which to read or to which to write |
onehorse | 0:39935bb3c1a1 | 137 | #define DMP_REG_1 0x70 |
onehorse | 0:39935bb3c1a1 | 138 | #define DMP_REG_2 0x71 |
onehorse | 0:39935bb3c1a1 | 139 | #define FIFO_COUNTH 0x72 |
onehorse | 0:39935bb3c1a1 | 140 | #define FIFO_COUNTL 0x73 |
onehorse | 0:39935bb3c1a1 | 141 | #define FIFO_R_W 0x74 |
onehorse | 0:39935bb3c1a1 | 142 | #define WHO_AM_I_MPU9150 0x75 // Should return 0x68 |
onehorse | 0:39935bb3c1a1 | 143 | |
onehorse | 0:39935bb3c1a1 | 144 | |
onehorse | 0:39935bb3c1a1 | 145 | // Using the GY-9150 breakout board, ADO is set to 0 |
onehorse | 0:39935bb3c1a1 | 146 | // Seven-bit device address is 110100 for ADO = 0 and 110101 for ADO = 1 |
onehorse | 0:39935bb3c1a1 | 147 | // mbed uses the eight-bit device address, so shift seven-bit addresses left by one! |
onehorse | 0:39935bb3c1a1 | 148 | #define ADO 0 |
onehorse | 0:39935bb3c1a1 | 149 | #if ADO |
onehorse | 0:39935bb3c1a1 | 150 | #define MPU9150_ADDRESS 0x69<<1 // Device address when ADO = 1 |
onehorse | 0:39935bb3c1a1 | 151 | #else |
onehorse | 0:39935bb3c1a1 | 152 | #define MPU9150_ADDRESS 0x68<<1 // Device address when ADO = 0 |
onehorse | 0:39935bb3c1a1 | 153 | #endif |
onehorse | 0:39935bb3c1a1 | 154 | |
onehorse | 0:39935bb3c1a1 | 155 | // Set initial input parameters |
onehorse | 0:39935bb3c1a1 | 156 | enum Ascale { |
onehorse | 0:39935bb3c1a1 | 157 | AFS_2G = 0, |
onehorse | 0:39935bb3c1a1 | 158 | AFS_4G, |
onehorse | 0:39935bb3c1a1 | 159 | AFS_8G, |
onehorse | 0:39935bb3c1a1 | 160 | AFS_16G |
onehorse | 0:39935bb3c1a1 | 161 | }; |
onehorse | 0:39935bb3c1a1 | 162 | |
onehorse | 0:39935bb3c1a1 | 163 | enum Gscale { |
onehorse | 0:39935bb3c1a1 | 164 | GFS_250DPS = 0, |
onehorse | 0:39935bb3c1a1 | 165 | GFS_500DPS, |
onehorse | 0:39935bb3c1a1 | 166 | GFS_1000DPS, |
onehorse | 0:39935bb3c1a1 | 167 | GFS_2000DPS |
onehorse | 0:39935bb3c1a1 | 168 | }; |
onehorse | 0:39935bb3c1a1 | 169 | |
onehorse | 0:39935bb3c1a1 | 170 | uint8_t Ascale = AFS_2G; // AFS_2G, AFS_4G, AFS_8G, AFS_16G |
onehorse | 0:39935bb3c1a1 | 171 | uint8_t Gscale = GFS_250DPS; // GFS_250DPS, GFS_500DPS, GFS_1000DPS, GFS_2000DPS |
onehorse | 0:39935bb3c1a1 | 172 | float aRes, gRes, mRes; // scale resolutions per LSB for the sensors |
onehorse | 0:39935bb3c1a1 | 173 | |
onehorse | 0:39935bb3c1a1 | 174 | //Set up I2C, (SDA,SCL) |
onehorse | 0:39935bb3c1a1 | 175 | I2C i2c(I2C_SDA, I2C_SCL); |
onehorse | 0:39935bb3c1a1 | 176 | |
onehorse | 0:39935bb3c1a1 | 177 | DigitalOut myled(LED1); |
onehorse | 0:39935bb3c1a1 | 178 | |
onehorse | 0:39935bb3c1a1 | 179 | // Pin definitions |
onehorse | 0:39935bb3c1a1 | 180 | int intPin = 12; // These can be changed, 2 and 3 are the Arduinos ext int pins |
onehorse | 0:39935bb3c1a1 | 181 | |
onehorse | 0:39935bb3c1a1 | 182 | int16_t accelCount[3]; // Stores the 16-bit signed accelerometer sensor output |
onehorse | 0:39935bb3c1a1 | 183 | int16_t gyroCount[3]; // Stores the 16-bit signed gyro sensor output |
onehorse | 0:39935bb3c1a1 | 184 | int16_t magCount[3]; // Stores the 16-bit signed magnetometer sensor output |
onehorse | 0:39935bb3c1a1 | 185 | float magCalibration[3] = {0, 0, 0}, magbias[3] = {0, 0, 0}; // Factory mag calibration and mag bias |
onehorse | 0:39935bb3c1a1 | 186 | float gyroBias[3] = {0, 0, 0}, accelBias[3] = {0, 0, 0}; // Bias corrections for gyro and accelerometer |
onehorse | 0:39935bb3c1a1 | 187 | float ax, ay, az, gx, gy, gz, mx, my, mz; // variables to hold latest sensor data values |
onehorse | 0:39935bb3c1a1 | 188 | int16_t tempCount; // Stores the real internal chip temperature in degrees Celsius |
onehorse | 0:39935bb3c1a1 | 189 | float temperature; |
onehorse | 0:39935bb3c1a1 | 190 | float SelfTest[6]; |
onehorse | 0:39935bb3c1a1 | 191 | |
onehorse | 0:39935bb3c1a1 | 192 | int delt_t = 0; // used to control display output rate |
onehorse | 0:39935bb3c1a1 | 193 | int count = 0; // used to control display output rate |
onehorse | 0:39935bb3c1a1 | 194 | |
onehorse | 0:39935bb3c1a1 | 195 | // parameters for 6 DoF sensor fusion calculations |
onehorse | 0:39935bb3c1a1 | 196 | float PI = 3.14159265358979323846f; |
onehorse | 0:39935bb3c1a1 | 197 | float GyroMeasError = PI * (60.0f / 180.0f); // gyroscope measurement error in rads/s (start at 60 deg/s), then reduce after ~10 s to 3 |
onehorse | 0:39935bb3c1a1 | 198 | float beta = sqrt(3.0f / 4.0f) * GyroMeasError; // compute beta |
onehorse | 0:39935bb3c1a1 | 199 | float GyroMeasDrift = PI * (1.0f / 180.0f); // gyroscope measurement drift in rad/s/s (start at 0.0 deg/s/s) |
onehorse | 0:39935bb3c1a1 | 200 | float zeta = sqrt(3.0f / 4.0f) * GyroMeasDrift; // compute zeta, the other free parameter in the Madgwick scheme usually set to a small or zero value |
onehorse | 0:39935bb3c1a1 | 201 | #define Kp 2.0f * 5.0f // these are the free parameters in the Mahony filter and fusion scheme, Kp for proportional feedback, Ki for integral |
onehorse | 0:39935bb3c1a1 | 202 | #define Ki 0.0f |
onehorse | 0:39935bb3c1a1 | 203 | |
onehorse | 0:39935bb3c1a1 | 204 | float pitch, yaw, roll; |
onehorse | 0:39935bb3c1a1 | 205 | float deltat = 0.0f; // integration interval for both filter schemes |
onehorse | 0:39935bb3c1a1 | 206 | int lastUpdate = 0, firstUpdate = 0, Now = 0; // used to calculate integration interval // used to calculate integration interval |
onehorse | 0:39935bb3c1a1 | 207 | float q[4] = {1.0f, 0.0f, 0.0f, 0.0f}; // vector to hold quaternion |
onehorse | 0:39935bb3c1a1 | 208 | float eInt[3] = {0.0f, 0.0f, 0.0f}; // vector to hold integral error for Mahony method |
onehorse | 0:39935bb3c1a1 | 209 | |
onehorse | 0:39935bb3c1a1 | 210 | class MPU9150 { |
onehorse | 0:39935bb3c1a1 | 211 | |
onehorse | 0:39935bb3c1a1 | 212 | protected: |
onehorse | 0:39935bb3c1a1 | 213 | |
onehorse | 0:39935bb3c1a1 | 214 | public: |
onehorse | 0:39935bb3c1a1 | 215 | //=================================================================================================================== |
onehorse | 0:39935bb3c1a1 | 216 | //====== Set of useful function to access acceleratio, gyroscope, and temperature data |
onehorse | 0:39935bb3c1a1 | 217 | //=================================================================================================================== |
onehorse | 0:39935bb3c1a1 | 218 | |
onehorse | 0:39935bb3c1a1 | 219 | void writeByte(uint8_t address, uint8_t subAddress, uint8_t data) |
onehorse | 0:39935bb3c1a1 | 220 | { |
onehorse | 0:39935bb3c1a1 | 221 | char data_write[2]; |
onehorse | 0:39935bb3c1a1 | 222 | data_write[0] = subAddress; |
onehorse | 0:39935bb3c1a1 | 223 | data_write[1] = data; |
onehorse | 0:39935bb3c1a1 | 224 | i2c.write(address, data_write, 2, 0); |
onehorse | 0:39935bb3c1a1 | 225 | } |
onehorse | 0:39935bb3c1a1 | 226 | |
onehorse | 0:39935bb3c1a1 | 227 | char readByte(uint8_t address, uint8_t subAddress) |
onehorse | 0:39935bb3c1a1 | 228 | { |
onehorse | 0:39935bb3c1a1 | 229 | char data[1]; // `data` will store the register data |
onehorse | 0:39935bb3c1a1 | 230 | char data_write[1]; |
onehorse | 0:39935bb3c1a1 | 231 | data_write[0] = subAddress; |
onehorse | 0:39935bb3c1a1 | 232 | i2c.write(address, data_write, 1, 1); // no stop |
onehorse | 0:39935bb3c1a1 | 233 | i2c.read(address, data, 1, 0); |
onehorse | 0:39935bb3c1a1 | 234 | return data[0]; |
onehorse | 0:39935bb3c1a1 | 235 | } |
onehorse | 0:39935bb3c1a1 | 236 | |
onehorse | 0:39935bb3c1a1 | 237 | void readBytes(uint8_t address, uint8_t subAddress, uint8_t count, uint8_t * dest) |
onehorse | 0:39935bb3c1a1 | 238 | { |
onehorse | 0:39935bb3c1a1 | 239 | char data[14]; |
onehorse | 0:39935bb3c1a1 | 240 | char data_write[1]; |
onehorse | 0:39935bb3c1a1 | 241 | data_write[0] = subAddress; |
onehorse | 0:39935bb3c1a1 | 242 | i2c.write(address, data_write, 1, 1); // no stop |
onehorse | 0:39935bb3c1a1 | 243 | i2c.read(address, data, count, 0); |
onehorse | 0:39935bb3c1a1 | 244 | for(int ii = 0; ii < count; ii++) { |
onehorse | 0:39935bb3c1a1 | 245 | dest[ii] = data[ii]; |
onehorse | 0:39935bb3c1a1 | 246 | } |
onehorse | 0:39935bb3c1a1 | 247 | } |
onehorse | 0:39935bb3c1a1 | 248 | |
onehorse | 0:39935bb3c1a1 | 249 | |
onehorse | 0:39935bb3c1a1 | 250 | void getGres() { |
onehorse | 0:39935bb3c1a1 | 251 | switch (Gscale) |
onehorse | 0:39935bb3c1a1 | 252 | { |
onehorse | 0:39935bb3c1a1 | 253 | // Possible gyro scales (and their register bit settings) are: |
onehorse | 0:39935bb3c1a1 | 254 | // 250 DPS (00), 500 DPS (01), 1000 DPS (10), and 2000 DPS (11). |
onehorse | 0:39935bb3c1a1 | 255 | // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: |
onehorse | 0:39935bb3c1a1 | 256 | case GFS_250DPS: |
onehorse | 0:39935bb3c1a1 | 257 | gRes = 250.0/32768.0; |
onehorse | 0:39935bb3c1a1 | 258 | break; |
onehorse | 0:39935bb3c1a1 | 259 | case GFS_500DPS: |
onehorse | 0:39935bb3c1a1 | 260 | gRes = 500.0/32768.0; |
onehorse | 0:39935bb3c1a1 | 261 | break; |
onehorse | 0:39935bb3c1a1 | 262 | case GFS_1000DPS: |
onehorse | 0:39935bb3c1a1 | 263 | gRes = 1000.0/32768.0; |
onehorse | 0:39935bb3c1a1 | 264 | break; |
onehorse | 0:39935bb3c1a1 | 265 | case GFS_2000DPS: |
onehorse | 0:39935bb3c1a1 | 266 | gRes = 2000.0/32768.0; |
onehorse | 0:39935bb3c1a1 | 267 | break; |
onehorse | 0:39935bb3c1a1 | 268 | } |
onehorse | 0:39935bb3c1a1 | 269 | } |
onehorse | 0:39935bb3c1a1 | 270 | |
onehorse | 0:39935bb3c1a1 | 271 | |
onehorse | 0:39935bb3c1a1 | 272 | void getAres() { |
onehorse | 0:39935bb3c1a1 | 273 | switch (Ascale) |
onehorse | 0:39935bb3c1a1 | 274 | { |
onehorse | 0:39935bb3c1a1 | 275 | // Possible accelerometer scales (and their register bit settings) are: |
onehorse | 0:39935bb3c1a1 | 276 | // 2 Gs (00), 4 Gs (01), 8 Gs (10), and 16 Gs (11). |
onehorse | 0:39935bb3c1a1 | 277 | // Here's a bit of an algorith to calculate DPS/(ADC tick) based on that 2-bit value: |
onehorse | 0:39935bb3c1a1 | 278 | case AFS_2G: |
onehorse | 0:39935bb3c1a1 | 279 | aRes = 2.0/32768.0; |
onehorse | 0:39935bb3c1a1 | 280 | break; |
onehorse | 0:39935bb3c1a1 | 281 | case AFS_4G: |
onehorse | 0:39935bb3c1a1 | 282 | aRes = 4.0/32768.0; |
onehorse | 0:39935bb3c1a1 | 283 | break; |
onehorse | 0:39935bb3c1a1 | 284 | case AFS_8G: |
onehorse | 0:39935bb3c1a1 | 285 | aRes = 8.0/32768.0; |
onehorse | 0:39935bb3c1a1 | 286 | break; |
onehorse | 0:39935bb3c1a1 | 287 | case AFS_16G: |
onehorse | 0:39935bb3c1a1 | 288 | aRes = 16.0/32768.0; |
onehorse | 0:39935bb3c1a1 | 289 | break; |
onehorse | 0:39935bb3c1a1 | 290 | } |
onehorse | 0:39935bb3c1a1 | 291 | } |
onehorse | 0:39935bb3c1a1 | 292 | |
onehorse | 0:39935bb3c1a1 | 293 | |
onehorse | 0:39935bb3c1a1 | 294 | void readAccelData(int16_t * destination) |
onehorse | 0:39935bb3c1a1 | 295 | { |
onehorse | 0:39935bb3c1a1 | 296 | uint8_t rawData[6]; // x/y/z accel register data stored here |
onehorse | 0:39935bb3c1a1 | 297 | readBytes(MPU9150_ADDRESS, ACCEL_XOUT_H, 6, &rawData[0]); // Read the six raw data registers into data array |
onehorse | 0:39935bb3c1a1 | 298 | destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
onehorse | 0:39935bb3c1a1 | 299 | destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
onehorse | 0:39935bb3c1a1 | 300 | destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
onehorse | 0:39935bb3c1a1 | 301 | } |
onehorse | 0:39935bb3c1a1 | 302 | |
onehorse | 0:39935bb3c1a1 | 303 | void readGyroData(int16_t * destination) |
onehorse | 0:39935bb3c1a1 | 304 | { |
onehorse | 0:39935bb3c1a1 | 305 | uint8_t rawData[6]; // x/y/z gyro register data stored here |
onehorse | 0:39935bb3c1a1 | 306 | readBytes(MPU9150_ADDRESS, GYRO_XOUT_H, 6, &rawData[0]); // Read the six raw data registers sequentially into data array |
onehorse | 0:39935bb3c1a1 | 307 | destination[0] = (int16_t)(((int16_t)rawData[0] << 8) | rawData[1]) ; // Turn the MSB and LSB into a signed 16-bit value |
onehorse | 0:39935bb3c1a1 | 308 | destination[1] = (int16_t)(((int16_t)rawData[2] << 8) | rawData[3]) ; |
onehorse | 0:39935bb3c1a1 | 309 | destination[2] = (int16_t)(((int16_t)rawData[4] << 8) | rawData[5]) ; |
onehorse | 0:39935bb3c1a1 | 310 | } |
onehorse | 0:39935bb3c1a1 | 311 | |
onehorse | 0:39935bb3c1a1 | 312 | void readMagData(int16_t * destination) |
onehorse | 0:39935bb3c1a1 | 313 | { |
onehorse | 0:39935bb3c1a1 | 314 | uint8_t rawData[6]; // x/y/z gyro register data stored here |
onehorse | 0:39935bb3c1a1 | 315 | writeByte(AK8975A_ADDRESS, AK8975A_CNTL, 0x01); // toggle enable data read from magnetometer, no continuous read mode! |
onehorse | 0:39935bb3c1a1 | 316 | wait(0.01); |
onehorse | 0:39935bb3c1a1 | 317 | // Only accept a new magnetometer data read if the data ready bit is set and |
onehorse | 0:39935bb3c1a1 | 318 | // if there are no sensor overflow or data read errors |
onehorse | 0:39935bb3c1a1 | 319 | if(readByte(AK8975A_ADDRESS, AK8975A_ST1) & 0x01) { // wait for magnetometer data ready bit to be set |
onehorse | 0:39935bb3c1a1 | 320 | readBytes(AK8975A_ADDRESS, AK8975A_XOUT_L, 6, &rawData[0]); // Read the six raw data registers sequentially into data array |
onehorse | 0:39935bb3c1a1 | 321 | destination[0] = ((int16_t)rawData[1] << 8) | rawData[0] ; // Turn the MSB and LSB into a signed 16-bit value |
onehorse | 0:39935bb3c1a1 | 322 | destination[1] = ((int16_t)rawData[3] << 8) | rawData[2] ; |
onehorse | 0:39935bb3c1a1 | 323 | destination[2] = ((int16_t)rawData[5] << 8) | rawData[4] ; |
onehorse | 0:39935bb3c1a1 | 324 | } |
onehorse | 0:39935bb3c1a1 | 325 | } |
onehorse | 0:39935bb3c1a1 | 326 | |
onehorse | 0:39935bb3c1a1 | 327 | void initAK8975A(float * destination) |
onehorse | 0:39935bb3c1a1 | 328 | { |
onehorse | 0:39935bb3c1a1 | 329 | uint8_t rawData[3]; // x/y/z gyro register data stored here |
onehorse | 0:39935bb3c1a1 | 330 | writeByte(AK8975A_ADDRESS, AK8975A_CNTL, 0x00); // Power down |
onehorse | 0:39935bb3c1a1 | 331 | wait(0.01); |
onehorse | 0:39935bb3c1a1 | 332 | writeByte(AK8975A_ADDRESS, AK8975A_CNTL, 0x0F); // Enter Fuse ROM access mode |
onehorse | 0:39935bb3c1a1 | 333 | wait(0.01); |
onehorse | 0:39935bb3c1a1 | 334 | readBytes(AK8975A_ADDRESS, AK8975A_ASAX, 3, &rawData[0]); // Read the x-, y-, and z-axis calibration values |
onehorse | 0:39935bb3c1a1 | 335 | destination[0] = (float)(rawData[0] - 128)/256.0f + 1.0f; // Return x-axis sensitivity adjustment values |
onehorse | 0:39935bb3c1a1 | 336 | destination[1] = (float)(rawData[1] - 128)/256.0f + 1.0f; |
onehorse | 0:39935bb3c1a1 | 337 | destination[2] = (float)(rawData[2] - 128)/256.0f + 1.0f; |
onehorse | 0:39935bb3c1a1 | 338 | } |
onehorse | 0:39935bb3c1a1 | 339 | |
onehorse | 0:39935bb3c1a1 | 340 | int16_t readTempData() |
onehorse | 0:39935bb3c1a1 | 341 | { |
onehorse | 0:39935bb3c1a1 | 342 | uint8_t rawData[2]; // x/y/z gyro register data stored here |
onehorse | 0:39935bb3c1a1 | 343 | readBytes(MPU9150_ADDRESS, TEMP_OUT_H, 2, &rawData[0]); // Read the two raw data registers sequentially into data array |
onehorse | 0:39935bb3c1a1 | 344 | return ((int16_t)rawData[0] << 8) | rawData[1] ; // Turn the MSB and LSB into a 16-bit value |
onehorse | 0:39935bb3c1a1 | 345 | } |
onehorse | 0:39935bb3c1a1 | 346 | |
onehorse | 0:39935bb3c1a1 | 347 | void resetMPU9150() { |
onehorse | 0:39935bb3c1a1 | 348 | // reset device |
onehorse | 0:39935bb3c1a1 | 349 | writeByte(MPU9150_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device |
onehorse | 0:39935bb3c1a1 | 350 | wait(0.1); |
onehorse | 0:39935bb3c1a1 | 351 | } |
onehorse | 0:39935bb3c1a1 | 352 | |
onehorse | 0:39935bb3c1a1 | 353 | |
onehorse | 0:39935bb3c1a1 | 354 | |
onehorse | 0:39935bb3c1a1 | 355 | void initMPU9150() |
onehorse | 0:39935bb3c1a1 | 356 | { |
onehorse | 0:39935bb3c1a1 | 357 | // Initialize MPU9150 device |
onehorse | 0:39935bb3c1a1 | 358 | // wake up device |
onehorse | 0:39935bb3c1a1 | 359 | writeByte(MPU9150_ADDRESS, PWR_MGMT_1, 0x00); // Clear sleep mode bit (6), enable all sensors |
onehorse | 0:39935bb3c1a1 | 360 | wait(0.1); // Delay 100 ms for PLL to get established on x-axis gyro; should check for PLL ready interrupt |
onehorse | 0:39935bb3c1a1 | 361 | |
onehorse | 0:39935bb3c1a1 | 362 | // get stable time source |
onehorse | 0:39935bb3c1a1 | 363 | writeByte(MPU9150_ADDRESS, PWR_MGMT_1, 0x01); // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 |
onehorse | 0:39935bb3c1a1 | 364 | |
onehorse | 0:39935bb3c1a1 | 365 | // Configure Gyro and Accelerometer |
onehorse | 0:39935bb3c1a1 | 366 | // Disable FSYNC and set accelerometer and gyro bandwidth to 44 and 42 Hz, respectively; |
onehorse | 0:39935bb3c1a1 | 367 | // DLPF_CFG = bits 2:0 = 010; this sets the sample rate at 1 kHz for both |
onehorse | 0:39935bb3c1a1 | 368 | // Maximum delay is 4.9 ms which is just over a 200 Hz maximum rate |
onehorse | 0:39935bb3c1a1 | 369 | writeByte(MPU9150_ADDRESS, CONFIG, 0x03); |
onehorse | 0:39935bb3c1a1 | 370 | |
onehorse | 0:39935bb3c1a1 | 371 | // Set sample rate = gyroscope output rate/(1 + SMPLRT_DIV) |
onehorse | 0:39935bb3c1a1 | 372 | writeByte(MPU9150_ADDRESS, SMPLRT_DIV, 0x04); // Use a 200 Hz rate; the same rate set in CONFIG above |
onehorse | 0:39935bb3c1a1 | 373 | |
onehorse | 0:39935bb3c1a1 | 374 | // Set gyroscope full scale range |
onehorse | 0:39935bb3c1a1 | 375 | // Range selects FS_SEL and AFS_SEL are 0 - 3, so 2-bit values are left-shifted into positions 4:3 |
onehorse | 0:39935bb3c1a1 | 376 | uint8_t c = readByte(MPU9150_ADDRESS, GYRO_CONFIG); |
onehorse | 0:39935bb3c1a1 | 377 | writeByte(MPU9150_ADDRESS, GYRO_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] |
onehorse | 0:39935bb3c1a1 | 378 | writeByte(MPU9150_ADDRESS, GYRO_CONFIG, c & ~0x18); // Clear AFS bits [4:3] |
onehorse | 0:39935bb3c1a1 | 379 | writeByte(MPU9150_ADDRESS, GYRO_CONFIG, c | Gscale << 3); // Set full scale range for the gyro |
onehorse | 0:39935bb3c1a1 | 380 | |
onehorse | 0:39935bb3c1a1 | 381 | // Set accelerometer configuration |
onehorse | 0:39935bb3c1a1 | 382 | c = readByte(MPU9150_ADDRESS, ACCEL_CONFIG); |
onehorse | 0:39935bb3c1a1 | 383 | writeByte(MPU9150_ADDRESS, ACCEL_CONFIG, c & ~0xE0); // Clear self-test bits [7:5] |
onehorse | 0:39935bb3c1a1 | 384 | writeByte(MPU9150_ADDRESS, ACCEL_CONFIG, c & ~0x18); // Clear AFS bits [4:3] |
onehorse | 0:39935bb3c1a1 | 385 | writeByte(MPU9150_ADDRESS, ACCEL_CONFIG, c | Ascale << 3); // Set full scale range for the accelerometer |
onehorse | 0:39935bb3c1a1 | 386 | |
onehorse | 0:39935bb3c1a1 | 387 | // The accelerometer, gyro, and thermometer are set to 1 kHz sample rates, |
onehorse | 0:39935bb3c1a1 | 388 | // but all these rates are further reduced by a factor of 5 to 200 Hz because of the SMPLRT_DIV setting |
onehorse | 0:39935bb3c1a1 | 389 | |
onehorse | 0:39935bb3c1a1 | 390 | // Configure Interrupts and Bypass Enable |
onehorse | 0:39935bb3c1a1 | 391 | // Set interrupt pin active high, push-pull, and clear on read of INT_STATUS, enable I2C_BYPASS_EN so additional chips |
onehorse | 0:39935bb3c1a1 | 392 | // can join the I2C bus and all can be controlled by the Arduino as master |
onehorse | 0:39935bb3c1a1 | 393 | writeByte(MPU9150_ADDRESS, INT_PIN_CFG, 0x22); |
onehorse | 0:39935bb3c1a1 | 394 | writeByte(MPU9150_ADDRESS, INT_ENABLE, 0x01); // Enable data ready (bit 0) interrupt |
onehorse | 0:39935bb3c1a1 | 395 | } |
onehorse | 0:39935bb3c1a1 | 396 | |
onehorse | 0:39935bb3c1a1 | 397 | // Function which accumulates gyro and accelerometer data after device initialization. It calculates the average |
onehorse | 0:39935bb3c1a1 | 398 | // of the at-rest readings and then loads the resulting offsets into accelerometer and gyro bias registers. |
onehorse | 0:39935bb3c1a1 | 399 | void calibrateMPU9150(float * dest1, float * dest2) |
onehorse | 0:39935bb3c1a1 | 400 | { |
onehorse | 0:39935bb3c1a1 | 401 | uint8_t data[12]; // data array to hold accelerometer and gyro x, y, z, data |
onehorse | 0:39935bb3c1a1 | 402 | uint16_t ii, packet_count, fifo_count; |
onehorse | 0:39935bb3c1a1 | 403 | int32_t gyro_bias[3] = {0, 0, 0}, accel_bias[3] = {0, 0, 0}; |
onehorse | 0:39935bb3c1a1 | 404 | |
onehorse | 0:39935bb3c1a1 | 405 | // reset device, reset all registers, clear gyro and accelerometer bias registers |
onehorse | 0:39935bb3c1a1 | 406 | writeByte(MPU9150_ADDRESS, PWR_MGMT_1, 0x80); // Write a one to bit 7 reset bit; toggle reset device |
onehorse | 0:39935bb3c1a1 | 407 | wait(0.1); |
onehorse | 0:39935bb3c1a1 | 408 | |
onehorse | 0:39935bb3c1a1 | 409 | // get stable time source |
onehorse | 0:39935bb3c1a1 | 410 | // Set clock source to be PLL with x-axis gyroscope reference, bits 2:0 = 001 |
onehorse | 0:39935bb3c1a1 | 411 | writeByte(MPU9150_ADDRESS, PWR_MGMT_1, 0x01); |
onehorse | 0:39935bb3c1a1 | 412 | writeByte(MPU9150_ADDRESS, PWR_MGMT_2, 0x00); |
onehorse | 0:39935bb3c1a1 | 413 | wait(0.2); |
onehorse | 0:39935bb3c1a1 | 414 | |
onehorse | 0:39935bb3c1a1 | 415 | // Configure device for bias calculation |
onehorse | 0:39935bb3c1a1 | 416 | writeByte(MPU9150_ADDRESS, INT_ENABLE, 0x00); // Disable all interrupts |
onehorse | 0:39935bb3c1a1 | 417 | writeByte(MPU9150_ADDRESS, FIFO_EN, 0x00); // Disable FIFO |
onehorse | 0:39935bb3c1a1 | 418 | writeByte(MPU9150_ADDRESS, PWR_MGMT_1, 0x00); // Turn on internal clock source |
onehorse | 0:39935bb3c1a1 | 419 | writeByte(MPU9150_ADDRESS, I2C_MST_CTRL, 0x00); // Disable I2C master |
onehorse | 0:39935bb3c1a1 | 420 | writeByte(MPU9150_ADDRESS, USER_CTRL, 0x00); // Disable FIFO and I2C master modes |
onehorse | 0:39935bb3c1a1 | 421 | writeByte(MPU9150_ADDRESS, USER_CTRL, 0x0C); // Reset FIFO and DMP |
onehorse | 0:39935bb3c1a1 | 422 | wait(0.015); |
onehorse | 0:39935bb3c1a1 | 423 | |
onehorse | 0:39935bb3c1a1 | 424 | // Configure MPU9150 gyro and accelerometer for bias calculation |
onehorse | 0:39935bb3c1a1 | 425 | writeByte(MPU9150_ADDRESS, CONFIG, 0x01); // Set low-pass filter to 188 Hz |
onehorse | 0:39935bb3c1a1 | 426 | writeByte(MPU9150_ADDRESS, SMPLRT_DIV, 0x00); // Set sample rate to 1 kHz |
onehorse | 0:39935bb3c1a1 | 427 | writeByte(MPU9150_ADDRESS, GYRO_CONFIG, 0x00); // Set gyro full-scale to 250 degrees per second, maximum sensitivity |
onehorse | 0:39935bb3c1a1 | 428 | writeByte(MPU9150_ADDRESS, ACCEL_CONFIG, 0x00); // Set accelerometer full-scale to 2 g, maximum sensitivity |
onehorse | 0:39935bb3c1a1 | 429 | |
onehorse | 0:39935bb3c1a1 | 430 | uint16_t gyrosensitivity = 131; // = 131 LSB/degrees/sec |
onehorse | 0:39935bb3c1a1 | 431 | uint16_t accelsensitivity = 16384; // = 16384 LSB/g |
onehorse | 0:39935bb3c1a1 | 432 | |
onehorse | 0:39935bb3c1a1 | 433 | // Configure FIFO to capture accelerometer and gyro data for bias calculation |
onehorse | 0:39935bb3c1a1 | 434 | writeByte(MPU9150_ADDRESS, USER_CTRL, 0x40); // Enable FIFO |
onehorse | 0:39935bb3c1a1 | 435 | writeByte(MPU9150_ADDRESS, FIFO_EN, 0x78); // Enable gyro and accelerometer sensors for FIFO (max size 1024 bytes in MPU9150) |
onehorse | 0:39935bb3c1a1 | 436 | wait(0.08); // accumulate 80 samples in 80 milliseconds = 960 bytes |
onehorse | 0:39935bb3c1a1 | 437 | |
onehorse | 0:39935bb3c1a1 | 438 | // At end of sample accumulation, turn off FIFO sensor read |
onehorse | 0:39935bb3c1a1 | 439 | writeByte(MPU9150_ADDRESS, FIFO_EN, 0x00); // Disable gyro and accelerometer sensors for FIFO |
onehorse | 0:39935bb3c1a1 | 440 | readBytes(MPU9150_ADDRESS, FIFO_COUNTH, 2, &data[0]); // read FIFO sample count |
onehorse | 0:39935bb3c1a1 | 441 | fifo_count = ((uint16_t)data[0] << 8) | data[1]; |
onehorse | 0:39935bb3c1a1 | 442 | packet_count = fifo_count/12;// How many sets of full gyro and accelerometer data for averaging |
onehorse | 0:39935bb3c1a1 | 443 | |
onehorse | 0:39935bb3c1a1 | 444 | for (ii = 0; ii < packet_count; ii++) { |
onehorse | 0:39935bb3c1a1 | 445 | int16_t accel_temp[3] = {0, 0, 0}, gyro_temp[3] = {0, 0, 0}; |
onehorse | 0:39935bb3c1a1 | 446 | readBytes(MPU9150_ADDRESS, FIFO_R_W, 12, &data[0]); // read data for averaging |
onehorse | 0:39935bb3c1a1 | 447 | accel_temp[0] = (int16_t) (((int16_t)data[0] << 8) | data[1] ) ; // Form signed 16-bit integer for each sample in FIFO |
onehorse | 0:39935bb3c1a1 | 448 | accel_temp[1] = (int16_t) (((int16_t)data[2] << 8) | data[3] ) ; |
onehorse | 0:39935bb3c1a1 | 449 | accel_temp[2] = (int16_t) (((int16_t)data[4] << 8) | data[5] ) ; |
onehorse | 0:39935bb3c1a1 | 450 | gyro_temp[0] = (int16_t) (((int16_t)data[6] << 8) | data[7] ) ; |
onehorse | 0:39935bb3c1a1 | 451 | gyro_temp[1] = (int16_t) (((int16_t)data[8] << 8) | data[9] ) ; |
onehorse | 0:39935bb3c1a1 | 452 | gyro_temp[2] = (int16_t) (((int16_t)data[10] << 8) | data[11]) ; |
onehorse | 0:39935bb3c1a1 | 453 | |
onehorse | 0:39935bb3c1a1 | 454 | accel_bias[0] += (int32_t) accel_temp[0]; // Sum individual signed 16-bit biases to get accumulated signed 32-bit biases |
onehorse | 0:39935bb3c1a1 | 455 | accel_bias[1] += (int32_t) accel_temp[1]; |
onehorse | 0:39935bb3c1a1 | 456 | accel_bias[2] += (int32_t) accel_temp[2]; |
onehorse | 0:39935bb3c1a1 | 457 | gyro_bias[0] += (int32_t) gyro_temp[0]; |
onehorse | 0:39935bb3c1a1 | 458 | gyro_bias[1] += (int32_t) gyro_temp[1]; |
onehorse | 0:39935bb3c1a1 | 459 | gyro_bias[2] += (int32_t) gyro_temp[2]; |
onehorse | 0:39935bb3c1a1 | 460 | |
onehorse | 0:39935bb3c1a1 | 461 | } |
onehorse | 0:39935bb3c1a1 | 462 | accel_bias[0] /= (int32_t) packet_count; // Normalize sums to get average count biases |
onehorse | 0:39935bb3c1a1 | 463 | accel_bias[1] /= (int32_t) packet_count; |
onehorse | 0:39935bb3c1a1 | 464 | accel_bias[2] /= (int32_t) packet_count; |
onehorse | 0:39935bb3c1a1 | 465 | gyro_bias[0] /= (int32_t) packet_count; |
onehorse | 0:39935bb3c1a1 | 466 | gyro_bias[1] /= (int32_t) packet_count; |
onehorse | 0:39935bb3c1a1 | 467 | gyro_bias[2] /= (int32_t) packet_count; |
onehorse | 0:39935bb3c1a1 | 468 | |
onehorse | 0:39935bb3c1a1 | 469 | if(accel_bias[2] > 0L) {accel_bias[2] -= (int32_t) accelsensitivity;} // Remove gravity from the z-axis accelerometer bias calculation |
onehorse | 0:39935bb3c1a1 | 470 | else {accel_bias[2] += (int32_t) accelsensitivity;} |
onehorse | 0:39935bb3c1a1 | 471 | |
onehorse | 0:39935bb3c1a1 | 472 | // Construct the gyro biases for push to the hardware gyro bias registers, which are reset to zero upon device startup |
onehorse | 0:39935bb3c1a1 | 473 | data[0] = (-gyro_bias[0]/4 >> 8) & 0xFF; // Divide by 4 to get 32.9 LSB per deg/s to conform to expected bias input format |
onehorse | 0:39935bb3c1a1 | 474 | data[1] = (-gyro_bias[0]/4) & 0xFF; // Biases are additive, so change sign on calculated average gyro biases |
onehorse | 0:39935bb3c1a1 | 475 | data[2] = (-gyro_bias[1]/4 >> 8) & 0xFF; |
onehorse | 0:39935bb3c1a1 | 476 | data[3] = (-gyro_bias[1]/4) & 0xFF; |
onehorse | 0:39935bb3c1a1 | 477 | data[4] = (-gyro_bias[2]/4 >> 8) & 0xFF; |
onehorse | 0:39935bb3c1a1 | 478 | data[5] = (-gyro_bias[2]/4) & 0xFF; |
onehorse | 0:39935bb3c1a1 | 479 | |
onehorse | 0:39935bb3c1a1 | 480 | /// Push gyro biases to hardware registers |
onehorse | 0:39935bb3c1a1 | 481 | writeByte(MPU9150_ADDRESS, XG_OFFS_USRH, data[0]); |
onehorse | 0:39935bb3c1a1 | 482 | writeByte(MPU9150_ADDRESS, XG_OFFS_USRL, data[1]); |
onehorse | 0:39935bb3c1a1 | 483 | writeByte(MPU9150_ADDRESS, YG_OFFS_USRH, data[2]); |
onehorse | 0:39935bb3c1a1 | 484 | writeByte(MPU9150_ADDRESS, YG_OFFS_USRL, data[3]); |
onehorse | 0:39935bb3c1a1 | 485 | writeByte(MPU9150_ADDRESS, ZG_OFFS_USRH, data[4]); |
onehorse | 0:39935bb3c1a1 | 486 | writeByte(MPU9150_ADDRESS, ZG_OFFS_USRL, data[5]); |
onehorse | 0:39935bb3c1a1 | 487 | |
onehorse | 0:39935bb3c1a1 | 488 | dest1[0] = (float) gyro_bias[0]/(float) gyrosensitivity; // construct gyro bias in deg/s for later manual subtraction |
onehorse | 0:39935bb3c1a1 | 489 | dest1[1] = (float) gyro_bias[1]/(float) gyrosensitivity; |
onehorse | 0:39935bb3c1a1 | 490 | dest1[2] = (float) gyro_bias[2]/(float) gyrosensitivity; |
onehorse | 0:39935bb3c1a1 | 491 | |
onehorse | 0:39935bb3c1a1 | 492 | // Construct the accelerometer biases for push to the hardware accelerometer bias registers. These registers contain |
onehorse | 0:39935bb3c1a1 | 493 | // factory trim values which must be added to the calculated accelerometer biases; on boot up these registers will hold |
onehorse | 0:39935bb3c1a1 | 494 | // non-zero values. In addition, bit 0 of the lower byte must be preserved since it is used for temperature |
onehorse | 0:39935bb3c1a1 | 495 | // compensation calculations. Accelerometer bias registers expect bias input as 2048 LSB per g, so that |
onehorse | 0:39935bb3c1a1 | 496 | // the accelerometer biases calculated above must be divided by 8. |
onehorse | 0:39935bb3c1a1 | 497 | |
onehorse | 0:39935bb3c1a1 | 498 | int32_t accel_bias_reg[3] = {0, 0, 0}; // A place to hold the factory accelerometer trim biases |
onehorse | 0:39935bb3c1a1 | 499 | readBytes(MPU9150_ADDRESS, XA_OFFSET_H, 2, &data[0]); // Read factory accelerometer trim values |
onehorse | 0:39935bb3c1a1 | 500 | accel_bias_reg[0] = (int16_t) ((int16_t)data[0] << 8) | data[1]; |
onehorse | 0:39935bb3c1a1 | 501 | readBytes(MPU9150_ADDRESS, YA_OFFSET_H, 2, &data[0]); |
onehorse | 0:39935bb3c1a1 | 502 | accel_bias_reg[1] = (int16_t) ((int16_t)data[0] << 8) | data[1]; |
onehorse | 0:39935bb3c1a1 | 503 | readBytes(MPU9150_ADDRESS, ZA_OFFSET_H, 2, &data[0]); |
onehorse | 0:39935bb3c1a1 | 504 | accel_bias_reg[2] = (int16_t) ((int16_t)data[0] << 8) | data[1]; |
onehorse | 0:39935bb3c1a1 | 505 | |
onehorse | 0:39935bb3c1a1 | 506 | uint32_t mask = 1uL; // Define mask for temperature compensation bit 0 of lower byte of accelerometer bias registers |
onehorse | 0:39935bb3c1a1 | 507 | uint8_t mask_bit[3] = {0, 0, 0}; // Define array to hold mask bit for each accelerometer bias axis |
onehorse | 0:39935bb3c1a1 | 508 | |
onehorse | 0:39935bb3c1a1 | 509 | for(ii = 0; ii < 3; ii++) { |
onehorse | 0:39935bb3c1a1 | 510 | if(accel_bias_reg[ii] & mask) mask_bit[ii] = 0x01; // If temperature compensation bit is set, record that fact in mask_bit |
onehorse | 0:39935bb3c1a1 | 511 | } |
onehorse | 0:39935bb3c1a1 | 512 | |
onehorse | 0:39935bb3c1a1 | 513 | // Construct total accelerometer bias, including calculated average accelerometer bias from above |
onehorse | 0:39935bb3c1a1 | 514 | accel_bias_reg[0] -= (accel_bias[0]/8); // Subtract calculated averaged accelerometer bias scaled to 2048 LSB/g (16 g full scale) |
onehorse | 0:39935bb3c1a1 | 515 | accel_bias_reg[1] -= (accel_bias[1]/8); |
onehorse | 0:39935bb3c1a1 | 516 | accel_bias_reg[2] -= (accel_bias[2]/8); |
onehorse | 0:39935bb3c1a1 | 517 | |
onehorse | 0:39935bb3c1a1 | 518 | data[0] = (accel_bias_reg[0] >> 8) & 0xFF; |
onehorse | 0:39935bb3c1a1 | 519 | data[1] = (accel_bias_reg[0]) & 0xFF; |
onehorse | 0:39935bb3c1a1 | 520 | data[1] = data[1] | mask_bit[0]; // preserve temperature compensation bit when writing back to accelerometer bias registers |
onehorse | 0:39935bb3c1a1 | 521 | data[2] = (accel_bias_reg[1] >> 8) & 0xFF; |
onehorse | 0:39935bb3c1a1 | 522 | data[3] = (accel_bias_reg[1]) & 0xFF; |
onehorse | 0:39935bb3c1a1 | 523 | data[3] = data[3] | mask_bit[1]; // preserve temperature compensation bit when writing back to accelerometer bias registers |
onehorse | 0:39935bb3c1a1 | 524 | data[4] = (accel_bias_reg[2] >> 8) & 0xFF; |
onehorse | 0:39935bb3c1a1 | 525 | data[5] = (accel_bias_reg[2]) & 0xFF; |
onehorse | 0:39935bb3c1a1 | 526 | data[5] = data[5] | mask_bit[2]; // preserve temperature compensation bit when writing back to accelerometer bias registers |
onehorse | 0:39935bb3c1a1 | 527 | |
onehorse | 0:39935bb3c1a1 | 528 | // Apparently this is not working for the acceleration biases in the MPU-9250 |
onehorse | 0:39935bb3c1a1 | 529 | // Are we handling the temperature correction bit properly? |
onehorse | 0:39935bb3c1a1 | 530 | // Push accelerometer biases to hardware registers |
onehorse | 0:39935bb3c1a1 | 531 | writeByte(MPU9150_ADDRESS, XA_OFFSET_H, data[0]); |
onehorse | 0:39935bb3c1a1 | 532 | writeByte(MPU9150_ADDRESS, XA_OFFSET_L_TC, data[1]); |
onehorse | 0:39935bb3c1a1 | 533 | writeByte(MPU9150_ADDRESS, YA_OFFSET_H, data[2]); |
onehorse | 0:39935bb3c1a1 | 534 | writeByte(MPU9150_ADDRESS, YA_OFFSET_L_TC, data[3]); |
onehorse | 0:39935bb3c1a1 | 535 | writeByte(MPU9150_ADDRESS, ZA_OFFSET_H, data[4]); |
onehorse | 0:39935bb3c1a1 | 536 | writeByte(MPU9150_ADDRESS, ZA_OFFSET_L_TC, data[5]); |
onehorse | 0:39935bb3c1a1 | 537 | |
onehorse | 0:39935bb3c1a1 | 538 | // Output scaled accelerometer biases for manual subtraction in the main program |
onehorse | 0:39935bb3c1a1 | 539 | dest2[0] = (float)accel_bias[0]/(float)accelsensitivity; |
onehorse | 0:39935bb3c1a1 | 540 | dest2[1] = (float)accel_bias[1]/(float)accelsensitivity; |
onehorse | 0:39935bb3c1a1 | 541 | dest2[2] = (float)accel_bias[2]/(float)accelsensitivity; |
onehorse | 0:39935bb3c1a1 | 542 | } |
onehorse | 0:39935bb3c1a1 | 543 | |
onehorse | 0:39935bb3c1a1 | 544 | |
onehorse | 0:39935bb3c1a1 | 545 | // Accelerometer and gyroscope self test; check calibration wrt factory settings |
onehorse | 0:39935bb3c1a1 | 546 | void MPU9150SelfTest(float * destination) // Should return percent deviation from factory trim values, +/- 14 or less deviation is a pass |
onehorse | 0:39935bb3c1a1 | 547 | { |
onehorse | 0:39935bb3c1a1 | 548 | uint8_t rawData[4] = {0, 0, 0, 0}; |
onehorse | 0:39935bb3c1a1 | 549 | uint8_t selfTest[6]; |
onehorse | 0:39935bb3c1a1 | 550 | float factoryTrim[6]; |
onehorse | 0:39935bb3c1a1 | 551 | |
onehorse | 0:39935bb3c1a1 | 552 | // Configure the accelerometer for self-test |
onehorse | 0:39935bb3c1a1 | 553 | writeByte(MPU9150_ADDRESS, ACCEL_CONFIG, 0xF0); // Enable self test on all three axes and set accelerometer range to +/- 8 g |
onehorse | 0:39935bb3c1a1 | 554 | writeByte(MPU9150_ADDRESS, GYRO_CONFIG, 0xE0); // Enable self test on all three axes and set gyro range to +/- 250 degrees/s |
onehorse | 0:39935bb3c1a1 | 555 | wait(0.25); // Delay a while to let the device execute the self-test |
onehorse | 0:39935bb3c1a1 | 556 | rawData[0] = readByte(MPU9150_ADDRESS, SELF_TEST_X); // X-axis self-test results |
onehorse | 0:39935bb3c1a1 | 557 | rawData[1] = readByte(MPU9150_ADDRESS, SELF_TEST_Y); // Y-axis self-test results |
onehorse | 0:39935bb3c1a1 | 558 | rawData[2] = readByte(MPU9150_ADDRESS, SELF_TEST_Z); // Z-axis self-test results |
onehorse | 0:39935bb3c1a1 | 559 | rawData[3] = readByte(MPU9150_ADDRESS, SELF_TEST_A); // Mixed-axis self-test results |
onehorse | 0:39935bb3c1a1 | 560 | // Extract the acceleration test results first |
onehorse | 0:39935bb3c1a1 | 561 | selfTest[0] = (rawData[0] >> 3) | (rawData[3] & 0x30) >> 4 ; // XA_TEST result is a five-bit unsigned integer |
onehorse | 0:39935bb3c1a1 | 562 | selfTest[1] = (rawData[1] >> 3) | (rawData[3] & 0x0C) >> 4 ; // YA_TEST result is a five-bit unsigned integer |
onehorse | 0:39935bb3c1a1 | 563 | selfTest[2] = (rawData[2] >> 3) | (rawData[3] & 0x03) >> 4 ; // ZA_TEST result is a five-bit unsigned integer |
onehorse | 0:39935bb3c1a1 | 564 | // Extract the gyration test results first |
onehorse | 0:39935bb3c1a1 | 565 | selfTest[3] = rawData[0] & 0x1F ; // XG_TEST result is a five-bit unsigned integer |
onehorse | 0:39935bb3c1a1 | 566 | selfTest[4] = rawData[1] & 0x1F ; // YG_TEST result is a five-bit unsigned integer |
onehorse | 0:39935bb3c1a1 | 567 | selfTest[5] = rawData[2] & 0x1F ; // ZG_TEST result is a five-bit unsigned integer |
onehorse | 0:39935bb3c1a1 | 568 | // Process results to allow final comparison with factory set values |
onehorse | 0:39935bb3c1a1 | 569 | factoryTrim[0] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[0] - 1.0f)/30.0f))); // FT[Xa] factory trim calculation |
onehorse | 0:39935bb3c1a1 | 570 | factoryTrim[1] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[1] - 1.0f)/30.0f))); // FT[Ya] factory trim calculation |
onehorse | 0:39935bb3c1a1 | 571 | factoryTrim[2] = (4096.0f*0.34f)*(pow( (0.92f/0.34f) , ((selfTest[2] - 1.0f)/30.0f))); // FT[Za] factory trim calculation |
onehorse | 0:39935bb3c1a1 | 572 | factoryTrim[3] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[3] - 1.0f) )); // FT[Xg] factory trim calculation |
onehorse | 0:39935bb3c1a1 | 573 | factoryTrim[4] = (-25.0f*131.0f)*(pow( 1.046f , (selfTest[4] - 1.0f) )); // FT[Yg] factory trim calculation |
onehorse | 0:39935bb3c1a1 | 574 | factoryTrim[5] = ( 25.0f*131.0f)*(pow( 1.046f , (selfTest[5] - 1.0f) )); // FT[Zg] factory trim calculation |
onehorse | 0:39935bb3c1a1 | 575 | |
onehorse | 0:39935bb3c1a1 | 576 | // Output self-test results and factory trim calculation if desired |
onehorse | 0:39935bb3c1a1 | 577 | // Serial.println(selfTest[0]); Serial.println(selfTest[1]); Serial.println(selfTest[2]); |
onehorse | 0:39935bb3c1a1 | 578 | // Serial.println(selfTest[3]); Serial.println(selfTest[4]); Serial.println(selfTest[5]); |
onehorse | 0:39935bb3c1a1 | 579 | // Serial.println(factoryTrim[0]); Serial.println(factoryTrim[1]); Serial.println(factoryTrim[2]); |
onehorse | 0:39935bb3c1a1 | 580 | // Serial.println(factoryTrim[3]); Serial.println(factoryTrim[4]); Serial.println(factoryTrim[5]); |
onehorse | 0:39935bb3c1a1 | 581 | |
onehorse | 0:39935bb3c1a1 | 582 | // Report results as a ratio of (STR - FT)/FT; the change from Factory Trim of the Self-Test Response |
onehorse | 0:39935bb3c1a1 | 583 | // To get to percent, must multiply by 100 and subtract result from 100 |
onehorse | 0:39935bb3c1a1 | 584 | for (int i = 0; i < 6; i++) { |
onehorse | 0:39935bb3c1a1 | 585 | destination[i] = 100.0f + 100.0f*(selfTest[i] - factoryTrim[i])/factoryTrim[i]; // Report percent differences |
onehorse | 0:39935bb3c1a1 | 586 | } |
onehorse | 0:39935bb3c1a1 | 587 | |
onehorse | 0:39935bb3c1a1 | 588 | } |
onehorse | 0:39935bb3c1a1 | 589 | |
onehorse | 0:39935bb3c1a1 | 590 | |
onehorse | 0:39935bb3c1a1 | 591 | |
onehorse | 0:39935bb3c1a1 | 592 | // Implementation of Sebastian Madgwick's "...efficient orientation filter for... inertial/magnetic sensor arrays" |
onehorse | 0:39935bb3c1a1 | 593 | // (see http://www.x-io.co.uk/category/open-source/ for examples and more details) |
onehorse | 0:39935bb3c1a1 | 594 | // which fuses acceleration, rotation rate, and magnetic moments to produce a quaternion-based estimate of absolute |
onehorse | 0:39935bb3c1a1 | 595 | // device orientation -- which can be converted to yaw, pitch, and roll. Useful for stabilizing quadcopters, etc. |
onehorse | 0:39935bb3c1a1 | 596 | // The performance of the orientation filter is at least as good as conventional Kalman-based filtering algorithms |
onehorse | 0:39935bb3c1a1 | 597 | // but is much less computationally intensive---it can be performed on a 3.3 V Pro Mini operating at 8 MHz! |
onehorse | 0:39935bb3c1a1 | 598 | void MadgwickQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) |
onehorse | 0:39935bb3c1a1 | 599 | { |
onehorse | 0:39935bb3c1a1 | 600 | float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability |
onehorse | 0:39935bb3c1a1 | 601 | float norm; |
onehorse | 0:39935bb3c1a1 | 602 | float hx, hy, _2bx, _2bz; |
onehorse | 0:39935bb3c1a1 | 603 | float s1, s2, s3, s4; |
onehorse | 0:39935bb3c1a1 | 604 | float qDot1, qDot2, qDot3, qDot4; |
onehorse | 0:39935bb3c1a1 | 605 | |
onehorse | 0:39935bb3c1a1 | 606 | // Auxiliary variables to avoid repeated arithmetic |
onehorse | 0:39935bb3c1a1 | 607 | float _2q1mx; |
onehorse | 0:39935bb3c1a1 | 608 | float _2q1my; |
onehorse | 0:39935bb3c1a1 | 609 | float _2q1mz; |
onehorse | 0:39935bb3c1a1 | 610 | float _2q2mx; |
onehorse | 0:39935bb3c1a1 | 611 | float _4bx; |
onehorse | 0:39935bb3c1a1 | 612 | float _4bz; |
onehorse | 0:39935bb3c1a1 | 613 | float _2q1 = 2.0f * q1; |
onehorse | 0:39935bb3c1a1 | 614 | float _2q2 = 2.0f * q2; |
onehorse | 0:39935bb3c1a1 | 615 | float _2q3 = 2.0f * q3; |
onehorse | 0:39935bb3c1a1 | 616 | float _2q4 = 2.0f * q4; |
onehorse | 0:39935bb3c1a1 | 617 | float _2q1q3 = 2.0f * q1 * q3; |
onehorse | 0:39935bb3c1a1 | 618 | float _2q3q4 = 2.0f * q3 * q4; |
onehorse | 0:39935bb3c1a1 | 619 | float q1q1 = q1 * q1; |
onehorse | 0:39935bb3c1a1 | 620 | float q1q2 = q1 * q2; |
onehorse | 0:39935bb3c1a1 | 621 | float q1q3 = q1 * q3; |
onehorse | 0:39935bb3c1a1 | 622 | float q1q4 = q1 * q4; |
onehorse | 0:39935bb3c1a1 | 623 | float q2q2 = q2 * q2; |
onehorse | 0:39935bb3c1a1 | 624 | float q2q3 = q2 * q3; |
onehorse | 0:39935bb3c1a1 | 625 | float q2q4 = q2 * q4; |
onehorse | 0:39935bb3c1a1 | 626 | float q3q3 = q3 * q3; |
onehorse | 0:39935bb3c1a1 | 627 | float q3q4 = q3 * q4; |
onehorse | 0:39935bb3c1a1 | 628 | float q4q4 = q4 * q4; |
onehorse | 0:39935bb3c1a1 | 629 | |
onehorse | 0:39935bb3c1a1 | 630 | // Normalise accelerometer measurement |
onehorse | 0:39935bb3c1a1 | 631 | norm = sqrt(ax * ax + ay * ay + az * az); |
onehorse | 0:39935bb3c1a1 | 632 | if (norm == 0.0f) return; // handle NaN |
onehorse | 0:39935bb3c1a1 | 633 | norm = 1.0f/norm; |
onehorse | 0:39935bb3c1a1 | 634 | ax *= norm; |
onehorse | 0:39935bb3c1a1 | 635 | ay *= norm; |
onehorse | 0:39935bb3c1a1 | 636 | az *= norm; |
onehorse | 0:39935bb3c1a1 | 637 | |
onehorse | 0:39935bb3c1a1 | 638 | // Normalise magnetometer measurement |
onehorse | 0:39935bb3c1a1 | 639 | norm = sqrt(mx * mx + my * my + mz * mz); |
onehorse | 0:39935bb3c1a1 | 640 | if (norm == 0.0f) return; // handle NaN |
onehorse | 0:39935bb3c1a1 | 641 | norm = 1.0f/norm; |
onehorse | 0:39935bb3c1a1 | 642 | mx *= norm; |
onehorse | 0:39935bb3c1a1 | 643 | my *= norm; |
onehorse | 0:39935bb3c1a1 | 644 | mz *= norm; |
onehorse | 0:39935bb3c1a1 | 645 | |
onehorse | 0:39935bb3c1a1 | 646 | // Reference direction of Earth's magnetic field |
onehorse | 0:39935bb3c1a1 | 647 | _2q1mx = 2.0f * q1 * mx; |
onehorse | 0:39935bb3c1a1 | 648 | _2q1my = 2.0f * q1 * my; |
onehorse | 0:39935bb3c1a1 | 649 | _2q1mz = 2.0f * q1 * mz; |
onehorse | 0:39935bb3c1a1 | 650 | _2q2mx = 2.0f * q2 * mx; |
onehorse | 0:39935bb3c1a1 | 651 | hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4; |
onehorse | 0:39935bb3c1a1 | 652 | hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4; |
onehorse | 0:39935bb3c1a1 | 653 | _2bx = sqrt(hx * hx + hy * hy); |
onehorse | 0:39935bb3c1a1 | 654 | _2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4; |
onehorse | 0:39935bb3c1a1 | 655 | _4bx = 2.0f * _2bx; |
onehorse | 0:39935bb3c1a1 | 656 | _4bz = 2.0f * _2bz; |
onehorse | 0:39935bb3c1a1 | 657 | |
onehorse | 0:39935bb3c1a1 | 658 | // Gradient decent algorithm corrective step |
onehorse | 0:39935bb3c1a1 | 659 | s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
onehorse | 0:39935bb3c1a1 | 660 | s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
onehorse | 0:39935bb3c1a1 | 661 | s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
onehorse | 0:39935bb3c1a1 | 662 | s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz); |
onehorse | 0:39935bb3c1a1 | 663 | norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude |
onehorse | 0:39935bb3c1a1 | 664 | norm = 1.0f/norm; |
onehorse | 0:39935bb3c1a1 | 665 | s1 *= norm; |
onehorse | 0:39935bb3c1a1 | 666 | s2 *= norm; |
onehorse | 0:39935bb3c1a1 | 667 | s3 *= norm; |
onehorse | 0:39935bb3c1a1 | 668 | s4 *= norm; |
onehorse | 0:39935bb3c1a1 | 669 | |
onehorse | 0:39935bb3c1a1 | 670 | // Compute rate of change of quaternion |
onehorse | 0:39935bb3c1a1 | 671 | qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1; |
onehorse | 0:39935bb3c1a1 | 672 | qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2; |
onehorse | 0:39935bb3c1a1 | 673 | qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3; |
onehorse | 0:39935bb3c1a1 | 674 | qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4; |
onehorse | 0:39935bb3c1a1 | 675 | |
onehorse | 0:39935bb3c1a1 | 676 | // Integrate to yield quaternion |
onehorse | 0:39935bb3c1a1 | 677 | q1 += qDot1 * deltat; |
onehorse | 0:39935bb3c1a1 | 678 | q2 += qDot2 * deltat; |
onehorse | 0:39935bb3c1a1 | 679 | q3 += qDot3 * deltat; |
onehorse | 0:39935bb3c1a1 | 680 | q4 += qDot4 * deltat; |
onehorse | 0:39935bb3c1a1 | 681 | norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion |
onehorse | 0:39935bb3c1a1 | 682 | norm = 1.0f/norm; |
onehorse | 0:39935bb3c1a1 | 683 | q[0] = q1 * norm; |
onehorse | 0:39935bb3c1a1 | 684 | q[1] = q2 * norm; |
onehorse | 0:39935bb3c1a1 | 685 | q[2] = q3 * norm; |
onehorse | 0:39935bb3c1a1 | 686 | q[3] = q4 * norm; |
onehorse | 0:39935bb3c1a1 | 687 | |
onehorse | 0:39935bb3c1a1 | 688 | } |
onehorse | 0:39935bb3c1a1 | 689 | |
onehorse | 0:39935bb3c1a1 | 690 | |
onehorse | 0:39935bb3c1a1 | 691 | |
onehorse | 0:39935bb3c1a1 | 692 | // Similar to Madgwick scheme but uses proportional and integral filtering on the error between estimated reference vectors and |
onehorse | 0:39935bb3c1a1 | 693 | // measured ones. |
onehorse | 0:39935bb3c1a1 | 694 | void MahonyQuaternionUpdate(float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz) |
onehorse | 0:39935bb3c1a1 | 695 | { |
onehorse | 0:39935bb3c1a1 | 696 | float q1 = q[0], q2 = q[1], q3 = q[2], q4 = q[3]; // short name local variable for readability |
onehorse | 0:39935bb3c1a1 | 697 | float norm; |
onehorse | 0:39935bb3c1a1 | 698 | float hx, hy, bx, bz; |
onehorse | 0:39935bb3c1a1 | 699 | float vx, vy, vz, wx, wy, wz; |
onehorse | 0:39935bb3c1a1 | 700 | float ex, ey, ez; |
onehorse | 0:39935bb3c1a1 | 701 | float pa, pb, pc; |
onehorse | 0:39935bb3c1a1 | 702 | |
onehorse | 0:39935bb3c1a1 | 703 | // Auxiliary variables to avoid repeated arithmetic |
onehorse | 0:39935bb3c1a1 | 704 | float q1q1 = q1 * q1; |
onehorse | 0:39935bb3c1a1 | 705 | float q1q2 = q1 * q2; |
onehorse | 0:39935bb3c1a1 | 706 | float q1q3 = q1 * q3; |
onehorse | 0:39935bb3c1a1 | 707 | float q1q4 = q1 * q4; |
onehorse | 0:39935bb3c1a1 | 708 | float q2q2 = q2 * q2; |
onehorse | 0:39935bb3c1a1 | 709 | float q2q3 = q2 * q3; |
onehorse | 0:39935bb3c1a1 | 710 | float q2q4 = q2 * q4; |
onehorse | 0:39935bb3c1a1 | 711 | float q3q3 = q3 * q3; |
onehorse | 0:39935bb3c1a1 | 712 | float q3q4 = q3 * q4; |
onehorse | 0:39935bb3c1a1 | 713 | float q4q4 = q4 * q4; |
onehorse | 0:39935bb3c1a1 | 714 | |
onehorse | 0:39935bb3c1a1 | 715 | // Normalise accelerometer measurement |
onehorse | 0:39935bb3c1a1 | 716 | norm = sqrt(ax * ax + ay * ay + az * az); |
onehorse | 0:39935bb3c1a1 | 717 | if (norm == 0.0f) return; // handle NaN |
onehorse | 0:39935bb3c1a1 | 718 | norm = 1.0f / norm; // use reciprocal for division |
onehorse | 0:39935bb3c1a1 | 719 | ax *= norm; |
onehorse | 0:39935bb3c1a1 | 720 | ay *= norm; |
onehorse | 0:39935bb3c1a1 | 721 | az *= norm; |
onehorse | 0:39935bb3c1a1 | 722 | |
onehorse | 0:39935bb3c1a1 | 723 | // Normalise magnetometer measurement |
onehorse | 0:39935bb3c1a1 | 724 | norm = sqrt(mx * mx + my * my + mz * mz); |
onehorse | 0:39935bb3c1a1 | 725 | if (norm == 0.0f) return; // handle NaN |
onehorse | 0:39935bb3c1a1 | 726 | norm = 1.0f / norm; // use reciprocal for division |
onehorse | 0:39935bb3c1a1 | 727 | mx *= norm; |
onehorse | 0:39935bb3c1a1 | 728 | my *= norm; |
onehorse | 0:39935bb3c1a1 | 729 | mz *= norm; |
onehorse | 0:39935bb3c1a1 | 730 | |
onehorse | 0:39935bb3c1a1 | 731 | // Reference direction of Earth's magnetic field |
onehorse | 0:39935bb3c1a1 | 732 | hx = 2.0f * mx * (0.5f - q3q3 - q4q4) + 2.0f * my * (q2q3 - q1q4) + 2.0f * mz * (q2q4 + q1q3); |
onehorse | 0:39935bb3c1a1 | 733 | hy = 2.0f * mx * (q2q3 + q1q4) + 2.0f * my * (0.5f - q2q2 - q4q4) + 2.0f * mz * (q3q4 - q1q2); |
onehorse | 0:39935bb3c1a1 | 734 | bx = sqrt((hx * hx) + (hy * hy)); |
onehorse | 0:39935bb3c1a1 | 735 | bz = 2.0f * mx * (q2q4 - q1q3) + 2.0f * my * (q3q4 + q1q2) + 2.0f * mz * (0.5f - q2q2 - q3q3); |
onehorse | 0:39935bb3c1a1 | 736 | |
onehorse | 0:39935bb3c1a1 | 737 | // Estimated direction of gravity and magnetic field |
onehorse | 0:39935bb3c1a1 | 738 | vx = 2.0f * (q2q4 - q1q3); |
onehorse | 0:39935bb3c1a1 | 739 | vy = 2.0f * (q1q2 + q3q4); |
onehorse | 0:39935bb3c1a1 | 740 | vz = q1q1 - q2q2 - q3q3 + q4q4; |
onehorse | 0:39935bb3c1a1 | 741 | wx = 2.0f * bx * (0.5f - q3q3 - q4q4) + 2.0f * bz * (q2q4 - q1q3); |
onehorse | 0:39935bb3c1a1 | 742 | wy = 2.0f * bx * (q2q3 - q1q4) + 2.0f * bz * (q1q2 + q3q4); |
onehorse | 0:39935bb3c1a1 | 743 | wz = 2.0f * bx * (q1q3 + q2q4) + 2.0f * bz * (0.5f - q2q2 - q3q3); |
onehorse | 0:39935bb3c1a1 | 744 | |
onehorse | 0:39935bb3c1a1 | 745 | // Error is cross product between estimated direction and measured direction of gravity |
onehorse | 0:39935bb3c1a1 | 746 | ex = (ay * vz - az * vy) + (my * wz - mz * wy); |
onehorse | 0:39935bb3c1a1 | 747 | ey = (az * vx - ax * vz) + (mz * wx - mx * wz); |
onehorse | 0:39935bb3c1a1 | 748 | ez = (ax * vy - ay * vx) + (mx * wy - my * wx); |
onehorse | 0:39935bb3c1a1 | 749 | if (Ki > 0.0f) |
onehorse | 0:39935bb3c1a1 | 750 | { |
onehorse | 0:39935bb3c1a1 | 751 | eInt[0] += ex; // accumulate integral error |
onehorse | 0:39935bb3c1a1 | 752 | eInt[1] += ey; |
onehorse | 0:39935bb3c1a1 | 753 | eInt[2] += ez; |
onehorse | 0:39935bb3c1a1 | 754 | } |
onehorse | 0:39935bb3c1a1 | 755 | else |
onehorse | 0:39935bb3c1a1 | 756 | { |
onehorse | 0:39935bb3c1a1 | 757 | eInt[0] = 0.0f; // prevent integral wind up |
onehorse | 0:39935bb3c1a1 | 758 | eInt[1] = 0.0f; |
onehorse | 0:39935bb3c1a1 | 759 | eInt[2] = 0.0f; |
onehorse | 0:39935bb3c1a1 | 760 | } |
onehorse | 0:39935bb3c1a1 | 761 | |
onehorse | 0:39935bb3c1a1 | 762 | // Apply feedback terms |
onehorse | 0:39935bb3c1a1 | 763 | gx = gx + Kp * ex + Ki * eInt[0]; |
onehorse | 0:39935bb3c1a1 | 764 | gy = gy + Kp * ey + Ki * eInt[1]; |
onehorse | 0:39935bb3c1a1 | 765 | gz = gz + Kp * ez + Ki * eInt[2]; |
onehorse | 0:39935bb3c1a1 | 766 | |
onehorse | 0:39935bb3c1a1 | 767 | // Integrate rate of change of quaternion |
onehorse | 0:39935bb3c1a1 | 768 | pa = q2; |
onehorse | 0:39935bb3c1a1 | 769 | pb = q3; |
onehorse | 0:39935bb3c1a1 | 770 | pc = q4; |
onehorse | 0:39935bb3c1a1 | 771 | q1 = q1 + (-q2 * gx - q3 * gy - q4 * gz) * (0.5f * deltat); |
onehorse | 0:39935bb3c1a1 | 772 | q2 = pa + (q1 * gx + pb * gz - pc * gy) * (0.5f * deltat); |
onehorse | 0:39935bb3c1a1 | 773 | q3 = pb + (q1 * gy - pa * gz + pc * gx) * (0.5f * deltat); |
onehorse | 0:39935bb3c1a1 | 774 | q4 = pc + (q1 * gz + pa * gy - pb * gx) * (0.5f * deltat); |
onehorse | 0:39935bb3c1a1 | 775 | |
onehorse | 0:39935bb3c1a1 | 776 | // Normalise quaternion |
onehorse | 0:39935bb3c1a1 | 777 | norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); |
onehorse | 0:39935bb3c1a1 | 778 | norm = 1.0f / norm; |
onehorse | 0:39935bb3c1a1 | 779 | q[0] = q1 * norm; |
onehorse | 0:39935bb3c1a1 | 780 | q[1] = q2 * norm; |
onehorse | 0:39935bb3c1a1 | 781 | q[2] = q3 * norm; |
onehorse | 0:39935bb3c1a1 | 782 | q[3] = q4 * norm; |
onehorse | 0:39935bb3c1a1 | 783 | |
onehorse | 0:39935bb3c1a1 | 784 | } |
onehorse | 0:39935bb3c1a1 | 785 | }; |
onehorse | 0:39935bb3c1a1 | 786 | #endif |