Low power gas, pressure, temperature and humidity sensor

Dependents:   MERGE Sensor_iAQ_sgp30_bme_si7051 POCBreath_V2_smd_commercial

BME680.cpp

Committer:
mcm
Date:
2018-07-23
Revision:
3:8aefe9304f85
Parent:
1:4d60db802cfb

File content as of revision 3:8aefe9304f85:

/**
 * @brief       BME680.cpp
 * @details     Low power gas, pressure, temperature & humidity sensor.
 *              Function file.
 *
 *
 * @return      N/A
 *
 * @author      Manuel Caballero
 * @date        21/July/2018
 * @version     21/July/2018    The ORIGIN
 * @pre         This is just a port from Bosh driver to mBed ( c++ )
 * @warning     N/A
 * @pre         This code belongs to Nimbus Centre ( http://www.nimbus.cit.ie ).
 */
/**\mainpage
 * Copyright (C) 2017 - 2018 Bosch Sensortec GmbH
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 * Redistributions of source code must retain the above copyright
 * notice, this list of conditions and the following disclaimer.
 *
 * Redistributions in binary form must reproduce the above copyright
 * notice, this list of conditions and the following disclaimer in the
 * documentation and/or other materials provided with the distribution.
 *
 * Neither the name of the copyright holder nor the names of the
 * contributors may be used to endorse or promote products derived from
 * this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND
 * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL COPYRIGHT HOLDER
 * OR CONTRIBUTORS BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY,
 * OR CONSEQUENTIAL DAMAGES(INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
 * WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
 * ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
 *
 * The information provided is believed to be accurate and reliable.
 * The copyright holder assumes no responsibility
 * for the consequences of use
 * of such information nor for any infringement of patents or
 * other rights of third parties which may result from its use.
 * No license is granted by implication or otherwise under any patent or
 * patent rights of the copyright holder.
 *
 * File		bme680.c
 * @date	19 Jun 2018
 * @version	3.5.9
 *
 */

/*! @file bme680.c
 @brief Sensor driver for BME680 sensor */
#include "BME680.h"

BME680::BME680 ( PinName sda, PinName scl, uint32_t freq )
    : _i2c          ( sda, scl )
{
	_i2c.frequency  ( freq );
}


BME680::~BME680()
{
}


/****************** Global Function Definitions *******************************/
/*!
 *@brief This API is the entry point.
 *It reads the chip-id and calibration data from the sensor.
 */
int8_t BME680::bme680_init(struct bme680_dev *dev)
{
    int8_t rslt;

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        /* Soft reset to restore it to default values*/
        rslt = bme680_soft_reset(dev);
        if (rslt == BME680_OK) {
            rslt = bme680_get_regs(BME680_CHIP_ID_ADDR, &dev->chip_id, 1, dev);
            if (rslt == BME680_OK) {
                if (dev->chip_id == BME680_CHIP_ID) {
                    /* Get the Calibration data */
                    rslt = get_calib_data(dev);
                } else {
                    rslt = BME680_E_DEV_NOT_FOUND;
                }
            }
        }
    }

    return rslt;
}

/*!
 * @brief This API reads the data from the given register address of the sensor.
 */
int8_t BME680::bme680_get_regs(uint8_t reg_addr, uint8_t *reg_data, uint16_t len, struct bme680_dev *dev)
{
    int8_t rslt;

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        if (dev->intf == BME680_SPI_INTF) {
            /* Set the memory page */
            rslt = set_mem_page(reg_addr, dev);
            if (rslt == BME680_OK)
                reg_addr = reg_addr | BME680_SPI_RD_MSK;
        }
        dev->com_rslt = dev->read(dev->dev_id, reg_addr, reg_data, len);
        if (dev->com_rslt != 0)
            rslt = BME680_E_COM_FAIL;
    }

    return rslt;
}

/*!
 * @brief This API writes the given data to the register address
 * of the sensor.
 */
int8_t BME680::bme680_set_regs(const uint8_t *reg_addr, const uint8_t *reg_data, uint8_t len, struct bme680_dev *dev)
{
    int8_t rslt;
    /* Length of the temporary buffer is 2*(length of register)*/
    uint8_t tmp_buff[BME680_TMP_BUFFER_LENGTH] = { 0 };
    uint16_t index;

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        if ((len > 0) && (len < BME680_TMP_BUFFER_LENGTH / 2)) {
            /* Interleave the 2 arrays */
            for (index = 0; index < len; index++) {
                if (dev->intf == BME680_SPI_INTF) {
                    /* Set the memory page */
                    rslt = set_mem_page(reg_addr[index], dev);
                    tmp_buff[(2 * index)] = reg_addr[index] & BME680_SPI_WR_MSK;
                } else {
                    tmp_buff[(2 * index)] = reg_addr[index];
                }
                tmp_buff[(2 * index) + 1] = reg_data[index];
            }
            /* Write the interleaved array */
            if (rslt == BME680_OK) {
                dev->com_rslt = dev->write(dev->dev_id, tmp_buff[0], &tmp_buff[1], (2 * len) - 1);
                if (dev->com_rslt != 0)
                    rslt = BME680_E_COM_FAIL;
            }
        } else {
            rslt = BME680_E_INVALID_LENGTH;
        }
    }

    return rslt;
}

/*!
 * @brief This API performs the soft reset of the sensor.
 */
int8_t BME680::bme680_soft_reset(struct bme680_dev *dev)
{
    int8_t rslt;
    uint8_t reg_addr = BME680_SOFT_RESET_ADDR;
    /* 0xb6 is the soft reset command */
    uint8_t soft_rst_cmd = BME680_SOFT_RESET_CMD;

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        if (dev->intf == BME680_SPI_INTF)
            rslt = get_mem_page(dev);

        /* Reset the device */
        if (rslt == BME680_OK) {
            rslt = bme680_set_regs(&reg_addr, &soft_rst_cmd, 1, dev);
            /* Wait for 5ms */
            dev->delay_ms(BME680_RESET_PERIOD);

            if (rslt == BME680_OK) {
                /* After reset get the memory page */
                if (dev->intf == BME680_SPI_INTF)
                    rslt = get_mem_page(dev);
            }
        }
    }

    return rslt;
}

/*!
 * @brief This API is used to set the oversampling, filter and T,P,H, gas selection
 * settings in the sensor.
 */
int8_t BME680::bme680_set_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev)
{
    int8_t rslt;
    uint8_t reg_addr;
    uint8_t data = 0;
    uint8_t count = 0;
    uint8_t reg_array[BME680_REG_BUFFER_LENGTH] = { 0 };
    uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 };
    uint8_t intended_power_mode = dev->power_mode; /* Save intended power mode */

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        if (desired_settings & BME680_GAS_MEAS_SEL)
            rslt = set_gas_config(dev);

        dev->power_mode = BME680_SLEEP_MODE;
        if (rslt == BME680_OK)
            rslt = bme680_set_sensor_mode(dev);

        /* Selecting the filter */
        if (desired_settings & BME680_FILTER_SEL) {
            rslt = boundary_check(&dev->tph_sett.filter, BME680_FILTER_SIZE_0, BME680_FILTER_SIZE_127, dev);
            reg_addr = BME680_CONF_ODR_FILT_ADDR;

            if (rslt == BME680_OK)
                rslt = bme680_get_regs(reg_addr, &data, 1, dev);

            if (desired_settings & BME680_FILTER_SEL)
                data = BME680_SET_BITS(data, BME680_FILTER, dev->tph_sett.filter);

            reg_array[count] = reg_addr; /* Append configuration */
            data_array[count] = data;
            count++;
        }

        /* Selecting heater control for the sensor */
        if (desired_settings & BME680_HCNTRL_SEL) {
            rslt = boundary_check(&dev->gas_sett.heatr_ctrl, BME680_ENABLE_HEATER,
                                  BME680_DISABLE_HEATER, dev);
            reg_addr = BME680_CONF_HEAT_CTRL_ADDR;

            if (rslt == BME680_OK)
                rslt = bme680_get_regs(reg_addr, &data, 1, dev);
            data = BME680_SET_BITS_POS_0(data, BME680_HCTRL, dev->gas_sett.heatr_ctrl);

            reg_array[count] = reg_addr; /* Append configuration */
            data_array[count] = data;
            count++;
        }

        /* Selecting heater T,P oversampling for the sensor */
        if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) {
            rslt = boundary_check(&dev->tph_sett.os_temp, BME680_OS_NONE, BME680_OS_16X, dev);
            reg_addr = BME680_CONF_T_P_MODE_ADDR;

            if (rslt == BME680_OK)
                rslt = bme680_get_regs(reg_addr, &data, 1, dev);

            if (desired_settings & BME680_OST_SEL)
                data = BME680_SET_BITS(data, BME680_OST, dev->tph_sett.os_temp);

            if (desired_settings & BME680_OSP_SEL)
                data = BME680_SET_BITS(data, BME680_OSP, dev->tph_sett.os_pres);

            reg_array[count] = reg_addr;
            data_array[count] = data;
            count++;
        }

        /* Selecting humidity oversampling for the sensor */
        if (desired_settings & BME680_OSH_SEL) {
            rslt = boundary_check(&dev->tph_sett.os_hum, BME680_OS_NONE, BME680_OS_16X, dev);
            reg_addr = BME680_CONF_OS_H_ADDR;

            if (rslt == BME680_OK)
                rslt = bme680_get_regs(reg_addr, &data, 1, dev);
            data = BME680_SET_BITS_POS_0(data, BME680_OSH, dev->tph_sett.os_hum);

            reg_array[count] = reg_addr; /* Append configuration */
            data_array[count] = data;
            count++;
        }

        /* Selecting the runGas and NB conversion settings for the sensor */
        if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) {
            rslt = boundary_check(&dev->gas_sett.run_gas, BME680_RUN_GAS_DISABLE,
                                  BME680_RUN_GAS_ENABLE, dev);
            if (rslt == BME680_OK) {
                /* Validate boundary conditions */
                rslt = boundary_check(&dev->gas_sett.nb_conv, BME680_NBCONV_MIN,
                                      BME680_NBCONV_MAX, dev);
            }

            reg_addr = BME680_CONF_ODR_RUN_GAS_NBC_ADDR;

            if (rslt == BME680_OK)
                rslt = bme680_get_regs(reg_addr, &data, 1, dev);

            if (desired_settings & BME680_RUN_GAS_SEL)
                data = BME680_SET_BITS(data, BME680_RUN_GAS, dev->gas_sett.run_gas);

            if (desired_settings & BME680_NBCONV_SEL)
                data = BME680_SET_BITS_POS_0(data, BME680_NBCONV, dev->gas_sett.nb_conv);

            reg_array[count] = reg_addr; /* Append configuration */
            data_array[count] = data;
            count++;
        }

        if (rslt == BME680_OK)
            rslt = bme680_set_regs(reg_array, data_array, count, dev);

        /* Restore previous intended power mode */
        dev->power_mode = intended_power_mode;
    }

    return rslt;
}

/*!
 * @brief This API is used to get the oversampling, filter and T,P,H, gas selection
 * settings in the sensor.
 */
int8_t BME680::bme680_get_sensor_settings(uint16_t desired_settings, struct bme680_dev *dev)
{
    int8_t rslt;
    /* starting address of the register array for burst read*/
    uint8_t reg_addr = BME680_CONF_HEAT_CTRL_ADDR;
    uint8_t data_array[BME680_REG_BUFFER_LENGTH] = { 0 };

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        rslt = bme680_get_regs(reg_addr, data_array, BME680_REG_BUFFER_LENGTH, dev);

        if (rslt == BME680_OK) {
            if (desired_settings & BME680_GAS_MEAS_SEL)
                rslt = get_gas_config(dev);

            /* get the T,P,H ,Filter,ODR settings here */
            if (desired_settings & BME680_FILTER_SEL)
                dev->tph_sett.filter = BME680_GET_BITS(data_array[BME680_REG_FILTER_INDEX],
                                                       BME680_FILTER);

            if (desired_settings & (BME680_OST_SEL | BME680_OSP_SEL)) {
                dev->tph_sett.os_temp = BME680_GET_BITS(data_array[BME680_REG_TEMP_INDEX], BME680_OST);
                dev->tph_sett.os_pres = BME680_GET_BITS(data_array[BME680_REG_PRES_INDEX], BME680_OSP);
            }

            if (desired_settings & BME680_OSH_SEL)
                dev->tph_sett.os_hum = BME680_GET_BITS_POS_0(data_array[BME680_REG_HUM_INDEX],
                                       BME680_OSH);

            /* get the gas related settings */
            if (desired_settings & BME680_HCNTRL_SEL)
                dev->gas_sett.heatr_ctrl = BME680_GET_BITS_POS_0(data_array[BME680_REG_HCTRL_INDEX],
                                           BME680_HCTRL);

            if (desired_settings & (BME680_RUN_GAS_SEL | BME680_NBCONV_SEL)) {
                dev->gas_sett.nb_conv = BME680_GET_BITS_POS_0(data_array[BME680_REG_NBCONV_INDEX],
                                        BME680_NBCONV);
                dev->gas_sett.run_gas = BME680_GET_BITS(data_array[BME680_REG_RUN_GAS_INDEX],
                                                        BME680_RUN_GAS);
            }
        }
    } else {
        rslt = BME680_E_NULL_PTR;
    }

    return rslt;
}

/*!
 * @brief This API is used to set the power mode of the sensor.
 */
int8_t BME680::bme680_set_sensor_mode(struct bme680_dev *dev)
{
    int8_t rslt;
    uint8_t tmp_pow_mode;
    uint8_t pow_mode = 0;
    uint8_t reg_addr = BME680_CONF_T_P_MODE_ADDR;

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        /* Call repeatedly until in sleep */
        do {
            rslt = bme680_get_regs(BME680_CONF_T_P_MODE_ADDR, &tmp_pow_mode, 1, dev);
            if (rslt == BME680_OK) {
                /* Put to sleep before changing mode */
                pow_mode = (tmp_pow_mode & BME680_MODE_MSK);

                if (pow_mode != BME680_SLEEP_MODE) {
                    tmp_pow_mode = tmp_pow_mode & (~BME680_MODE_MSK); /* Set to sleep */
                    rslt = bme680_set_regs(&reg_addr, &tmp_pow_mode, 1, dev);
                    dev->delay_ms(BME680_POLL_PERIOD_MS);
                }
            }
        } while (pow_mode != BME680_SLEEP_MODE);

        /* Already in sleep */
        if (dev->power_mode != BME680_SLEEP_MODE) {
            tmp_pow_mode = (tmp_pow_mode & ~BME680_MODE_MSK) | (dev->power_mode & BME680_MODE_MSK);
            if (rslt == BME680_OK)
                rslt = bme680_set_regs(&reg_addr, &tmp_pow_mode, 1, dev);
        }
    }

    return rslt;
}

/*!
 * @brief This API is used to get the power mode of the sensor.
 */
int8_t BME680::bme680_get_sensor_mode(struct bme680_dev *dev)
{
    int8_t rslt;
    uint8_t mode;

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        rslt = bme680_get_regs(BME680_CONF_T_P_MODE_ADDR, &mode, 1, dev);
        /* Masking the other register bit info*/
        dev->power_mode = mode & BME680_MODE_MSK;
    }

    return rslt;
}

/*!
 * @brief This API is used to set the profile duration of the sensor.
 */
void BME680::bme680_set_profile_dur(uint16_t duration, struct bme680_dev *dev)
{
    uint32_t tph_dur; /* Calculate in us */
    uint32_t meas_cycles;
    uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16};

    meas_cycles = os_to_meas_cycles[dev->tph_sett.os_temp];
    meas_cycles += os_to_meas_cycles[dev->tph_sett.os_pres];
    meas_cycles += os_to_meas_cycles[dev->tph_sett.os_hum];

    /* TPH measurement duration */
    tph_dur = meas_cycles * UINT32_C(1963);
    tph_dur += UINT32_C(477 * 4); /* TPH switching duration */
    tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */
    tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/
    tph_dur /= UINT32_C(1000); /* Convert to ms */

    tph_dur += UINT32_C(1); /* Wake up duration of 1ms */
    /* The remaining time should be used for heating */
    dev->gas_sett.heatr_dur = duration - (uint16_t) tph_dur;
}

/*!
 * @brief This API is used to get the profile duration of the sensor.
 */
void BME680::bme680_get_profile_dur(uint16_t *duration, const struct bme680_dev *dev)
{
    uint32_t tph_dur; /* Calculate in us */
    uint32_t meas_cycles;
    uint8_t os_to_meas_cycles[6] = {0, 1, 2, 4, 8, 16};

    meas_cycles = os_to_meas_cycles[dev->tph_sett.os_temp];
    meas_cycles += os_to_meas_cycles[dev->tph_sett.os_pres];
    meas_cycles += os_to_meas_cycles[dev->tph_sett.os_hum];

    /* TPH measurement duration */
    tph_dur = meas_cycles * UINT32_C(1963);
    tph_dur += UINT32_C(477 * 4); /* TPH switching duration */
    tph_dur += UINT32_C(477 * 5); /* Gas measurement duration */
    tph_dur += UINT32_C(500); /* Get it to the closest whole number.*/
    tph_dur /= UINT32_C(1000); /* Convert to ms */

    tph_dur += UINT32_C(1); /* Wake up duration of 1ms */

    *duration = (uint16_t) tph_dur;

    /* Get the gas duration only when the run gas is enabled */
    if (dev->gas_sett.run_gas) {
        /* The remaining time should be used for heating */
        *duration += dev->gas_sett.heatr_dur;
    }
}

/*!
 * @brief This API reads the pressure, temperature and humidity and gas data
 * from the sensor, compensates the data and store it in the bme680_data
 * structure instance passed by the user.
 */
int8_t BME680::bme680_get_sensor_data(struct bme680_field_data *data, struct bme680_dev *dev)
{
    int8_t rslt;

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        /* Reading the sensor data in forced mode only */
        rslt = read_field_data(data, dev);
        if (rslt == BME680_OK) {
            if (data->status & BME680_NEW_DATA_MSK)
                dev->new_fields = 1;
            else
                dev->new_fields = 0;
        }
    }

    return rslt;
}

/*!
 * @brief This internal API is used to read the calibrated data from the sensor.
 */
int8_t BME680::get_calib_data(struct bme680_dev *dev)
{
    int8_t rslt;
    uint8_t coeff_array[BME680_COEFF_SIZE] = { 0 };
    uint8_t temp_var = 0; /* Temporary variable */

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        rslt = bme680_get_regs(BME680_COEFF_ADDR1, coeff_array, BME680_COEFF_ADDR1_LEN, dev);
        /* Append the second half in the same array */
        if (rslt == BME680_OK)
            rslt = bme680_get_regs(BME680_COEFF_ADDR2, &coeff_array[BME680_COEFF_ADDR1_LEN]
                                   , BME680_COEFF_ADDR2_LEN, dev);

        /* Temperature related coefficients */
        dev->calib.par_t1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T1_MSB_REG],
                                        coeff_array[BME680_T1_LSB_REG]));
        dev->calib.par_t2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_T2_MSB_REG],
                                       coeff_array[BME680_T2_LSB_REG]));
        dev->calib.par_t3 = (int8_t) (coeff_array[BME680_T3_REG]);

        /* Pressure related coefficients */
        dev->calib.par_p1 = (uint16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P1_MSB_REG],
                                        coeff_array[BME680_P1_LSB_REG]));
        dev->calib.par_p2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P2_MSB_REG],
                                       coeff_array[BME680_P2_LSB_REG]));
        dev->calib.par_p3 = (int8_t) coeff_array[BME680_P3_REG];
        dev->calib.par_p4 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P4_MSB_REG],
                                       coeff_array[BME680_P4_LSB_REG]));
        dev->calib.par_p5 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P5_MSB_REG],
                                       coeff_array[BME680_P5_LSB_REG]));
        dev->calib.par_p6 = (int8_t) (coeff_array[BME680_P6_REG]);
        dev->calib.par_p7 = (int8_t) (coeff_array[BME680_P7_REG]);
        dev->calib.par_p8 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P8_MSB_REG],
                                       coeff_array[BME680_P8_LSB_REG]));
        dev->calib.par_p9 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_P9_MSB_REG],
                                       coeff_array[BME680_P9_LSB_REG]));
        dev->calib.par_p10 = (uint8_t) (coeff_array[BME680_P10_REG]);

        /* Humidity related coefficients */
        dev->calib.par_h1 = (uint16_t) (((uint16_t) coeff_array[BME680_H1_MSB_REG] << BME680_HUM_REG_SHIFT_VAL)
                                        | (coeff_array[BME680_H1_LSB_REG] & BME680_BIT_H1_DATA_MSK));
        dev->calib.par_h2 = (uint16_t) (((uint16_t) coeff_array[BME680_H2_MSB_REG] << BME680_HUM_REG_SHIFT_VAL)
                                        | ((coeff_array[BME680_H2_LSB_REG]) >> BME680_HUM_REG_SHIFT_VAL));
        dev->calib.par_h3 = (int8_t) coeff_array[BME680_H3_REG];
        dev->calib.par_h4 = (int8_t) coeff_array[BME680_H4_REG];
        dev->calib.par_h5 = (int8_t) coeff_array[BME680_H5_REG];
        dev->calib.par_h6 = (uint8_t) coeff_array[BME680_H6_REG];
        dev->calib.par_h7 = (int8_t) coeff_array[BME680_H7_REG];

        /* Gas heater related coefficients */
        dev->calib.par_gh1 = (int8_t) coeff_array[BME680_GH1_REG];
        dev->calib.par_gh2 = (int16_t) (BME680_CONCAT_BYTES(coeff_array[BME680_GH2_MSB_REG],
                                        coeff_array[BME680_GH2_LSB_REG]));
        dev->calib.par_gh3 = (int8_t) coeff_array[BME680_GH3_REG];

        /* Other coefficients */
        if (rslt == BME680_OK) {
            rslt = bme680_get_regs(BME680_ADDR_RES_HEAT_RANGE_ADDR, &temp_var, 1, dev);

            dev->calib.res_heat_range = ((temp_var & BME680_RHRANGE_MSK) / 16);
            if (rslt == BME680_OK) {
                rslt = bme680_get_regs(BME680_ADDR_RES_HEAT_VAL_ADDR, &temp_var, 1, dev);

                dev->calib.res_heat_val = (int8_t) temp_var;
                if (rslt == BME680_OK)
                    rslt = bme680_get_regs(BME680_ADDR_RANGE_SW_ERR_ADDR, &temp_var, 1, dev);
            }
        }
        dev->calib.range_sw_err = ((int8_t) temp_var & (int8_t) BME680_RSERROR_MSK) / 16;
    }

    return rslt;
}

/*!
 * @brief This internal API is used to set the gas configuration of the sensor.
 */
int8_t BME680::set_gas_config(struct bme680_dev *dev)
{
    int8_t rslt;

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {

        uint8_t reg_addr[2] = {0};
        uint8_t reg_data[2] = {0};

        if (dev->power_mode == BME680_FORCED_MODE) {
            reg_addr[0] = BME680_RES_HEAT0_ADDR;
            reg_data[0] = calc_heater_res(dev->gas_sett.heatr_temp, dev);
            reg_addr[1] = BME680_GAS_WAIT0_ADDR;
            reg_data[1] = calc_heater_dur(dev->gas_sett.heatr_dur);
            dev->gas_sett.nb_conv = 0;
        } else {
            rslt = BME680_W_DEFINE_PWR_MODE;
        }
        if (rslt == BME680_OK)
            rslt = bme680_set_regs(reg_addr, reg_data, 2, dev);
    }

    return rslt;
}

/*!
 * @brief This internal API is used to get the gas configuration of the sensor.
 * @note heatr_temp and heatr_dur values are currently register data
 * and not the actual values set
 */
int8_t BME680::get_gas_config(struct bme680_dev *dev)
{
    int8_t rslt;
    /* starting address of the register array for burst read*/
    uint8_t reg_addr1 = BME680_ADDR_SENS_CONF_START;
    uint8_t reg_addr2 = BME680_ADDR_GAS_CONF_START;
    uint8_t reg_data = 0;

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        if (BME680_SPI_INTF == dev->intf) {
            /* Memory page switch the SPI address*/
            rslt = set_mem_page(reg_addr1, dev);
        }

        if (rslt == BME680_OK) {
            rslt = bme680_get_regs(reg_addr1, &reg_data, 1, dev);
            if (rslt == BME680_OK) {
                dev->gas_sett.heatr_temp = reg_data;
                rslt = bme680_get_regs(reg_addr2, &reg_data, 1, dev);
                if (rslt == BME680_OK) {
                    /* Heating duration register value */
                    dev->gas_sett.heatr_dur = reg_data;
                }
            }
        }
    }

    return rslt;
}

#ifndef BME680_FLOAT_POINT_COMPENSATION

/*!
 * @brief This internal API is used to calculate the temperature value.
 */
int16_t BME680::calc_temperature(uint32_t temp_adc, struct bme680_dev *dev)
{
    int64_t var1;
    int64_t var2;
    int64_t var3;
    int16_t calc_temp;

    var1 = ((int32_t) temp_adc >> 3) - ((int32_t) dev->calib.par_t1 << 1);
    var2 = (var1 * (int32_t) dev->calib.par_t2) >> 11;
    var3 = ((var1 >> 1) * (var1 >> 1)) >> 12;
    var3 = ((var3) * ((int32_t) dev->calib.par_t3 << 4)) >> 14;
    dev->calib.t_fine = (int32_t) (var2 + var3);
    calc_temp = (int16_t) (((dev->calib.t_fine * 5) + 128) >> 8);

    return calc_temp;
}

/*!
 * @brief This internal API is used to calculate the pressure value.
 */
uint32_t BME680::calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev)
{
    int32_t var1;
    int32_t var2;
    int32_t var3;
    int32_t pressure_comp;

    var1 = (((int32_t)dev->calib.t_fine) >> 1) - 64000;
    var2 = ((((var1 >> 2) * (var1 >> 2)) >> 11) *
            (int32_t)dev->calib.par_p6) >> 2;
    var2 = var2 + ((var1 * (int32_t)dev->calib.par_p5) << 1);
    var2 = (var2 >> 2) + ((int32_t)dev->calib.par_p4 << 16);
    var1 = (((((var1 >> 2) * (var1 >> 2)) >> 13) *
             ((int32_t)dev->calib.par_p3 << 5)) >> 3) +
           (((int32_t)dev->calib.par_p2 * var1) >> 1);
    var1 = var1 >> 18;
    var1 = ((32768 + var1) * (int32_t)dev->calib.par_p1) >> 15;
    pressure_comp = 1048576 - pres_adc;
    pressure_comp = (int32_t)((pressure_comp - (var2 >> 12)) * ((uint32_t)3125));
    if (pressure_comp >= BME680_MAX_OVERFLOW_VAL)
        pressure_comp = ((pressure_comp / var1) << 1);
    else
        pressure_comp = ((pressure_comp << 1) / var1);
    var1 = ((int32_t)dev->calib.par_p9 * (int32_t)(((pressure_comp >> 3) *
            (pressure_comp >> 3)) >> 13)) >> 12;
    var2 = ((int32_t)(pressure_comp >> 2) *
            (int32_t)dev->calib.par_p8) >> 13;
    var3 = ((int32_t)(pressure_comp >> 8) * (int32_t)(pressure_comp >> 8) *
            (int32_t)(pressure_comp >> 8) *
            (int32_t)dev->calib.par_p10) >> 17;

    pressure_comp = (int32_t)(pressure_comp) + ((var1 + var2 + var3 +
                    ((int32_t)dev->calib.par_p7 << 7)) >> 4);

    return (uint32_t)pressure_comp;

}

/*!
 * @brief This internal API is used to calculate the humidity value.
 */
uint32_t BME680::calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev)
{
    int32_t var1;
    int32_t var2;
    int32_t var3;
    int32_t var4;
    int32_t var5;
    int32_t var6;
    int32_t temp_scaled;
    int32_t calc_hum;

    temp_scaled = (((int32_t) dev->calib.t_fine * 5) + 128) >> 8;
    var1 = (int32_t) (hum_adc - ((int32_t) ((int32_t) dev->calib.par_h1 * 16)))
           - (((temp_scaled * (int32_t) dev->calib.par_h3) / ((int32_t) 100)) >> 1);
    var2 = ((int32_t) dev->calib.par_h2
            * (((temp_scaled * (int32_t) dev->calib.par_h4) / ((int32_t) 100))
               + (((temp_scaled * ((temp_scaled * (int32_t) dev->calib.par_h5) / ((int32_t) 100))) >> 6)
                  / ((int32_t) 100)) + (int32_t) (1 << 14))) >> 10;
    var3 = var1 * var2;
    var4 = (int32_t) dev->calib.par_h6 << 7;
    var4 = ((var4) + ((temp_scaled * (int32_t) dev->calib.par_h7) / ((int32_t) 100))) >> 4;
    var5 = ((var3 >> 14) * (var3 >> 14)) >> 10;
    var6 = (var4 * var5) >> 1;
    calc_hum = (((var3 + var6) >> 10) * ((int32_t) 1000)) >> 12;

    if (calc_hum > 100000) /* Cap at 100%rH */
        calc_hum = 100000;
    else if (calc_hum < 0)
        calc_hum = 0;

    return (uint32_t) calc_hum;
}

/*!
 * @brief This internal API is used to calculate the Gas Resistance value.
 */
uint32_t BME680::calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev)
{
    int64_t var1;
    uint64_t var2;
    int64_t var3;
    uint32_t calc_gas_res;
    /**Look up table 1 for the possible gas range values */
    uint32_t lookupTable1[16] = { UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2147483647),
                                  UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2130303777),
                                  UINT32_C(2147483647), UINT32_C(2147483647), UINT32_C(2143188679), UINT32_C(2136746228),
                                  UINT32_C(2147483647), UINT32_C(2126008810), UINT32_C(2147483647), UINT32_C(2147483647)
                                };
    /**Look up table 2 for the possible gas range values */
    uint32_t lookupTable2[16] = { UINT32_C(4096000000), UINT32_C(2048000000), UINT32_C(1024000000), UINT32_C(512000000),
                                  UINT32_C(255744255), UINT32_C(127110228), UINT32_C(64000000), UINT32_C(32258064), UINT32_C(16016016),
                                  UINT32_C(8000000), UINT32_C(4000000), UINT32_C(2000000), UINT32_C(1000000), UINT32_C(500000),
                                  UINT32_C(250000), UINT32_C(125000)
                                };

    var1 = (int64_t) ((1340 + (5 * (int64_t) dev->calib.range_sw_err)) *
                      ((int64_t) lookupTable1[gas_range])) >> 16;
    var2 = (((int64_t) ((int64_t) gas_res_adc << 15) - (int64_t) (16777216)) + var1);
    var3 = (((int64_t) lookupTable2[gas_range] * (int64_t) var1) >> 9);
    calc_gas_res = (uint32_t) ((var3 + ((int64_t) var2 >> 1)) / (int64_t) var2);

    return calc_gas_res;
}

/*!
 * @brief This internal API is used to calculate the Heat Resistance value.
 */
uint8_t BME680::calc_heater_res(uint16_t temp, const struct bme680_dev *dev)
{
    uint8_t heatr_res;
    int32_t var1;
    int32_t var2;
    int32_t var3;
    int32_t var4;
    int32_t var5;
    int32_t heatr_res_x100;

    if (temp > 400) /* Cap temperature */
        temp = 400;

    var1 = (((int32_t) dev->amb_temp * dev->calib.par_gh3) / 1000) * 256;
    var2 = (dev->calib.par_gh1 + 784) * (((((dev->calib.par_gh2 + 154009) * temp * 5) / 100) + 3276800) / 10);
    var3 = var1 + (var2 / 2);
    var4 = (var3 / (dev->calib.res_heat_range + 4));
    var5 = (131 * dev->calib.res_heat_val) + 65536;
    heatr_res_x100 = (int32_t) (((var4 / var5) - 250) * 34);
    heatr_res = (uint8_t) ((heatr_res_x100 + 50) / 100);

    return heatr_res;
}

#else


/*!
 * @brief This internal API is used to calculate the
 * temperature value in float format
 */
float BME680::calc_temperature(uint32_t temp_adc, struct bme680_dev *dev)
{
    float var1 = 0;
    float var2 = 0;
    float calc_temp = 0;

    /* calculate var1 data */
    var1  = ((((float)temp_adc / 16384.0f) - ((float)dev->calib.par_t1 / 1024.0f))
             * ((float)dev->calib.par_t2));

    /* calculate var2 data */
    var2  = (((((float)temp_adc / 131072.0f) - ((float)dev->calib.par_t1 / 8192.0f)) *
              (((float)temp_adc / 131072.0f) - ((float)dev->calib.par_t1 / 8192.0f))) *
             ((float)dev->calib.par_t3 * 16.0f));

    /* t_fine value*/
    dev->calib.t_fine = (var1 + var2);

    /* compensated temperature data*/
    calc_temp  = ((dev->calib.t_fine) / 5120.0f);

    return calc_temp;
}

/*!
 * @brief This internal API is used to calculate the
 * pressure value in float format
 */
float BME680::calc_pressure(uint32_t pres_adc, const struct bme680_dev *dev)
{
    float var1 = 0;
    float var2 = 0;
    float var3 = 0;
    float calc_pres = 0;

    var1 = (((float)dev->calib.t_fine / 2.0f) - 64000.0f);
    var2 = var1 * var1 * (((float)dev->calib.par_p6) / (131072.0f));
    var2 = var2 + (var1 * ((float)dev->calib.par_p5) * 2.0f);
    var2 = (var2 / 4.0f) + (((float)dev->calib.par_p4) * 65536.0f);
    var1 = (((((float)dev->calib.par_p3 * var1 * var1) / 16384.0f)
             + ((float)dev->calib.par_p2 * var1)) / 524288.0f);
    var1 = ((1.0f + (var1 / 32768.0f)) * ((float)dev->calib.par_p1));
    calc_pres = (1048576.0f - ((float)pres_adc));

    /* Avoid exception caused by division by zero */
    if ((int)var1 != 0) {
        calc_pres = (((calc_pres - (var2 / 4096.0f)) * 6250.0f) / var1);
        var1 = (((float)dev->calib.par_p9) * calc_pres * calc_pres) / 2147483648.0f;
        var2 = calc_pres * (((float)dev->calib.par_p8) / 32768.0f);
        var3 = ((calc_pres / 256.0f) * (calc_pres / 256.0f) * (calc_pres / 256.0f)
                * (dev->calib.par_p10 / 131072.0f));
        calc_pres = (calc_pres + (var1 + var2 + var3 + ((float)dev->calib.par_p7 * 128.0f)) / 16.0f);
    } else {
        calc_pres = 0;
    }

    return calc_pres;
}

/*!
 * @brief This internal API is used to calculate the
 * humidity value in float format
 */
float BME680::calc_humidity(uint16_t hum_adc, const struct bme680_dev *dev)
{
    float calc_hum = 0;
    float var1 = 0;
    float var2 = 0;
    float var3 = 0;
    float var4 = 0;
    float temp_comp;

    /* compensated temperature data*/
    temp_comp  = ((dev->calib.t_fine) / 5120.0f);

    var1 = (float)((float)hum_adc) - (((float)dev->calib.par_h1 * 16.0f) + (((float)dev->calib.par_h3 / 2.0f)
                                      * temp_comp));

    var2 = var1 * ((float)(((float) dev->calib.par_h2 / 262144.0f) * (1.0f + (((float)dev->calib.par_h4 / 16384.0f)
                           * temp_comp) + (((float)dev->calib.par_h5 / 1048576.0f) * temp_comp * temp_comp))));

    var3 = (float) dev->calib.par_h6 / 16384.0f;

    var4 = (float) dev->calib.par_h7 / 2097152.0f;

    calc_hum = var2 + ((var3 + (var4 * temp_comp)) * var2 * var2);

    if (calc_hum > 100.0f)
        calc_hum = 100.0f;
    else if (calc_hum < 0.0f)
        calc_hum = 0.0f;

    return calc_hum;
}

/*!
 * @brief This internal API is used to calculate the
 * gas resistance value in float format
 */
float BME680::calc_gas_resistance(uint16_t gas_res_adc, uint8_t gas_range, const struct bme680_dev *dev)
{
    float calc_gas_res;
    float var1 = 0;
    float var2 = 0;
    float var3 = 0;

    const float lookup_k1_range[16] = {
        0.0, 0.0, 0.0, 0.0, 0.0, -1.0, 0.0, -0.8,
        0.0, 0.0, -0.2, -0.5, 0.0, -1.0, 0.0, 0.0
    };
    const float lookup_k2_range[16] = {
        0.0, 0.0, 0.0, 0.0, 0.1, 0.7, 0.0, -0.8,
        -0.1, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
    };

    var1 = (1340.0f + (5.0f * dev->calib.range_sw_err));
    var2 = (var1) * (1.0f + lookup_k1_range[gas_range]/100.0f);
    var3 = 1.0f + (lookup_k2_range[gas_range]/100.0f);

    calc_gas_res = 1.0f / (float)(var3 * (0.000000125f) * (float)(1 << gas_range) * (((((float)gas_res_adc)
                                  - 512.0f)/var2) + 1.0f));

    return calc_gas_res;
}

/*!
 * @brief This internal API is used to calculate the
 * heater resistance value in float format
 */
float BME680::calc_heater_res(uint16_t temp, const struct bme680_dev *dev)
{
    float var1 = 0;
    float var2 = 0;
    float var3 = 0;
    float var4 = 0;
    float var5 = 0;
    float res_heat = 0;

    if (temp > 400) /* Cap temperature */
        temp = 400;

    var1 = (((float)dev->calib.par_gh1 / (16.0f)) + 49.0f);
    var2 = ((((float)dev->calib.par_gh2 / (32768.0f)) * (0.0005f)) + 0.00235f);
    var3 = ((float)dev->calib.par_gh3 / (1024.0f));
    var4 = (var1 * (1.0f + (var2 * (float)temp)));
    var5 = (var4 + (var3 * (float)dev->amb_temp));
    res_heat = (uint8_t)(3.4f * ((var5 * (4 / (4 + (float)dev->calib.res_heat_range)) *
                                  (1/(1 + ((float) dev->calib.res_heat_val * 0.002f)))) - 25));

    return res_heat;
}

#endif

/*!
 * @brief This internal API is used to calculate the Heat duration value.
 */
uint8_t BME680::calc_heater_dur(uint16_t dur)
{
    uint8_t factor = 0;
    uint8_t durval;

    if (dur >= 0xfc0) {
        durval = 0xff; /* Max duration*/
    } else {
        while (dur > 0x3F) {
            dur = dur / 4;
            factor += 1;
        }
        durval = (uint8_t) (dur + (factor * 64));
    }

    return durval;
}

/*!
 * @brief This internal API is used to calculate the field data of sensor.
 */
int8_t BME680::read_field_data(struct bme680_field_data *data, struct bme680_dev *dev)
{
    int8_t rslt;
    uint8_t buff[BME680_FIELD_LENGTH] = { 0 };
    uint8_t gas_range;
    uint32_t adc_temp;
    uint32_t adc_pres;
    uint16_t adc_hum;
    uint16_t adc_gas_res;
    uint8_t tries = 10;

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    do {
        if (rslt == BME680_OK) {
            rslt = bme680_get_regs(((uint8_t) (BME680_FIELD0_ADDR)), buff, (uint16_t) BME680_FIELD_LENGTH,
                                   dev);

            data->status = buff[0] & BME680_NEW_DATA_MSK;
            data->gas_index = buff[0] & BME680_GAS_INDEX_MSK;
            data->meas_index = buff[1];

            /* read the raw data from the sensor */
            adc_pres = (uint32_t) (((uint32_t) buff[2] * 4096) | ((uint32_t) buff[3] * 16)
                                   | ((uint32_t) buff[4] / 16));
            adc_temp = (uint32_t) (((uint32_t) buff[5] * 4096) | ((uint32_t) buff[6] * 16)
                                   | ((uint32_t) buff[7] / 16));
            adc_hum = (uint16_t) (((uint32_t) buff[8] * 256) | (uint32_t) buff[9]);
            adc_gas_res = (uint16_t) ((uint32_t) buff[13] * 4 | (((uint32_t) buff[14]) / 64));
            gas_range = buff[14] & BME680_GAS_RANGE_MSK;

            data->status |= buff[14] & BME680_GASM_VALID_MSK;
            data->status |= buff[14] & BME680_HEAT_STAB_MSK;

            if (data->status & BME680_NEW_DATA_MSK) {
                data->temperature = calc_temperature(adc_temp, dev);
                data->pressure = calc_pressure(adc_pres, dev);
                data->humidity = calc_humidity(adc_hum, dev);
                data->gas_resistance = calc_gas_resistance(adc_gas_res, gas_range, dev);
                break;
            }
            /* Delay to poll the data */
            dev->delay_ms(BME680_POLL_PERIOD_MS);
        }
        tries--;
    } while (tries);

    if (!tries)
        rslt = BME680_W_NO_NEW_DATA;

    return rslt;
}

/*!
 * @brief This internal API is used to set the memory page based on register address.
 */
int8_t BME680::set_mem_page(uint8_t reg_addr, struct bme680_dev *dev)
{
    int8_t rslt;
    uint8_t reg;
    uint8_t mem_page;

    /* Check for null pointers in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        if (reg_addr > 0x7f)
            mem_page = BME680_MEM_PAGE1;
        else
            mem_page = BME680_MEM_PAGE0;

        if (mem_page != dev->mem_page) {
            dev->mem_page = mem_page;

            dev->com_rslt = dev->read(dev->dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, &reg, 1);
            if (dev->com_rslt != 0)
                rslt = BME680_E_COM_FAIL;

            if (rslt == BME680_OK) {
                reg = reg & (~BME680_MEM_PAGE_MSK);
                reg = reg | (dev->mem_page & BME680_MEM_PAGE_MSK);

                dev->com_rslt = dev->write(dev->dev_id, BME680_MEM_PAGE_ADDR & BME680_SPI_WR_MSK,
                                           &reg, 1);
                if (dev->com_rslt != 0)
                    rslt = BME680_E_COM_FAIL;
            }
        }
    }

    return rslt;
}

/*!
 * @brief This internal API is used to get the memory page based on register address.
 */
int8_t BME680::get_mem_page(struct bme680_dev *dev)
{
    int8_t rslt;
    uint8_t reg;

    /* Check for null pointer in the device structure*/
    rslt = null_ptr_check(dev);
    if (rslt == BME680_OK) {
        dev->com_rslt = dev->read(dev->dev_id, BME680_MEM_PAGE_ADDR | BME680_SPI_RD_MSK, &reg, 1);
        if (dev->com_rslt != 0)
            rslt = BME680_E_COM_FAIL;
        else
            dev->mem_page = reg & BME680_MEM_PAGE_MSK;
    }

    return rslt;
}

/*!
 * @brief This internal API is used to validate the boundary
 * conditions.
 */
int8_t BME680::boundary_check(uint8_t *value, uint8_t min, uint8_t max, struct bme680_dev *dev)
{
    int8_t rslt = BME680_OK;

    if (value != NULL) {
        /* Check if value is below minimum value */
        if (*value < min) {
            /* Auto correct the invalid value to minimum value */
            *value = min;
            dev->info_msg |= BME680_I_MIN_CORRECTION;
        }
        /* Check if value is above maximum value */
        if (*value > max) {
            /* Auto correct the invalid value to maximum value */
            *value = max;
            dev->info_msg |= BME680_I_MAX_CORRECTION;
        }
    } else {
        rslt = BME680_E_NULL_PTR;
    }

    return rslt;
}

/*!
 * @brief This internal API is used to validate the device structure pointer for
 * null conditions.
 */
int8_t BME680::null_ptr_check(const struct bme680_dev *dev)
{
    int8_t rslt;

    if ((dev == NULL) || (dev->read == NULL) || (dev->write == NULL) || (dev->delay_ms == NULL)) {
        /* Device structure pointer is not valid */
        rslt = BME680_E_NULL_PTR;
    } else {
        /* Device structure is fine */
        rslt = BME680_OK;
    }

    return rslt;
}