Low power gas, pressure, temperature and humidity sensor

Dependents:   MERGE Sensor_iAQ_sgp30_bme_si7051 POCBreath_V2_smd_commercial

Committer:
mcm
Date:
Mon Jul 23 11:41:39 2018 +0000
Revision:
3:8aefe9304f85
Parent:
1:4d60db802cfb
An example that shows how to use this driver was added into the header file.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mcm 1:4d60db802cfb 1 /**
mcm 1:4d60db802cfb 2 * @brief BME680.cpp
mcm 1:4d60db802cfb 3 * @details Low power gas, pressure, temperature & humidity sensor.
mcm 1:4d60db802cfb 4 * Function file.
mcm 1:4d60db802cfb 5 *
mcm 1:4d60db802cfb 6 *
mcm 1:4d60db802cfb 7 * @return N/A
mcm 1:4d60db802cfb 8 *
mcm 1:4d60db802cfb 9 * @author Manuel Caballero
mcm 1:4d60db802cfb 10 * @date 21/July/2018
mcm 1:4d60db802cfb 11 * @version 21/July/2018 The ORIGIN
mcm 1:4d60db802cfb 12 * @pre This is just a port from Bosh driver to mBed ( c++ )
mcm 1:4d60db802cfb 13 * @warning N/A
mcm 1:4d60db802cfb 14 * @pre This code belongs to Nimbus Centre ( http://www.nimbus.cit.ie ).
mcm 1:4d60db802cfb 15 */
mcm 1:4d60db802cfb 16 /**\mainpage
mcm 1:4d60db802cfb 17 * Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
mcm 1:4d60db802cfb 18 *
mcm 1:4d60db802cfb 19 * Redistribution and use in source and binary forms, with or without
mcm 1:4d60db802cfb 20 * modification, are permitted provided that the following conditions are met:
mcm 1:4d60db802cfb 21 *
mcm 1:4d60db802cfb 22 * Redistributions of source code must retain the above copyright
mcm 1:4d60db802cfb 23 * notice, this list of conditions and the following disclaimer.
mcm 1:4d60db802cfb 24 *
mcm 1:4d60db802cfb 25 * Redistributions in binary form must reproduce the above copyright
mcm 1:4d60db802cfb 26 * notice, this list of conditions and the following disclaimer in the
mcm 1:4d60db802cfb 27 * documentation and/or other materials provided with the distribution.
mcm 1:4d60db802cfb 28 *
mcm 1:4d60db802cfb 29 * Neither the name of the copyright holder nor the names of the
mcm 1:4d60db802cfb 30 * contributors may be used to endorse or promote products derived from
mcm 1:4d60db802cfb 31 * this software without specific prior written permission.
mcm 1:4d60db802cfb 32 *
mcm 1:4d60db802cfb 33 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
mcm 1:4d60db802cfb 34 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
mcm 1:4d60db802cfb 35 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
mcm 1:4d60db802cfb 36 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
mcm 1:4d60db802cfb 37 * DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
mcm 1:4d60db802cfb 38 * OR CONTRIBUTORS BE LIABLE FOR ANY
mcm 1:4d60db802cfb 39 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
mcm 1:4d60db802cfb 40 * OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
mcm 1:4d60db802cfb 41 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
mcm 1:4d60db802cfb 42 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
mcm 1:4d60db802cfb 43 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
mcm 1:4d60db802cfb 44 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
mcm 1:4d60db802cfb 45 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
mcm 1:4d60db802cfb 46 * ANY WAY OUT OF THE USE OF THIS
mcm 1:4d60db802cfb 47 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
mcm 1:4d60db802cfb 48 *
mcm 1:4d60db802cfb 49 * The information provided is believed to be accurate and reliable.
mcm 1:4d60db802cfb 50 * The copyright holder assumes no responsibility
mcm 1:4d60db802cfb 51 * for the consequences of use
mcm 1:4d60db802cfb 52 * of such information nor for any infringement of patents or
mcm 1:4d60db802cfb 53 * other rights of third parties which may result from its use.
mcm 1:4d60db802cfb 54 * No license is granted by implication or otherwise under any patent or
mcm 1:4d60db802cfb 55 * patent rights of the copyright holder.
mcm 1:4d60db802cfb 56 *
mcm 1:4d60db802cfb 57 * File bme680.c
mcm 1:4d60db802cfb 58 * @date 19 Jun 2018
mcm 1:4d60db802cfb 59 * @version 3.5.9
mcm 1:4d60db802cfb 60 *
mcm 1:4d60db802cfb 61 */
mcm 1:4d60db802cfb 62
mcm 1:4d60db802cfb 63 /*! @file bme680.c
mcm 1:4d60db802cfb 64 @brief Sensor driver for BME680 sensor */
mcm 1:4d60db802cfb 65 #include "BME680.h"
mcm 1:4d60db802cfb 66
mcm 1:4d60db802cfb 67 BME680::BME680 ( PinName sda, PinName scl, uint32_t freq )
mcm 1:4d60db802cfb 68 : _i2c ( sda, scl )
mcm 1:4d60db802cfb 69 {
mcm 1:4d60db802cfb 70 _i2c.frequency ( freq );
mcm 1:4d60db802cfb 71 }
mcm 1:4d60db802cfb 72
mcm 1:4d60db802cfb 73
mcm 1:4d60db802cfb 74 BME680::~BME680()
mcm 1:4d60db802cfb 75 {
mcm 1:4d60db802cfb 76 }
mcm 1:4d60db802cfb 77
mcm 1:4d60db802cfb 78
mcm 1:4d60db802cfb 79 /****************** Global Function Definitions *******************************/
mcm 1:4d60db802cfb 80 /*!
mcm 1:4d60db802cfb 81 *@brief This API is the entry point.
mcm 1:4d60db802cfb 82 *It reads the chip-id and calibration data from the sensor.
mcm 1:4d60db802cfb 83 */
mcm 1:4d60db802cfb 84 int8_t BME680::bme680_init(struct bme680_dev *dev)
mcm 1:4d60db802cfb 85 {
mcm 1:4d60db802cfb 86 int8_t rslt;
mcm 1:4d60db802cfb 87
mcm 1:4d60db802cfb 88 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 89 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 90 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 91 /* Soft reset to restore it to default values*/
mcm 1:4d60db802cfb 92 rslt = bme680_soft_reset(dev);
mcm 1:4d60db802cfb 93 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 94 rslt = bme680_get_regs(BME680_CHIP_ID_ADDR, &dev->chip_id, 1, dev);
mcm 1:4d60db802cfb 95 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 96 if (dev->chip_id == BME680_CHIP_ID) {
mcm 1:4d60db802cfb 97 /* Get the Calibration data */
mcm 1:4d60db802cfb 98 rslt = get_calib_data(dev);
mcm 1:4d60db802cfb 99 } else {
mcm 1:4d60db802cfb 100 rslt = BME680_E_DEV_NOT_FOUND;
mcm 1:4d60db802cfb 101 }
mcm 1:4d60db802cfb 102 }
mcm 1:4d60db802cfb 103 }
mcm 1:4d60db802cfb 104 }
mcm 1:4d60db802cfb 105
mcm 1:4d60db802cfb 106 return rslt;
mcm 1:4d60db802cfb 107 }
mcm 1:4d60db802cfb 108
mcm 1:4d60db802cfb 109 /*!
mcm 1:4d60db802cfb 110 * @brief This API reads the data from the given register address of the sensor.
mcm 1:4d60db802cfb 111 */
mcm 1:4d60db802cfb 112 int8_t BME680::bme680_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len, struct bme680_dev *dev)
mcm 1:4d60db802cfb 113 {
mcm 1:4d60db802cfb 114 int8_t rslt;
mcm 1:4d60db802cfb 115
mcm 1:4d60db802cfb 116 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 117 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 118 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 119 if (dev->intf == BME680_SPI_INTF) {
mcm 1:4d60db802cfb 120 /* Set the memory page */
mcm 1:4d60db802cfb 121 rslt = set_mem_page(reg_addr, dev);
mcm 1:4d60db802cfb 122 if (rslt == BME680_OK)
mcm 1:4d60db802cfb 123 reg_addr = reg_addr | BME680_SPI_RD_MSK;
mcm 1:4d60db802cfb 124 }
mcm 1:4d60db802cfb 125 dev->com_rslt = dev->read(dev->dev_id, reg_addr, reg_data, len);
mcm 1:4d60db802cfb 126 if (dev->com_rslt != 0)
mcm 1:4d60db802cfb 127 rslt = BME680_E_COM_FAIL;
mcm 1:4d60db802cfb 128 }
mcm 1:4d60db802cfb 129
mcm 1:4d60db802cfb 130 return rslt;
mcm 1:4d60db802cfb 131 }
mcm 1:4d60db802cfb 132
mcm 1:4d60db802cfb 133 /*!
mcm 1:4d60db802cfb 134 * @brief This API writes the given data to the register address
mcm 1:4d60db802cfb 135 * of the sensor.
mcm 1:4d60db802cfb 136 */
mcm 1:4d60db802cfb 137 int8_t BME680::bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len, struct bme680_dev *dev)
mcm 1:4d60db802cfb 138 {
mcm 1:4d60db802cfb 139 int8_t rslt;
mcm 1:4d60db802cfb 140 /* Length of the temporary buffer is 2*(length of register)*/
mcm 1:4d60db802cfb 141 uint8_t tmp_buff[BME680_TMP_BUFFER_LENGTH] = { 0 };
mcm 1:4d60db802cfb 142 uint16_t index;
mcm 1:4d60db802cfb 143
mcm 1:4d60db802cfb 144 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 145 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 146 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 147 if ((len > 0) && (len < BME680_TMP_BUFFER_LENGTH / 2)) {
mcm 1:4d60db802cfb 148 /* Interleave the 2 arrays */
mcm 1:4d60db802cfb 149 for (index = 0; index < len; index++) {
mcm 1:4d60db802cfb 150 if (dev->intf == BME680_SPI_INTF) {
mcm 1:4d60db802cfb 151 /* Set the memory page */
mcm 1:4d60db802cfb 152 rslt = set_mem_page(reg_addr[index], dev);
mcm 1:4d60db802cfb 153 tmp_buff[(2 * index)] = reg_addr[index] & BME680_SPI_WR_MSK;
mcm 1:4d60db802cfb 154 } else {
mcm 1:4d60db802cfb 155 tmp_buff[(2 * index)] = reg_addr[index];
mcm 1:4d60db802cfb 156 }
mcm 1:4d60db802cfb 157 tmp_buff[(2 * index) + 1] = reg_data[index];
mcm 1:4d60db802cfb 158 }
mcm 1:4d60db802cfb 159 /* Write the interleaved array */
mcm 1:4d60db802cfb 160 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 161 dev->com_rslt = dev->write(dev->dev_id, tmp_buff[0], &tmp_buff[1], (2 * len) - 1);
mcm 1:4d60db802cfb 162 if (dev->com_rslt != 0)
mcm 1:4d60db802cfb 163 rslt = BME680_E_COM_FAIL;
mcm 1:4d60db802cfb 164 }
mcm 1:4d60db802cfb 165 } else {
mcm 1:4d60db802cfb 166 rslt = BME680_E_INVALID_LENGTH;
mcm 1:4d60db802cfb 167 }
mcm 1:4d60db802cfb 168 }
mcm 1:4d60db802cfb 169
mcm 1:4d60db802cfb 170 return rslt;
mcm 1:4d60db802cfb 171 }
mcm 1:4d60db802cfb 172
mcm 1:4d60db802cfb 173 /*!
mcm 1:4d60db802cfb 174 * @brief This API performs the soft reset of the sensor.
mcm 1:4d60db802cfb 175 */
mcm 1:4d60db802cfb 176 int8_t BME680::bme680_soft_reset(struct bme680_dev *dev)
mcm 1:4d60db802cfb 177 {
mcm 1:4d60db802cfb 178 int8_t rslt;
mcm 1:4d60db802cfb 179 uint8_t reg_addr = BME680_SOFT_RESET_ADDR;
mcm 1:4d60db802cfb 180 /* 0xb6 is the soft reset command */
mcm 1:4d60db802cfb 181 uint8_t soft_rst_cmd = BME680_SOFT_RESET_CMD;
mcm 1:4d60db802cfb 182
mcm 1:4d60db802cfb 183 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 184 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 185 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 186 if (dev->intf == BME680_SPI_INTF)
mcm 1:4d60db802cfb 187 rslt = get_mem_page(dev);
mcm 1:4d60db802cfb 188
mcm 1:4d60db802cfb 189 /* Reset the device */
mcm 1:4d60db802cfb 190 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 191 rslt = bme680_set_regs(&reg_addr, &soft_rst_cmd, 1, dev);
mcm 1:4d60db802cfb 192 /* Wait for 5ms */
mcm 1:4d60db802cfb 193 dev->delay_ms(BME680_RESET_PERIOD);
mcm 1:4d60db802cfb 194
mcm 1:4d60db802cfb 195 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 196 /* After reset get the memory page */
mcm 1:4d60db802cfb 197 if (dev->intf == BME680_SPI_INTF)
mcm 1:4d60db802cfb 198 rslt = get_mem_page(dev);
mcm 1:4d60db802cfb 199 }
mcm 1:4d60db802cfb 200 }
mcm 1:4d60db802cfb 201 }
mcm 1:4d60db802cfb 202
mcm 1:4d60db802cfb 203 return rslt;
mcm 1:4d60db802cfb 204 }
mcm 1:4d60db802cfb 205
mcm 1:4d60db802cfb 206 /*!
mcm 1:4d60db802cfb 207 * @brief This API is used to set the oversampling, filter and T,P,H, gas selection
mcm 1:4d60db802cfb 208 * settings in the sensor.
mcm 1:4d60db802cfb 209 */
mcm 1:4d60db802cfb 210 int8_t BME680::bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev)
mcm 1:4d60db802cfb 211 {
mcm 1:4d60db802cfb 212 int8_t rslt;
mcm 1:4d60db802cfb 213 uint8_t reg_addr;
mcm 1:4d60db802cfb 214 uint8_t data = 0;
mcm 1:4d60db802cfb 215 uint8_t count = 0;
mcm 1:4d60db802cfb 216 uint8_t reg_array[BME680_REG_BUFFER_LENGTH] = { 0 };
mcm 1:4d60db802cfb 217 uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 };
mcm 1:4d60db802cfb 218 uint8_t intended_power_mode = dev->power_mode; /* Save intended power mode */
mcm 1:4d60db802cfb 219
mcm 1:4d60db802cfb 220 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 221 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 222 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 223 if (desired_settings & BME680_GAS_MEAS_SEL)
mcm 1:4d60db802cfb 224 rslt = set_gas_config(dev);
mcm 1:4d60db802cfb 225
mcm 1:4d60db802cfb 226 dev->power_mode = BME680_SLEEP_MODE;
mcm 1:4d60db802cfb 227 if (rslt == BME680_OK)
mcm 1:4d60db802cfb 228 rslt = bme680_set_sensor_mode(dev);
mcm 1:4d60db802cfb 229
mcm 1:4d60db802cfb 230 /* Selecting the filter */
mcm 1:4d60db802cfb 231 if (desired_settings & BME680_FILTER_SEL) {
mcm 1:4d60db802cfb 232 rslt = boundary_check(&dev->tph_sett.filter, BME680_FILTER_SIZE_0, BME680_FILTER_SIZE_127, dev);
mcm 1:4d60db802cfb 233 reg_addr = BME680_CONF_ODR_FILT_ADDR;
mcm 1:4d60db802cfb 234
mcm 1:4d60db802cfb 235 if (rslt == BME680_OK)
mcm 1:4d60db802cfb 236 rslt = bme680_get_regs(reg_addr, &data, 1, dev);
mcm 1:4d60db802cfb 237
mcm 1:4d60db802cfb 238 if (desired_settings & BME680_FILTER_SEL)
mcm 1:4d60db802cfb 239 data = BME680_SET_BITS(data, BME680_FILTER, dev->tph_sett.filter);
mcm 1:4d60db802cfb 240
mcm 1:4d60db802cfb 241 reg_array[count] = reg_addr; /* Append configuration */
mcm 1:4d60db802cfb 242 data_array[count] = data;
mcm 1:4d60db802cfb 243 count++;
mcm 1:4d60db802cfb 244 }
mcm 1:4d60db802cfb 245
mcm 1:4d60db802cfb 246 /* Selecting heater control for the sensor */
mcm 1:4d60db802cfb 247 if (desired_settings & BME680_HCNTRL_SEL) {
mcm 1:4d60db802cfb 248 rslt = boundary_check(&dev->gas_sett.heatr_ctrl, BME680_ENABLE_HEATER,
mcm 1:4d60db802cfb 249 BME680_DISABLE_HEATER, dev);
mcm 1:4d60db802cfb 250 reg_addr = BME680_CONF_HEAT_CTRL_ADDR;
mcm 1:4d60db802cfb 251
mcm 1:4d60db802cfb 252 if (rslt == BME680_OK)
mcm 1:4d60db802cfb 253 rslt = bme680_get_regs(reg_addr, &data, 1, dev);
mcm 1:4d60db802cfb 254 data = BME680_SET_BITS_POS_0(data, BME680_HCTRL, dev->gas_sett.heatr_ctrl);
mcm 1:4d60db802cfb 255
mcm 1:4d60db802cfb 256 reg_array[count] = reg_addr; /* Append configuration */
mcm 1:4d60db802cfb 257 data_array[count] = data;
mcm 1:4d60db802cfb 258 count++;
mcm 1:4d60db802cfb 259 }
mcm 1:4d60db802cfb 260
mcm 1:4d60db802cfb 261 /* Selecting heater T,P oversampling for the sensor */
mcm 1:4d60db802cfb 262 if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) {
mcm 1:4d60db802cfb 263 rslt = boundary_check(&dev->tph_sett.os_temp, BME680_OS_NONE, BME680_OS_16X, dev);
mcm 1:4d60db802cfb 264 reg_addr = BME680_CONF_T_P_MODE_ADDR;
mcm 1:4d60db802cfb 265
mcm 1:4d60db802cfb 266 if (rslt == BME680_OK)
mcm 1:4d60db802cfb 267 rslt = bme680_get_regs(reg_addr, &data, 1, dev);
mcm 1:4d60db802cfb 268
mcm 1:4d60db802cfb 269 if (desired_settings & BME680_OST_SEL)
mcm 1:4d60db802cfb 270 data = BME680_SET_BITS(data, BME680_OST, dev->tph_sett.os_temp);
mcm 1:4d60db802cfb 271
mcm 1:4d60db802cfb 272 if (desired_settings & BME680_OSP_SEL)
mcm 1:4d60db802cfb 273 data = BME680_SET_BITS(data, BME680_OSP, dev->tph_sett.os_pres);
mcm 1:4d60db802cfb 274
mcm 1:4d60db802cfb 275 reg_array[count] = reg_addr;
mcm 1:4d60db802cfb 276 data_array[count] = data;
mcm 1:4d60db802cfb 277 count++;
mcm 1:4d60db802cfb 278 }
mcm 1:4d60db802cfb 279
mcm 1:4d60db802cfb 280 /* Selecting humidity oversampling for the sensor */
mcm 1:4d60db802cfb 281 if (desired_settings & BME680_OSH_SEL) {
mcm 1:4d60db802cfb 282 rslt = boundary_check(&dev->tph_sett.os_hum, BME680_OS_NONE, BME680_OS_16X, dev);
mcm 1:4d60db802cfb 283 reg_addr = BME680_CONF_OS_H_ADDR;
mcm 1:4d60db802cfb 284
mcm 1:4d60db802cfb 285 if (rslt == BME680_OK)
mcm 1:4d60db802cfb 286 rslt = bme680_get_regs(reg_addr, &data, 1, dev);
mcm 1:4d60db802cfb 287 data = BME680_SET_BITS_POS_0(data, BME680_OSH, dev->tph_sett.os_hum);
mcm 1:4d60db802cfb 288
mcm 1:4d60db802cfb 289 reg_array[count] = reg_addr; /* Append configuration */
mcm 1:4d60db802cfb 290 data_array[count] = data;
mcm 1:4d60db802cfb 291 count++;
mcm 1:4d60db802cfb 292 }
mcm 1:4d60db802cfb 293
mcm 1:4d60db802cfb 294 /* Selecting the runGas and NB conversion settings for the sensor */
mcm 1:4d60db802cfb 295 if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) {
mcm 1:4d60db802cfb 296 rslt = boundary_check(&dev->gas_sett.run_gas, BME680_RUN_GAS_DISABLE,
mcm 1:4d60db802cfb 297 BME680_RUN_GAS_ENABLE, dev);
mcm 1:4d60db802cfb 298 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 299 /* Validate boundary conditions */
mcm 1:4d60db802cfb 300 rslt = boundary_check(&dev->gas_sett.nb_conv, BME680_NBCONV_MIN,
mcm 1:4d60db802cfb 301 BME680_NBCONV_MAX, dev);
mcm 1:4d60db802cfb 302 }
mcm 1:4d60db802cfb 303
mcm 1:4d60db802cfb 304 reg_addr = BME680_CONF_ODR_RUN_GAS_NBC_ADDR;
mcm 1:4d60db802cfb 305
mcm 1:4d60db802cfb 306 if (rslt == BME680_OK)
mcm 1:4d60db802cfb 307 rslt = bme680_get_regs(reg_addr, &data, 1, dev);
mcm 1:4d60db802cfb 308
mcm 1:4d60db802cfb 309 if (desired_settings & BME680_RUN_GAS_SEL)
mcm 1:4d60db802cfb 310 data = BME680_SET_BITS(data, BME680_RUN_GAS, dev->gas_sett.run_gas);
mcm 1:4d60db802cfb 311
mcm 1:4d60db802cfb 312 if (desired_settings & BME680_NBCONV_SEL)
mcm 1:4d60db802cfb 313 data = BME680_SET_BITS_POS_0(data, BME680_NBCONV, dev->gas_sett.nb_conv);
mcm 1:4d60db802cfb 314
mcm 1:4d60db802cfb 315 reg_array[count] = reg_addr; /* Append configuration */
mcm 1:4d60db802cfb 316 data_array[count] = data;
mcm 1:4d60db802cfb 317 count++;
mcm 1:4d60db802cfb 318 }
mcm 1:4d60db802cfb 319
mcm 1:4d60db802cfb 320 if (rslt == BME680_OK)
mcm 1:4d60db802cfb 321 rslt = bme680_set_regs(reg_array, data_array, count, dev);
mcm 1:4d60db802cfb 322
mcm 1:4d60db802cfb 323 /* Restore previous intended power mode */
mcm 1:4d60db802cfb 324 dev->power_mode = intended_power_mode;
mcm 1:4d60db802cfb 325 }
mcm 1:4d60db802cfb 326
mcm 1:4d60db802cfb 327 return rslt;
mcm 1:4d60db802cfb 328 }
mcm 1:4d60db802cfb 329
mcm 1:4d60db802cfb 330 /*!
mcm 1:4d60db802cfb 331 * @brief This API is used to get the oversampling, filter and T,P,H, gas selection
mcm 1:4d60db802cfb 332 * settings in the sensor.
mcm 1:4d60db802cfb 333 */
mcm 1:4d60db802cfb 334 int8_t BME680::bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev)
mcm 1:4d60db802cfb 335 {
mcm 1:4d60db802cfb 336 int8_t rslt;
mcm 1:4d60db802cfb 337 /* starting address of the register array for burst read*/
mcm 1:4d60db802cfb 338 uint8_t reg_addr = BME680_CONF_HEAT_CTRL_ADDR;
mcm 1:4d60db802cfb 339 uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 };
mcm 1:4d60db802cfb 340
mcm 1:4d60db802cfb 341 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 342 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 343 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 344 rslt = bme680_get_regs(reg_addr, data_array, BME680_REG_BUFFER_LENGTH, dev);
mcm 1:4d60db802cfb 345
mcm 1:4d60db802cfb 346 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 347 if (desired_settings & BME680_GAS_MEAS_SEL)
mcm 1:4d60db802cfb 348 rslt = get_gas_config(dev);
mcm 1:4d60db802cfb 349
mcm 1:4d60db802cfb 350 /* get the T,P,H ,Filter,ODR settings here */
mcm 1:4d60db802cfb 351 if (desired_settings & BME680_FILTER_SEL)
mcm 1:4d60db802cfb 352 dev->tph_sett.filter = BME680_GET_BITS(data_array[BME680_REG_FILTER_INDEX],
mcm 1:4d60db802cfb 353 BME680_FILTER);
mcm 1:4d60db802cfb 354
mcm 1:4d60db802cfb 355 if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) {
mcm 1:4d60db802cfb 356 dev->tph_sett.os_temp = BME680_GET_BITS(data_array[BME680_REG_TEMP_INDEX], BME680_OST);
mcm 1:4d60db802cfb 357 dev->tph_sett.os_pres = BME680_GET_BITS(data_array[BME680_REG_PRES_INDEX], BME680_OSP);
mcm 1:4d60db802cfb 358 }
mcm 1:4d60db802cfb 359
mcm 1:4d60db802cfb 360 if (desired_settings & BME680_OSH_SEL)
mcm 1:4d60db802cfb 361 dev->tph_sett.os_hum = BME680_GET_BITS_POS_0(data_array[BME680_REG_HUM_INDEX],
mcm 1:4d60db802cfb 362 BME680_OSH);
mcm 1:4d60db802cfb 363
mcm 1:4d60db802cfb 364 /* get the gas related settings */
mcm 1:4d60db802cfb 365 if (desired_settings & BME680_HCNTRL_SEL)
mcm 1:4d60db802cfb 366 dev->gas_sett.heatr_ctrl = BME680_GET_BITS_POS_0(data_array[BME680_REG_HCTRL_INDEX],
mcm 1:4d60db802cfb 367 BME680_HCTRL);
mcm 1:4d60db802cfb 368
mcm 1:4d60db802cfb 369 if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) {
mcm 1:4d60db802cfb 370 dev->gas_sett.nb_conv = BME680_GET_BITS_POS_0(data_array[BME680_REG_NBCONV_INDEX],
mcm 1:4d60db802cfb 371 BME680_NBCONV);
mcm 1:4d60db802cfb 372 dev->gas_sett.run_gas = BME680_GET_BITS(data_array[BME680_REG_RUN_GAS_INDEX],
mcm 1:4d60db802cfb 373 BME680_RUN_GAS);
mcm 1:4d60db802cfb 374 }
mcm 1:4d60db802cfb 375 }
mcm 1:4d60db802cfb 376 } else {
mcm 1:4d60db802cfb 377 rslt = BME680_E_NULL_PTR;
mcm 1:4d60db802cfb 378 }
mcm 1:4d60db802cfb 379
mcm 1:4d60db802cfb 380 return rslt;
mcm 1:4d60db802cfb 381 }
mcm 1:4d60db802cfb 382
mcm 1:4d60db802cfb 383 /*!
mcm 1:4d60db802cfb 384 * @brief This API is used to set the power mode of the sensor.
mcm 1:4d60db802cfb 385 */
mcm 1:4d60db802cfb 386 int8_t BME680::bme680_set_sensor_mode(struct bme680_dev *dev)
mcm 1:4d60db802cfb 387 {
mcm 1:4d60db802cfb 388 int8_t rslt;
mcm 1:4d60db802cfb 389 uint8_t tmp_pow_mode;
mcm 1:4d60db802cfb 390 uint8_t pow_mode = 0;
mcm 1:4d60db802cfb 391 uint8_t reg_addr = BME680_CONF_T_P_MODE_ADDR;
mcm 1:4d60db802cfb 392
mcm 1:4d60db802cfb 393 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 394 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 395 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 396 /* Call repeatedly until in sleep */
mcm 1:4d60db802cfb 397 do {
mcm 1:4d60db802cfb 398 rslt = bme680_get_regs(BME680_CONF_T_P_MODE_ADDR, &tmp_pow_mode, 1, dev);
mcm 1:4d60db802cfb 399 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 400 /* Put to sleep before changing mode */
mcm 1:4d60db802cfb 401 pow_mode = (tmp_pow_mode & BME680_MODE_MSK);
mcm 1:4d60db802cfb 402
mcm 1:4d60db802cfb 403 if (pow_mode != BME680_SLEEP_MODE) {
mcm 1:4d60db802cfb 404 tmp_pow_mode = tmp_pow_mode & (~BME680_MODE_MSK); /* Set to sleep */
mcm 1:4d60db802cfb 405 rslt = bme680_set_regs(&reg_addr, &tmp_pow_mode, 1, dev);
mcm 1:4d60db802cfb 406 dev->delay_ms(BME680_POLL_PERIOD_MS);
mcm 1:4d60db802cfb 407 }
mcm 1:4d60db802cfb 408 }
mcm 1:4d60db802cfb 409 } while (pow_mode != BME680_SLEEP_MODE);
mcm 1:4d60db802cfb 410
mcm 1:4d60db802cfb 411 /* Already in sleep */
mcm 1:4d60db802cfb 412 if (dev->power_mode != BME680_SLEEP_MODE) {
mcm 1:4d60db802cfb 413 tmp_pow_mode = (tmp_pow_mode & ~BME680_MODE_MSK) | (dev->power_mode & BME680_MODE_MSK);
mcm 1:4d60db802cfb 414 if (rslt == BME680_OK)
mcm 1:4d60db802cfb 415 rslt = bme680_set_regs(&reg_addr, &tmp_pow_mode, 1, dev);
mcm 1:4d60db802cfb 416 }
mcm 1:4d60db802cfb 417 }
mcm 1:4d60db802cfb 418
mcm 1:4d60db802cfb 419 return rslt;
mcm 1:4d60db802cfb 420 }
mcm 1:4d60db802cfb 421
mcm 1:4d60db802cfb 422 /*!
mcm 1:4d60db802cfb 423 * @brief This API is used to get the power mode of the sensor.
mcm 1:4d60db802cfb 424 */
mcm 1:4d60db802cfb 425 int8_t BME680::bme680_get_sensor_mode(struct bme680_dev *dev)
mcm 1:4d60db802cfb 426 {
mcm 1:4d60db802cfb 427 int8_t rslt;
mcm 1:4d60db802cfb 428 uint8_t mode;
mcm 1:4d60db802cfb 429
mcm 1:4d60db802cfb 430 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 431 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 432 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 433 rslt = bme680_get_regs(BME680_CONF_T_P_MODE_ADDR, &mode, 1, dev);
mcm 1:4d60db802cfb 434 /* Masking the other register bit info*/
mcm 1:4d60db802cfb 435 dev->power_mode = mode & BME680_MODE_MSK;
mcm 1:4d60db802cfb 436 }
mcm 1:4d60db802cfb 437
mcm 1:4d60db802cfb 438 return rslt;
mcm 1:4d60db802cfb 439 }
mcm 1:4d60db802cfb 440
mcm 1:4d60db802cfb 441 /*!
mcm 1:4d60db802cfb 442 * @brief This API is used to set the profile duration of the sensor.
mcm 1:4d60db802cfb 443 */
mcm 1:4d60db802cfb 444 void BME680::bme680_set_profile_dur(uint16_t duration, struct bme680_dev *dev)
mcm 1:4d60db802cfb 445 {
mcm 1:4d60db802cfb 446 uint32_t tph_dur; /* Calculate in us */
mcm 1:4d60db802cfb 447 uint32_t meas_cycles;
mcm 1:4d60db802cfb 448 uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16};
mcm 1:4d60db802cfb 449
mcm 1:4d60db802cfb 450 meas_cycles = os_to_meas_cycles[dev->tph_sett.os_temp];
mcm 1:4d60db802cfb 451 meas_cycles += os_to_meas_cycles[dev->tph_sett.os_pres];
mcm 1:4d60db802cfb 452 meas_cycles += os_to_meas_cycles[dev->tph_sett.os_hum];
mcm 1:4d60db802cfb 453
mcm 1:4d60db802cfb 454 /* TPH measurement duration */
mcm 1:4d60db802cfb 455 tph_dur = meas_cycles * UINT32_C(1963);
mcm 1:4d60db802cfb 456 tph_dur += UINT32_C(477 * 4); /* TPH switching duration */
mcm 1:4d60db802cfb 457 tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */
mcm 1:4d60db802cfb 458 tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/
mcm 1:4d60db802cfb 459 tph_dur /= UINT32_C(1000); /* Convert to ms */
mcm 1:4d60db802cfb 460
mcm 1:4d60db802cfb 461 tph_dur += UINT32_C(1); /* Wake up duration of 1ms */
mcm 1:4d60db802cfb 462 /* The remaining time should be used for heating */
mcm 1:4d60db802cfb 463 dev->gas_sett.heatr_dur = duration - (uint16_t) tph_dur;
mcm 1:4d60db802cfb 464 }
mcm 1:4d60db802cfb 465
mcm 1:4d60db802cfb 466 /*!
mcm 1:4d60db802cfb 467 * @brief This API is used to get the profile duration of the sensor.
mcm 1:4d60db802cfb 468 */
mcm 1:4d60db802cfb 469 void BME680::bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev)
mcm 1:4d60db802cfb 470 {
mcm 1:4d60db802cfb 471 uint32_t tph_dur; /* Calculate in us */
mcm 1:4d60db802cfb 472 uint32_t meas_cycles;
mcm 1:4d60db802cfb 473 uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16};
mcm 1:4d60db802cfb 474
mcm 1:4d60db802cfb 475 meas_cycles = os_to_meas_cycles[dev->tph_sett.os_temp];
mcm 1:4d60db802cfb 476 meas_cycles += os_to_meas_cycles[dev->tph_sett.os_pres];
mcm 1:4d60db802cfb 477 meas_cycles += os_to_meas_cycles[dev->tph_sett.os_hum];
mcm 1:4d60db802cfb 478
mcm 1:4d60db802cfb 479 /* TPH measurement duration */
mcm 1:4d60db802cfb 480 tph_dur = meas_cycles * UINT32_C(1963);
mcm 1:4d60db802cfb 481 tph_dur += UINT32_C(477 * 4); /* TPH switching duration */
mcm 1:4d60db802cfb 482 tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */
mcm 1:4d60db802cfb 483 tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/
mcm 1:4d60db802cfb 484 tph_dur /= UINT32_C(1000); /* Convert to ms */
mcm 1:4d60db802cfb 485
mcm 1:4d60db802cfb 486 tph_dur += UINT32_C(1); /* Wake up duration of 1ms */
mcm 1:4d60db802cfb 487
mcm 1:4d60db802cfb 488 *duration = (uint16_t) tph_dur;
mcm 1:4d60db802cfb 489
mcm 1:4d60db802cfb 490 /* Get the gas duration only when the run gas is enabled */
mcm 1:4d60db802cfb 491 if (dev->gas_sett.run_gas) {
mcm 1:4d60db802cfb 492 /* The remaining time should be used for heating */
mcm 1:4d60db802cfb 493 *duration += dev->gas_sett.heatr_dur;
mcm 1:4d60db802cfb 494 }
mcm 1:4d60db802cfb 495 }
mcm 1:4d60db802cfb 496
mcm 1:4d60db802cfb 497 /*!
mcm 1:4d60db802cfb 498 * @brief This API reads the pressure, temperature and humidity and gas data
mcm 1:4d60db802cfb 499 * from the sensor, compensates the data and store it in the bme680_data
mcm 1:4d60db802cfb 500 * structure instance passed by the user.
mcm 1:4d60db802cfb 501 */
mcm 1:4d60db802cfb 502 int8_t BME680::bme680_get_sensor_data(struct bme680_field_data *data, struct bme680_dev *dev)
mcm 1:4d60db802cfb 503 {
mcm 1:4d60db802cfb 504 int8_t rslt;
mcm 1:4d60db802cfb 505
mcm 1:4d60db802cfb 506 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 507 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 508 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 509 /* Reading the sensor data in forced mode only */
mcm 1:4d60db802cfb 510 rslt = read_field_data(data, dev);
mcm 1:4d60db802cfb 511 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 512 if (data->status & BME680_NEW_DATA_MSK)
mcm 1:4d60db802cfb 513 dev->new_fields = 1;
mcm 1:4d60db802cfb 514 else
mcm 1:4d60db802cfb 515 dev->new_fields = 0;
mcm 1:4d60db802cfb 516 }
mcm 1:4d60db802cfb 517 }
mcm 1:4d60db802cfb 518
mcm 1:4d60db802cfb 519 return rslt;
mcm 1:4d60db802cfb 520 }
mcm 1:4d60db802cfb 521
mcm 1:4d60db802cfb 522 /*!
mcm 1:4d60db802cfb 523 * @brief This internal API is used to read the calibrated data from the sensor.
mcm 1:4d60db802cfb 524 */
mcm 1:4d60db802cfb 525 int8_t BME680::get_calib_data(struct bme680_dev *dev)
mcm 1:4d60db802cfb 526 {
mcm 1:4d60db802cfb 527 int8_t rslt;
mcm 1:4d60db802cfb 528 uint8_t coeff_array[BME680_COEFF_SIZE] = { 0 };
mcm 1:4d60db802cfb 529 uint8_t temp_var = 0; /* Temporary variable */
mcm 1:4d60db802cfb 530
mcm 1:4d60db802cfb 531 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 532 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 533 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 534 rslt = bme680_get_regs(BME680_COEFF_ADDR1, coeff_array, BME680_COEFF_ADDR1_LEN, dev);
mcm 1:4d60db802cfb 535 /* Append the second half in the same array */
mcm 1:4d60db802cfb 536 if (rslt == BME680_OK)
mcm 1:4d60db802cfb 537 rslt = bme680_get_regs(BME680_COEFF_ADDR2, &coeff_array[BME680_COEFF_ADDR1_LEN]
mcm 1:4d60db802cfb 538 , BME680_COEFF_ADDR2_LEN, dev);
mcm 1:4d60db802cfb 539
mcm 1:4d60db802cfb 540 /* Temperature related coefficients */
mcm 1:4d60db802cfb 541 dev->calib.par_t1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T1_MSB_REG],
mcm 1:4d60db802cfb 542 coeff_array[BME680_T1_LSB_REG]));
mcm 1:4d60db802cfb 543 dev->calib.par_t2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T2_MSB_REG],
mcm 1:4d60db802cfb 544 coeff_array[BME680_T2_LSB_REG]));
mcm 1:4d60db802cfb 545 dev->calib.par_t3 = (int8_t) (coeff_array[BME680_T3_REG]);
mcm 1:4d60db802cfb 546
mcm 1:4d60db802cfb 547 /* Pressure related coefficients */
mcm 1:4d60db802cfb 548 dev->calib.par_p1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P1_MSB_REG],
mcm 1:4d60db802cfb 549 coeff_array[BME680_P1_LSB_REG]));
mcm 1:4d60db802cfb 550 dev->calib.par_p2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P2_MSB_REG],
mcm 1:4d60db802cfb 551 coeff_array[BME680_P2_LSB_REG]));
mcm 1:4d60db802cfb 552 dev->calib.par_p3 = (int8_t) coeff_array[BME680_P3_REG];
mcm 1:4d60db802cfb 553 dev->calib.par_p4 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P4_MSB_REG],
mcm 1:4d60db802cfb 554 coeff_array[BME680_P4_LSB_REG]));
mcm 1:4d60db802cfb 555 dev->calib.par_p5 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P5_MSB_REG],
mcm 1:4d60db802cfb 556 coeff_array[BME680_P5_LSB_REG]));
mcm 1:4d60db802cfb 557 dev->calib.par_p6 = (int8_t) (coeff_array[BME680_P6_REG]);
mcm 1:4d60db802cfb 558 dev->calib.par_p7 = (int8_t) (coeff_array[BME680_P7_REG]);
mcm 1:4d60db802cfb 559 dev->calib.par_p8 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P8_MSB_REG],
mcm 1:4d60db802cfb 560 coeff_array[BME680_P8_LSB_REG]));
mcm 1:4d60db802cfb 561 dev->calib.par_p9 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P9_MSB_REG],
mcm 1:4d60db802cfb 562 coeff_array[BME680_P9_LSB_REG]));
mcm 1:4d60db802cfb 563 dev->calib.par_p10 = (uint8_t) (coeff_array[BME680_P10_REG]);
mcm 1:4d60db802cfb 564
mcm 1:4d60db802cfb 565 /* Humidity related coefficients */
mcm 1:4d60db802cfb 566 dev->calib.par_h1 = (uint16_t) (((uint16_t) coeff_array[BME680_H1_MSB_REG] << BME680_HUM_REG_SHIFT_VAL)
mcm 1:4d60db802cfb 567 | (coeff_array[BME680_H1_LSB_REG] & BME680_BIT_H1_DATA_MSK));
mcm 1:4d60db802cfb 568 dev->calib.par_h2 = (uint16_t) (((uint16_t) coeff_array[BME680_H2_MSB_REG] << BME680_HUM_REG_SHIFT_VAL)
mcm 1:4d60db802cfb 569 | ((coeff_array[BME680_H2_LSB_REG]) >> BME680_HUM_REG_SHIFT_VAL));
mcm 1:4d60db802cfb 570 dev->calib.par_h3 = (int8_t) coeff_array[BME680_H3_REG];
mcm 1:4d60db802cfb 571 dev->calib.par_h4 = (int8_t) coeff_array[BME680_H4_REG];
mcm 1:4d60db802cfb 572 dev->calib.par_h5 = (int8_t) coeff_array[BME680_H5_REG];
mcm 1:4d60db802cfb 573 dev->calib.par_h6 = (uint8_t) coeff_array[BME680_H6_REG];
mcm 1:4d60db802cfb 574 dev->calib.par_h7 = (int8_t) coeff_array[BME680_H7_REG];
mcm 1:4d60db802cfb 575
mcm 1:4d60db802cfb 576 /* Gas heater related coefficients */
mcm 1:4d60db802cfb 577 dev->calib.par_gh1 = (int8_t) coeff_array[BME680_GH1_REG];
mcm 1:4d60db802cfb 578 dev->calib.par_gh2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_GH2_MSB_REG],
mcm 1:4d60db802cfb 579 coeff_array[BME680_GH2_LSB_REG]));
mcm 1:4d60db802cfb 580 dev->calib.par_gh3 = (int8_t) coeff_array[BME680_GH3_REG];
mcm 1:4d60db802cfb 581
mcm 1:4d60db802cfb 582 /* Other coefficients */
mcm 1:4d60db802cfb 583 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 584 rslt = bme680_get_regs(BME680_ADDR_RES_HEAT_RANGE_ADDR, &temp_var, 1, dev);
mcm 1:4d60db802cfb 585
mcm 1:4d60db802cfb 586 dev->calib.res_heat_range = ((temp_var & BME680_RHRANGE_MSK) / 16);
mcm 1:4d60db802cfb 587 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 588 rslt = bme680_get_regs(BME680_ADDR_RES_HEAT_VAL_ADDR, &temp_var, 1, dev);
mcm 1:4d60db802cfb 589
mcm 1:4d60db802cfb 590 dev->calib.res_heat_val = (int8_t) temp_var;
mcm 1:4d60db802cfb 591 if (rslt == BME680_OK)
mcm 1:4d60db802cfb 592 rslt = bme680_get_regs(BME680_ADDR_RANGE_SW_ERR_ADDR, &temp_var, 1, dev);
mcm 1:4d60db802cfb 593 }
mcm 1:4d60db802cfb 594 }
mcm 1:4d60db802cfb 595 dev->calib.range_sw_err = ((int8_t) temp_var & (int8_t) BME680_RSERROR_MSK) / 16;
mcm 1:4d60db802cfb 596 }
mcm 1:4d60db802cfb 597
mcm 1:4d60db802cfb 598 return rslt;
mcm 1:4d60db802cfb 599 }
mcm 1:4d60db802cfb 600
mcm 1:4d60db802cfb 601 /*!
mcm 1:4d60db802cfb 602 * @brief This internal API is used to set the gas configuration of the sensor.
mcm 1:4d60db802cfb 603 */
mcm 1:4d60db802cfb 604 int8_t BME680::set_gas_config(struct bme680_dev *dev)
mcm 1:4d60db802cfb 605 {
mcm 1:4d60db802cfb 606 int8_t rslt;
mcm 1:4d60db802cfb 607
mcm 1:4d60db802cfb 608 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 609 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 610 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 611
mcm 1:4d60db802cfb 612 uint8_t reg_addr[2] = {0};
mcm 1:4d60db802cfb 613 uint8_t reg_data[2] = {0};
mcm 1:4d60db802cfb 614
mcm 1:4d60db802cfb 615 if (dev->power_mode == BME680_FORCED_MODE) {
mcm 1:4d60db802cfb 616 reg_addr[0] = BME680_RES_HEAT0_ADDR;
mcm 1:4d60db802cfb 617 reg_data[0] = calc_heater_res(dev->gas_sett.heatr_temp, dev);
mcm 1:4d60db802cfb 618 reg_addr[1] = BME680_GAS_WAIT0_ADDR;
mcm 1:4d60db802cfb 619 reg_data[1] = calc_heater_dur(dev->gas_sett.heatr_dur);
mcm 1:4d60db802cfb 620 dev->gas_sett.nb_conv = 0;
mcm 1:4d60db802cfb 621 } else {
mcm 1:4d60db802cfb 622 rslt = BME680_W_DEFINE_PWR_MODE;
mcm 1:4d60db802cfb 623 }
mcm 1:4d60db802cfb 624 if (rslt == BME680_OK)
mcm 1:4d60db802cfb 625 rslt = bme680_set_regs(reg_addr, reg_data, 2, dev);
mcm 1:4d60db802cfb 626 }
mcm 1:4d60db802cfb 627
mcm 1:4d60db802cfb 628 return rslt;
mcm 1:4d60db802cfb 629 }
mcm 1:4d60db802cfb 630
mcm 1:4d60db802cfb 631 /*!
mcm 1:4d60db802cfb 632 * @brief This internal API is used to get the gas configuration of the sensor.
mcm 1:4d60db802cfb 633 * @note heatr_temp and heatr_dur values are currently register data
mcm 1:4d60db802cfb 634 * and not the actual values set
mcm 1:4d60db802cfb 635 */
mcm 1:4d60db802cfb 636 int8_t BME680::get_gas_config(struct bme680_dev *dev)
mcm 1:4d60db802cfb 637 {
mcm 1:4d60db802cfb 638 int8_t rslt;
mcm 1:4d60db802cfb 639 /* starting address of the register array for burst read*/
mcm 1:4d60db802cfb 640 uint8_t reg_addr1 = BME680_ADDR_SENS_CONF_START;
mcm 1:4d60db802cfb 641 uint8_t reg_addr2 = BME680_ADDR_GAS_CONF_START;
mcm 1:4d60db802cfb 642 uint8_t reg_data = 0;
mcm 1:4d60db802cfb 643
mcm 1:4d60db802cfb 644 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 645 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 646 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 647 if (BME680_SPI_INTF == dev->intf) {
mcm 1:4d60db802cfb 648 /* Memory page switch the SPI address*/
mcm 1:4d60db802cfb 649 rslt = set_mem_page(reg_addr1, dev);
mcm 1:4d60db802cfb 650 }
mcm 1:4d60db802cfb 651
mcm 1:4d60db802cfb 652 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 653 rslt = bme680_get_regs(reg_addr1, &reg_data, 1, dev);
mcm 1:4d60db802cfb 654 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 655 dev->gas_sett.heatr_temp = reg_data;
mcm 1:4d60db802cfb 656 rslt = bme680_get_regs(reg_addr2, &reg_data, 1, dev);
mcm 1:4d60db802cfb 657 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 658 /* Heating duration register value */
mcm 1:4d60db802cfb 659 dev->gas_sett.heatr_dur = reg_data;
mcm 1:4d60db802cfb 660 }
mcm 1:4d60db802cfb 661 }
mcm 1:4d60db802cfb 662 }
mcm 1:4d60db802cfb 663 }
mcm 1:4d60db802cfb 664
mcm 1:4d60db802cfb 665 return rslt;
mcm 1:4d60db802cfb 666 }
mcm 1:4d60db802cfb 667
mcm 1:4d60db802cfb 668 #ifndef BME680_FLOAT_POINT_COMPENSATION
mcm 1:4d60db802cfb 669
mcm 1:4d60db802cfb 670 /*!
mcm 1:4d60db802cfb 671 * @brief This internal API is used to calculate the temperature value.
mcm 1:4d60db802cfb 672 */
mcm 1:4d60db802cfb 673 int16_t BME680::calc_temperature(uint32_t temp_adc, struct bme680_dev *dev)
mcm 1:4d60db802cfb 674 {
mcm 1:4d60db802cfb 675 int64_t var1;
mcm 1:4d60db802cfb 676 int64_t var2;
mcm 1:4d60db802cfb 677 int64_t var3;
mcm 1:4d60db802cfb 678 int16_t calc_temp;
mcm 1:4d60db802cfb 679
mcm 1:4d60db802cfb 680 var1 = ((int32_t) temp_adc >> 3) - ((int32_t) dev->calib.par_t1 << 1);
mcm 1:4d60db802cfb 681 var2 = (var1 * (int32_t) dev->calib.par_t2) >> 11;
mcm 1:4d60db802cfb 682 var3 = ((var1 >> 1) * (var1 >> 1)) >> 12;
mcm 1:4d60db802cfb 683 var3 = ((var3) * ((int32_t) dev->calib.par_t3 << 4)) >> 14;
mcm 1:4d60db802cfb 684 dev->calib.t_fine = (int32_t) (var2 + var3);
mcm 1:4d60db802cfb 685 calc_temp = (int16_t) (((dev->calib.t_fine * 5) + 128) >> 8);
mcm 1:4d60db802cfb 686
mcm 1:4d60db802cfb 687 return calc_temp;
mcm 1:4d60db802cfb 688 }
mcm 1:4d60db802cfb 689
mcm 1:4d60db802cfb 690 /*!
mcm 1:4d60db802cfb 691 * @brief This internal API is used to calculate the pressure value.
mcm 1:4d60db802cfb 692 */
mcm 1:4d60db802cfb 693 uint32_t BME680::calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev)
mcm 1:4d60db802cfb 694 {
mcm 1:4d60db802cfb 695 int32_t var1;
mcm 1:4d60db802cfb 696 int32_t var2;
mcm 1:4d60db802cfb 697 int32_t var3;
mcm 1:4d60db802cfb 698 int32_t pressure_comp;
mcm 1:4d60db802cfb 699
mcm 1:4d60db802cfb 700 var1 = (((int32_t)dev->calib.t_fine) >> 1) - 64000;
mcm 1:4d60db802cfb 701 var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) *
mcm 1:4d60db802cfb 702 (int32_t)dev->calib.par_p6) >> 2;
mcm 1:4d60db802cfb 703 var2 = var2 + ((var1 * (int32_t)dev->calib.par_p5) << 1);
mcm 1:4d60db802cfb 704 var2 = (var2 >> 2) + ((int32_t)dev->calib.par_p4 << 16);
mcm 1:4d60db802cfb 705 var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) *
mcm 1:4d60db802cfb 706 ((int32_t)dev->calib.par_p3 << 5)) >> 3) +
mcm 1:4d60db802cfb 707 (((int32_t)dev->calib.par_p2 * var1) >> 1);
mcm 1:4d60db802cfb 708 var1 = var1 >> 18;
mcm 1:4d60db802cfb 709 var1 = ((32768 + var1) * (int32_t)dev->calib.par_p1) >> 15;
mcm 1:4d60db802cfb 710 pressure_comp = 1048576 - pres_adc;
mcm 1:4d60db802cfb 711 pressure_comp = (int32_t)((pressure_comp - (var2 >> 12)) * ((uint32_t)3125));
mcm 1:4d60db802cfb 712 if (pressure_comp >= BME680_MAX_OVERFLOW_VAL)
mcm 1:4d60db802cfb 713 pressure_comp = ((pressure_comp / var1) << 1);
mcm 1:4d60db802cfb 714 else
mcm 1:4d60db802cfb 715 pressure_comp = ((pressure_comp << 1) / var1);
mcm 1:4d60db802cfb 716 var1 = ((int32_t)dev->calib.par_p9 * (int32_t)(((pressure_comp >> 3) *
mcm 1:4d60db802cfb 717 (pressure_comp >> 3)) >> 13)) >> 12;
mcm 1:4d60db802cfb 718 var2 = ((int32_t)(pressure_comp >> 2) *
mcm 1:4d60db802cfb 719 (int32_t)dev->calib.par_p8) >> 13;
mcm 1:4d60db802cfb 720 var3 = ((int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) *
mcm 1:4d60db802cfb 721 (int32_t)(pressure_comp >> 8) *
mcm 1:4d60db802cfb 722 (int32_t)dev->calib.par_p10) >> 17;
mcm 1:4d60db802cfb 723
mcm 1:4d60db802cfb 724 pressure_comp = (int32_t)(pressure_comp) + ((var1 + var2 + var3 +
mcm 1:4d60db802cfb 725 ((int32_t)dev->calib.par_p7 << 7)) >> 4);
mcm 1:4d60db802cfb 726
mcm 1:4d60db802cfb 727 return (uint32_t)pressure_comp;
mcm 1:4d60db802cfb 728
mcm 1:4d60db802cfb 729 }
mcm 1:4d60db802cfb 730
mcm 1:4d60db802cfb 731 /*!
mcm 1:4d60db802cfb 732 * @brief This internal API is used to calculate the humidity value.
mcm 1:4d60db802cfb 733 */
mcm 1:4d60db802cfb 734 uint32_t BME680::calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev)
mcm 1:4d60db802cfb 735 {
mcm 1:4d60db802cfb 736 int32_t var1;
mcm 1:4d60db802cfb 737 int32_t var2;
mcm 1:4d60db802cfb 738 int32_t var3;
mcm 1:4d60db802cfb 739 int32_t var4;
mcm 1:4d60db802cfb 740 int32_t var5;
mcm 1:4d60db802cfb 741 int32_t var6;
mcm 1:4d60db802cfb 742 int32_t temp_scaled;
mcm 1:4d60db802cfb 743 int32_t calc_hum;
mcm 1:4d60db802cfb 744
mcm 1:4d60db802cfb 745 temp_scaled = (((int32_t) dev->calib.t_fine * 5) + 128) >> 8;
mcm 1:4d60db802cfb 746 var1 = (int32_t) (hum_adc - ((int32_t) ((int32_t) dev->calib.par_h1 * 16)))
mcm 1:4d60db802cfb 747 - (((temp_scaled * (int32_t) dev->calib.par_h3) / ((int32_t) 100)) >> 1);
mcm 1:4d60db802cfb 748 var2 = ((int32_t) dev->calib.par_h2
mcm 1:4d60db802cfb 749 * (((temp_scaled * (int32_t) dev->calib.par_h4) / ((int32_t) 100))
mcm 1:4d60db802cfb 750 + (((temp_scaled * ((temp_scaled * (int32_t) dev->calib.par_h5) / ((int32_t) 100))) >> 6)
mcm 1:4d60db802cfb 751 / ((int32_t) 100)) + (int32_t) (1 << 14))) >> 10;
mcm 1:4d60db802cfb 752 var3 = var1 * var2;
mcm 1:4d60db802cfb 753 var4 = (int32_t) dev->calib.par_h6 << 7;
mcm 1:4d60db802cfb 754 var4 = ((var4) + ((temp_scaled * (int32_t) dev->calib.par_h7) / ((int32_t) 100))) >> 4;
mcm 1:4d60db802cfb 755 var5 = ((var3 >> 14) * (var3 >> 14)) >> 10;
mcm 1:4d60db802cfb 756 var6 = (var4 * var5) >> 1;
mcm 1:4d60db802cfb 757 calc_hum = (((var3 + var6) >> 10) * ((int32_t) 1000)) >> 12;
mcm 1:4d60db802cfb 758
mcm 1:4d60db802cfb 759 if (calc_hum > 100000) /* Cap at 100%rH */
mcm 1:4d60db802cfb 760 calc_hum = 100000;
mcm 1:4d60db802cfb 761 else if (calc_hum < 0)
mcm 1:4d60db802cfb 762 calc_hum = 0;
mcm 1:4d60db802cfb 763
mcm 1:4d60db802cfb 764 return (uint32_t) calc_hum;
mcm 1:4d60db802cfb 765 }
mcm 1:4d60db802cfb 766
mcm 1:4d60db802cfb 767 /*!
mcm 1:4d60db802cfb 768 * @brief This internal API is used to calculate the Gas Resistance value.
mcm 1:4d60db802cfb 769 */
mcm 1:4d60db802cfb 770 uint32_t BME680::calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev)
mcm 1:4d60db802cfb 771 {
mcm 1:4d60db802cfb 772 int64_t var1;
mcm 1:4d60db802cfb 773 uint64_t var2;
mcm 1:4d60db802cfb 774 int64_t var3;
mcm 1:4d60db802cfb 775 uint32_t calc_gas_res;
mcm 1:4d60db802cfb 776 /**Look up table 1 for the possible gas range values */
mcm 1:4d60db802cfb 777 uint32_t lookupTable1[16] = { UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647),
mcm 1:4d60db802cfb 778 UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2130303777),
mcm 1:4d60db802cfb 779 UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2143188679), UINT32_C(2136746228),
mcm 1:4d60db802cfb 780 UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2147483647)
mcm 1:4d60db802cfb 781 };
mcm 1:4d60db802cfb 782 /**Look up table 2 for the possible gas range values */
mcm 1:4d60db802cfb 783 uint32_t lookupTable2[16] = { UINT32_C(4096000000), UINT32_C(2048000000), UINT32_C(1024000000), UINT32_C(512000000),
mcm 1:4d60db802cfb 784 UINT32_C(255744255), UINT32_C(127110228), UINT32_C(64000000), UINT32_C(32258064), UINT32_C(16016016),
mcm 1:4d60db802cfb 785 UINT32_C(8000000), UINT32_C(4000000), UINT32_C(2000000), UINT32_C(1000000), UINT32_C(500000),
mcm 1:4d60db802cfb 786 UINT32_C(250000), UINT32_C(125000)
mcm 1:4d60db802cfb 787 };
mcm 1:4d60db802cfb 788
mcm 1:4d60db802cfb 789 var1 = (int64_t) ((1340 + (5 * (int64_t) dev->calib.range_sw_err)) *
mcm 1:4d60db802cfb 790 ((int64_t) lookupTable1[gas_range])) >> 16;
mcm 1:4d60db802cfb 791 var2 = (((int64_t) ((int64_t) gas_res_adc << 15) - (int64_t) (16777216)) + var1);
mcm 1:4d60db802cfb 792 var3 = (((int64_t) lookupTable2[gas_range] * (int64_t) var1) >> 9);
mcm 1:4d60db802cfb 793 calc_gas_res = (uint32_t) ((var3 + ((int64_t) var2 >> 1)) / (int64_t) var2);
mcm 1:4d60db802cfb 794
mcm 1:4d60db802cfb 795 return calc_gas_res;
mcm 1:4d60db802cfb 796 }
mcm 1:4d60db802cfb 797
mcm 1:4d60db802cfb 798 /*!
mcm 1:4d60db802cfb 799 * @brief This internal API is used to calculate the Heat Resistance value.
mcm 1:4d60db802cfb 800 */
mcm 1:4d60db802cfb 801 uint8_t BME680::calc_heater_res(uint16_t temp, const struct bme680_dev *dev)
mcm 1:4d60db802cfb 802 {
mcm 1:4d60db802cfb 803 uint8_t heatr_res;
mcm 1:4d60db802cfb 804 int32_t var1;
mcm 1:4d60db802cfb 805 int32_t var2;
mcm 1:4d60db802cfb 806 int32_t var3;
mcm 1:4d60db802cfb 807 int32_t var4;
mcm 1:4d60db802cfb 808 int32_t var5;
mcm 1:4d60db802cfb 809 int32_t heatr_res_x100;
mcm 1:4d60db802cfb 810
mcm 1:4d60db802cfb 811 if (temp > 400) /* Cap temperature */
mcm 1:4d60db802cfb 812 temp = 400;
mcm 1:4d60db802cfb 813
mcm 1:4d60db802cfb 814 var1 = (((int32_t) dev->amb_temp * dev->calib.par_gh3) / 1000) * 256;
mcm 1:4d60db802cfb 815 var2 = (dev->calib.par_gh1 + 784) * (((((dev->calib.par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10);
mcm 1:4d60db802cfb 816 var3 = var1 + (var2 / 2);
mcm 1:4d60db802cfb 817 var4 = (var3 / (dev->calib.res_heat_range + 4));
mcm 1:4d60db802cfb 818 var5 = (131 * dev->calib.res_heat_val) + 65536;
mcm 1:4d60db802cfb 819 heatr_res_x100 = (int32_t) (((var4 / var5) - 250) * 34);
mcm 1:4d60db802cfb 820 heatr_res = (uint8_t) ((heatr_res_x100 + 50) / 100);
mcm 1:4d60db802cfb 821
mcm 1:4d60db802cfb 822 return heatr_res;
mcm 1:4d60db802cfb 823 }
mcm 1:4d60db802cfb 824
mcm 1:4d60db802cfb 825 #else
mcm 1:4d60db802cfb 826
mcm 1:4d60db802cfb 827
mcm 1:4d60db802cfb 828 /*!
mcm 1:4d60db802cfb 829 * @brief This internal API is used to calculate the
mcm 1:4d60db802cfb 830 * temperature value in float format
mcm 1:4d60db802cfb 831 */
mcm 1:4d60db802cfb 832 float BME680::calc_temperature(uint32_t temp_adc, struct bme680_dev *dev)
mcm 1:4d60db802cfb 833 {
mcm 1:4d60db802cfb 834 float var1 = 0;
mcm 1:4d60db802cfb 835 float var2 = 0;
mcm 1:4d60db802cfb 836 float calc_temp = 0;
mcm 1:4d60db802cfb 837
mcm 1:4d60db802cfb 838 /* calculate var1 data */
mcm 1:4d60db802cfb 839 var1 = ((((float)temp_adc / 16384.0f) - ((float)dev->calib.par_t1 / 1024.0f))
mcm 1:4d60db802cfb 840 * ((float)dev->calib.par_t2));
mcm 1:4d60db802cfb 841
mcm 1:4d60db802cfb 842 /* calculate var2 data */
mcm 1:4d60db802cfb 843 var2 = (((((float)temp_adc / 131072.0f) - ((float)dev->calib.par_t1 / 8192.0f)) *
mcm 1:4d60db802cfb 844 (((float)temp_adc / 131072.0f) - ((float)dev->calib.par_t1 / 8192.0f))) *
mcm 1:4d60db802cfb 845 ((float)dev->calib.par_t3 * 16.0f));
mcm 1:4d60db802cfb 846
mcm 1:4d60db802cfb 847 /* t_fine value*/
mcm 1:4d60db802cfb 848 dev->calib.t_fine = (var1 + var2);
mcm 1:4d60db802cfb 849
mcm 1:4d60db802cfb 850 /* compensated temperature data*/
mcm 1:4d60db802cfb 851 calc_temp = ((dev->calib.t_fine) / 5120.0f);
mcm 1:4d60db802cfb 852
mcm 1:4d60db802cfb 853 return calc_temp;
mcm 1:4d60db802cfb 854 }
mcm 1:4d60db802cfb 855
mcm 1:4d60db802cfb 856 /*!
mcm 1:4d60db802cfb 857 * @brief This internal API is used to calculate the
mcm 1:4d60db802cfb 858 * pressure value in float format
mcm 1:4d60db802cfb 859 */
mcm 1:4d60db802cfb 860 float BME680::calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev)
mcm 1:4d60db802cfb 861 {
mcm 1:4d60db802cfb 862 float var1 = 0;
mcm 1:4d60db802cfb 863 float var2 = 0;
mcm 1:4d60db802cfb 864 float var3 = 0;
mcm 1:4d60db802cfb 865 float calc_pres = 0;
mcm 1:4d60db802cfb 866
mcm 1:4d60db802cfb 867 var1 = (((float)dev->calib.t_fine / 2.0f) - 64000.0f);
mcm 1:4d60db802cfb 868 var2 = var1 * var1 * (((float)dev->calib.par_p6) / (131072.0f));
mcm 1:4d60db802cfb 869 var2 = var2 + (var1 * ((float)dev->calib.par_p5) * 2.0f);
mcm 1:4d60db802cfb 870 var2 = (var2 / 4.0f) + (((float)dev->calib.par_p4) * 65536.0f);
mcm 1:4d60db802cfb 871 var1 = (((((float)dev->calib.par_p3 * var1 * var1) / 16384.0f)
mcm 1:4d60db802cfb 872 + ((float)dev->calib.par_p2 * var1)) / 524288.0f);
mcm 1:4d60db802cfb 873 var1 = ((1.0f + (var1 / 32768.0f)) * ((float)dev->calib.par_p1));
mcm 1:4d60db802cfb 874 calc_pres = (1048576.0f - ((float)pres_adc));
mcm 1:4d60db802cfb 875
mcm 1:4d60db802cfb 876 /* Avoid exception caused by division by zero */
mcm 1:4d60db802cfb 877 if ((int)var1 != 0) {
mcm 1:4d60db802cfb 878 calc_pres = (((calc_pres - (var2 / 4096.0f)) * 6250.0f) / var1);
mcm 1:4d60db802cfb 879 var1 = (((float)dev->calib.par_p9) * calc_pres * calc_pres) / 2147483648.0f;
mcm 1:4d60db802cfb 880 var2 = calc_pres * (((float)dev->calib.par_p8) / 32768.0f);
mcm 1:4d60db802cfb 881 var3 = ((calc_pres / 256.0f) * (calc_pres / 256.0f) * (calc_pres / 256.0f)
mcm 1:4d60db802cfb 882 * (dev->calib.par_p10 / 131072.0f));
mcm 1:4d60db802cfb 883 calc_pres = (calc_pres + (var1 + var2 + var3 + ((float)dev->calib.par_p7 * 128.0f)) / 16.0f);
mcm 1:4d60db802cfb 884 } else {
mcm 1:4d60db802cfb 885 calc_pres = 0;
mcm 1:4d60db802cfb 886 }
mcm 1:4d60db802cfb 887
mcm 1:4d60db802cfb 888 return calc_pres;
mcm 1:4d60db802cfb 889 }
mcm 1:4d60db802cfb 890
mcm 1:4d60db802cfb 891 /*!
mcm 1:4d60db802cfb 892 * @brief This internal API is used to calculate the
mcm 1:4d60db802cfb 893 * humidity value in float format
mcm 1:4d60db802cfb 894 */
mcm 1:4d60db802cfb 895 float BME680::calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev)
mcm 1:4d60db802cfb 896 {
mcm 1:4d60db802cfb 897 float calc_hum = 0;
mcm 1:4d60db802cfb 898 float var1 = 0;
mcm 1:4d60db802cfb 899 float var2 = 0;
mcm 1:4d60db802cfb 900 float var3 = 0;
mcm 1:4d60db802cfb 901 float var4 = 0;
mcm 1:4d60db802cfb 902 float temp_comp;
mcm 1:4d60db802cfb 903
mcm 1:4d60db802cfb 904 /* compensated temperature data*/
mcm 1:4d60db802cfb 905 temp_comp = ((dev->calib.t_fine) / 5120.0f);
mcm 1:4d60db802cfb 906
mcm 1:4d60db802cfb 907 var1 = (float)((float)hum_adc) - (((float)dev->calib.par_h1 * 16.0f) + (((float)dev->calib.par_h3 / 2.0f)
mcm 1:4d60db802cfb 908 * temp_comp));
mcm 1:4d60db802cfb 909
mcm 1:4d60db802cfb 910 var2 = var1 * ((float)(((float) dev->calib.par_h2 / 262144.0f) * (1.0f + (((float)dev->calib.par_h4 / 16384.0f)
mcm 1:4d60db802cfb 911 * temp_comp) + (((float)dev->calib.par_h5 / 1048576.0f) * temp_comp * temp_comp))));
mcm 1:4d60db802cfb 912
mcm 1:4d60db802cfb 913 var3 = (float) dev->calib.par_h6 / 16384.0f;
mcm 1:4d60db802cfb 914
mcm 1:4d60db802cfb 915 var4 = (float) dev->calib.par_h7 / 2097152.0f;
mcm 1:4d60db802cfb 916
mcm 1:4d60db802cfb 917 calc_hum = var2 + ((var3 + (var4 * temp_comp)) * var2 * var2);
mcm 1:4d60db802cfb 918
mcm 1:4d60db802cfb 919 if (calc_hum > 100.0f)
mcm 1:4d60db802cfb 920 calc_hum = 100.0f;
mcm 1:4d60db802cfb 921 else if (calc_hum < 0.0f)
mcm 1:4d60db802cfb 922 calc_hum = 0.0f;
mcm 1:4d60db802cfb 923
mcm 1:4d60db802cfb 924 return calc_hum;
mcm 1:4d60db802cfb 925 }
mcm 1:4d60db802cfb 926
mcm 1:4d60db802cfb 927 /*!
mcm 1:4d60db802cfb 928 * @brief This internal API is used to calculate the
mcm 1:4d60db802cfb 929 * gas resistance value in float format
mcm 1:4d60db802cfb 930 */
mcm 1:4d60db802cfb 931 float BME680::calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev)
mcm 1:4d60db802cfb 932 {
mcm 1:4d60db802cfb 933 float calc_gas_res;
mcm 1:4d60db802cfb 934 float var1 = 0;
mcm 1:4d60db802cfb 935 float var2 = 0;
mcm 1:4d60db802cfb 936 float var3 = 0;
mcm 1:4d60db802cfb 937
mcm 1:4d60db802cfb 938 const float lookup_k1_range[16] = {
mcm 1:4d60db802cfb 939 0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -0.8,
mcm 1:4d60db802cfb 940 0.0, 0.0, -0.2, -0.5, 0.0, -1.0, 0.0, 0.0
mcm 1:4d60db802cfb 941 };
mcm 1:4d60db802cfb 942 const float lookup_k2_range[16] = {
mcm 1:4d60db802cfb 943 0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.0, -0.8,
mcm 1:4d60db802cfb 944 -0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
mcm 1:4d60db802cfb 945 };
mcm 1:4d60db802cfb 946
mcm 1:4d60db802cfb 947 var1 = (1340.0f + (5.0f * dev->calib.range_sw_err));
mcm 1:4d60db802cfb 948 var2 = (var1) * (1.0f + lookup_k1_range[gas_range]/100.0f);
mcm 1:4d60db802cfb 949 var3 = 1.0f + (lookup_k2_range[gas_range]/100.0f);
mcm 1:4d60db802cfb 950
mcm 1:4d60db802cfb 951 calc_gas_res = 1.0f / (float)(var3 * (0.000000125f) * (float)(1 << gas_range) * (((((float)gas_res_adc)
mcm 1:4d60db802cfb 952 - 512.0f)/var2) + 1.0f));
mcm 1:4d60db802cfb 953
mcm 1:4d60db802cfb 954 return calc_gas_res;
mcm 1:4d60db802cfb 955 }
mcm 1:4d60db802cfb 956
mcm 1:4d60db802cfb 957 /*!
mcm 1:4d60db802cfb 958 * @brief This internal API is used to calculate the
mcm 1:4d60db802cfb 959 * heater resistance value in float format
mcm 1:4d60db802cfb 960 */
mcm 1:4d60db802cfb 961 float BME680::calc_heater_res(uint16_t temp, const struct bme680_dev *dev)
mcm 1:4d60db802cfb 962 {
mcm 1:4d60db802cfb 963 float var1 = 0;
mcm 1:4d60db802cfb 964 float var2 = 0;
mcm 1:4d60db802cfb 965 float var3 = 0;
mcm 1:4d60db802cfb 966 float var4 = 0;
mcm 1:4d60db802cfb 967 float var5 = 0;
mcm 1:4d60db802cfb 968 float res_heat = 0;
mcm 1:4d60db802cfb 969
mcm 1:4d60db802cfb 970 if (temp > 400) /* Cap temperature */
mcm 1:4d60db802cfb 971 temp = 400;
mcm 1:4d60db802cfb 972
mcm 1:4d60db802cfb 973 var1 = (((float)dev->calib.par_gh1 / (16.0f)) + 49.0f);
mcm 1:4d60db802cfb 974 var2 = ((((float)dev->calib.par_gh2 / (32768.0f)) * (0.0005f)) + 0.00235f);
mcm 1:4d60db802cfb 975 var3 = ((float)dev->calib.par_gh3 / (1024.0f));
mcm 1:4d60db802cfb 976 var4 = (var1 * (1.0f + (var2 * (float)temp)));
mcm 1:4d60db802cfb 977 var5 = (var4 + (var3 * (float)dev->amb_temp));
mcm 1:4d60db802cfb 978 res_heat = (uint8_t)(3.4f * ((var5 * (4 / (4 + (float)dev->calib.res_heat_range)) *
mcm 1:4d60db802cfb 979 (1/(1 + ((float) dev->calib.res_heat_val * 0.002f)))) - 25));
mcm 1:4d60db802cfb 980
mcm 1:4d60db802cfb 981 return res_heat;
mcm 1:4d60db802cfb 982 }
mcm 1:4d60db802cfb 983
mcm 1:4d60db802cfb 984 #endif
mcm 1:4d60db802cfb 985
mcm 1:4d60db802cfb 986 /*!
mcm 1:4d60db802cfb 987 * @brief This internal API is used to calculate the Heat duration value.
mcm 1:4d60db802cfb 988 */
mcm 1:4d60db802cfb 989 uint8_t BME680::calc_heater_dur(uint16_t dur)
mcm 1:4d60db802cfb 990 {
mcm 1:4d60db802cfb 991 uint8_t factor = 0;
mcm 1:4d60db802cfb 992 uint8_t durval;
mcm 1:4d60db802cfb 993
mcm 1:4d60db802cfb 994 if (dur >= 0xfc0) {
mcm 1:4d60db802cfb 995 durval = 0xff; /* Max duration*/
mcm 1:4d60db802cfb 996 } else {
mcm 1:4d60db802cfb 997 while (dur > 0x3F) {
mcm 1:4d60db802cfb 998 dur = dur / 4;
mcm 1:4d60db802cfb 999 factor += 1;
mcm 1:4d60db802cfb 1000 }
mcm 1:4d60db802cfb 1001 durval = (uint8_t) (dur + (factor * 64));
mcm 1:4d60db802cfb 1002 }
mcm 1:4d60db802cfb 1003
mcm 1:4d60db802cfb 1004 return durval;
mcm 1:4d60db802cfb 1005 }
mcm 1:4d60db802cfb 1006
mcm 1:4d60db802cfb 1007 /*!
mcm 1:4d60db802cfb 1008 * @brief This internal API is used to calculate the field data of sensor.
mcm 1:4d60db802cfb 1009 */
mcm 1:4d60db802cfb 1010 int8_t BME680::read_field_data(struct bme680_field_data *data, struct bme680_dev *dev)
mcm 1:4d60db802cfb 1011 {
mcm 1:4d60db802cfb 1012 int8_t rslt;
mcm 1:4d60db802cfb 1013 uint8_t buff[BME680_FIELD_LENGTH] = { 0 };
mcm 1:4d60db802cfb 1014 uint8_t gas_range;
mcm 1:4d60db802cfb 1015 uint32_t adc_temp;
mcm 1:4d60db802cfb 1016 uint32_t adc_pres;
mcm 1:4d60db802cfb 1017 uint16_t adc_hum;
mcm 1:4d60db802cfb 1018 uint16_t adc_gas_res;
mcm 1:4d60db802cfb 1019 uint8_t tries = 10;
mcm 1:4d60db802cfb 1020
mcm 1:4d60db802cfb 1021 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 1022 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 1023 do {
mcm 1:4d60db802cfb 1024 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 1025 rslt = bme680_get_regs(((uint8_t) (BME680_FIELD0_ADDR)), buff, (uint16_t) BME680_FIELD_LENGTH,
mcm 1:4d60db802cfb 1026 dev);
mcm 1:4d60db802cfb 1027
mcm 1:4d60db802cfb 1028 data->status = buff[0] & BME680_NEW_DATA_MSK;
mcm 1:4d60db802cfb 1029 data->gas_index = buff[0] & BME680_GAS_INDEX_MSK;
mcm 1:4d60db802cfb 1030 data->meas_index = buff[1];
mcm 1:4d60db802cfb 1031
mcm 1:4d60db802cfb 1032 /* read the raw data from the sensor */
mcm 1:4d60db802cfb 1033 adc_pres = (uint32_t) (((uint32_t) buff[2] * 4096) | ((uint32_t) buff[3] * 16)
mcm 1:4d60db802cfb 1034 | ((uint32_t) buff[4] / 16));
mcm 1:4d60db802cfb 1035 adc_temp = (uint32_t) (((uint32_t) buff[5] * 4096) | ((uint32_t) buff[6] * 16)
mcm 1:4d60db802cfb 1036 | ((uint32_t) buff[7] / 16));
mcm 1:4d60db802cfb 1037 adc_hum = (uint16_t) (((uint32_t) buff[8] * 256) | (uint32_t) buff[9]);
mcm 1:4d60db802cfb 1038 adc_gas_res = (uint16_t) ((uint32_t) buff[13] * 4 | (((uint32_t) buff[14]) / 64));
mcm 1:4d60db802cfb 1039 gas_range = buff[14] & BME680_GAS_RANGE_MSK;
mcm 1:4d60db802cfb 1040
mcm 1:4d60db802cfb 1041 data->status |= buff[14] & BME680_GASM_VALID_MSK;
mcm 1:4d60db802cfb 1042 data->status |= buff[14] & BME680_HEAT_STAB_MSK;
mcm 1:4d60db802cfb 1043
mcm 1:4d60db802cfb 1044 if (data->status & BME680_NEW_DATA_MSK) {
mcm 1:4d60db802cfb 1045 data->temperature = calc_temperature(adc_temp, dev);
mcm 1:4d60db802cfb 1046 data->pressure = calc_pressure(adc_pres, dev);
mcm 1:4d60db802cfb 1047 data->humidity = calc_humidity(adc_hum, dev);
mcm 1:4d60db802cfb 1048 data->gas_resistance = calc_gas_resistance(adc_gas_res, gas_range, dev);
mcm 1:4d60db802cfb 1049 break;
mcm 1:4d60db802cfb 1050 }
mcm 1:4d60db802cfb 1051 /* Delay to poll the data */
mcm 1:4d60db802cfb 1052 dev->delay_ms(BME680_POLL_PERIOD_MS);
mcm 1:4d60db802cfb 1053 }
mcm 1:4d60db802cfb 1054 tries--;
mcm 1:4d60db802cfb 1055 } while (tries);
mcm 1:4d60db802cfb 1056
mcm 1:4d60db802cfb 1057 if (!tries)
mcm 1:4d60db802cfb 1058 rslt = BME680_W_NO_NEW_DATA;
mcm 1:4d60db802cfb 1059
mcm 1:4d60db802cfb 1060 return rslt;
mcm 1:4d60db802cfb 1061 }
mcm 1:4d60db802cfb 1062
mcm 1:4d60db802cfb 1063 /*!
mcm 1:4d60db802cfb 1064 * @brief This internal API is used to set the memory page based on register address.
mcm 1:4d60db802cfb 1065 */
mcm 1:4d60db802cfb 1066 int8_t BME680::set_mem_page(uint8_t reg_addr, struct bme680_dev *dev)
mcm 1:4d60db802cfb 1067 {
mcm 1:4d60db802cfb 1068 int8_t rslt;
mcm 1:4d60db802cfb 1069 uint8_t reg;
mcm 1:4d60db802cfb 1070 uint8_t mem_page;
mcm 1:4d60db802cfb 1071
mcm 1:4d60db802cfb 1072 /* Check for null pointers in the device structure*/
mcm 1:4d60db802cfb 1073 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 1074 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 1075 if (reg_addr > 0x7f)
mcm 1:4d60db802cfb 1076 mem_page = BME680_MEM_PAGE1;
mcm 1:4d60db802cfb 1077 else
mcm 1:4d60db802cfb 1078 mem_page = BME680_MEM_PAGE0;
mcm 1:4d60db802cfb 1079
mcm 1:4d60db802cfb 1080 if (mem_page != dev->mem_page) {
mcm 1:4d60db802cfb 1081 dev->mem_page = mem_page;
mcm 1:4d60db802cfb 1082
mcm 1:4d60db802cfb 1083 dev->com_rslt = dev->read(dev->dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, &reg, 1);
mcm 1:4d60db802cfb 1084 if (dev->com_rslt != 0)
mcm 1:4d60db802cfb 1085 rslt = BME680_E_COM_FAIL;
mcm 1:4d60db802cfb 1086
mcm 1:4d60db802cfb 1087 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 1088 reg = reg & (~BME680_MEM_PAGE_MSK);
mcm 1:4d60db802cfb 1089 reg = reg | (dev->mem_page & BME680_MEM_PAGE_MSK);
mcm 1:4d60db802cfb 1090
mcm 1:4d60db802cfb 1091 dev->com_rslt = dev->write(dev->dev_id, BME680_MEM_PAGE_ADDR & BME680_SPI_WR_MSK,
mcm 1:4d60db802cfb 1092 &reg, 1);
mcm 1:4d60db802cfb 1093 if (dev->com_rslt != 0)
mcm 1:4d60db802cfb 1094 rslt = BME680_E_COM_FAIL;
mcm 1:4d60db802cfb 1095 }
mcm 1:4d60db802cfb 1096 }
mcm 1:4d60db802cfb 1097 }
mcm 1:4d60db802cfb 1098
mcm 1:4d60db802cfb 1099 return rslt;
mcm 1:4d60db802cfb 1100 }
mcm 1:4d60db802cfb 1101
mcm 1:4d60db802cfb 1102 /*!
mcm 1:4d60db802cfb 1103 * @brief This internal API is used to get the memory page based on register address.
mcm 1:4d60db802cfb 1104 */
mcm 1:4d60db802cfb 1105 int8_t BME680::get_mem_page(struct bme680_dev *dev)
mcm 1:4d60db802cfb 1106 {
mcm 1:4d60db802cfb 1107 int8_t rslt;
mcm 1:4d60db802cfb 1108 uint8_t reg;
mcm 1:4d60db802cfb 1109
mcm 1:4d60db802cfb 1110 /* Check for null pointer in the device structure*/
mcm 1:4d60db802cfb 1111 rslt = null_ptr_check(dev);
mcm 1:4d60db802cfb 1112 if (rslt == BME680_OK) {
mcm 1:4d60db802cfb 1113 dev->com_rslt = dev->read(dev->dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, &reg, 1);
mcm 1:4d60db802cfb 1114 if (dev->com_rslt != 0)
mcm 1:4d60db802cfb 1115 rslt = BME680_E_COM_FAIL;
mcm 1:4d60db802cfb 1116 else
mcm 1:4d60db802cfb 1117 dev->mem_page = reg & BME680_MEM_PAGE_MSK;
mcm 1:4d60db802cfb 1118 }
mcm 1:4d60db802cfb 1119
mcm 1:4d60db802cfb 1120 return rslt;
mcm 1:4d60db802cfb 1121 }
mcm 1:4d60db802cfb 1122
mcm 1:4d60db802cfb 1123 /*!
mcm 1:4d60db802cfb 1124 * @brief This internal API is used to validate the boundary
mcm 1:4d60db802cfb 1125 * conditions.
mcm 1:4d60db802cfb 1126 */
mcm 1:4d60db802cfb 1127 int8_t BME680::boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bme680_dev *dev)
mcm 1:4d60db802cfb 1128 {
mcm 1:4d60db802cfb 1129 int8_t rslt = BME680_OK;
mcm 1:4d60db802cfb 1130
mcm 1:4d60db802cfb 1131 if (value != NULL) {
mcm 1:4d60db802cfb 1132 /* Check if value is below minimum value */
mcm 1:4d60db802cfb 1133 if (*value < min) {
mcm 1:4d60db802cfb 1134 /* Auto correct the invalid value to minimum value */
mcm 1:4d60db802cfb 1135 *value = min;
mcm 1:4d60db802cfb 1136 dev->info_msg |= BME680_I_MIN_CORRECTION;
mcm 1:4d60db802cfb 1137 }
mcm 1:4d60db802cfb 1138 /* Check if value is above maximum value */
mcm 1:4d60db802cfb 1139 if (*value > max) {
mcm 1:4d60db802cfb 1140 /* Auto correct the invalid value to maximum value */
mcm 1:4d60db802cfb 1141 *value = max;
mcm 1:4d60db802cfb 1142 dev->info_msg |= BME680_I_MAX_CORRECTION;
mcm 1:4d60db802cfb 1143 }
mcm 1:4d60db802cfb 1144 } else {
mcm 1:4d60db802cfb 1145 rslt = BME680_E_NULL_PTR;
mcm 1:4d60db802cfb 1146 }
mcm 1:4d60db802cfb 1147
mcm 1:4d60db802cfb 1148 return rslt;
mcm 1:4d60db802cfb 1149 }
mcm 1:4d60db802cfb 1150
mcm 1:4d60db802cfb 1151 /*!
mcm 1:4d60db802cfb 1152 * @brief This internal API is used to validate the device structure pointer for
mcm 1:4d60db802cfb 1153 * null conditions.
mcm 1:4d60db802cfb 1154 */
mcm 1:4d60db802cfb 1155 int8_t BME680::null_ptr_check(const struct bme680_dev *dev)
mcm 1:4d60db802cfb 1156 {
mcm 1:4d60db802cfb 1157 int8_t rslt;
mcm 1:4d60db802cfb 1158
mcm 1:4d60db802cfb 1159 if ((dev == NULL) || (dev->read == NULL) || (dev->write == NULL) || (dev->delay_ms == NULL)) {
mcm 1:4d60db802cfb 1160 /* Device structure pointer is not valid */
mcm 1:4d60db802cfb 1161 rslt = BME680_E_NULL_PTR;
mcm 1:4d60db802cfb 1162 } else {
mcm 1:4d60db802cfb 1163 /* Device structure is fine */
mcm 1:4d60db802cfb 1164 rslt = BME680_OK;
mcm 1:4d60db802cfb 1165 }
mcm 1:4d60db802cfb 1166
mcm 1:4d60db802cfb 1167 return rslt;
mcm 1:4d60db802cfb 1168 }