save loops

Dependencies:   mbed

Committer:
mbedalvaro
Date:
Tue Dec 02 04:39:15 2014 +0000
Revision:
0:df6fdd9b99f0
this new version of skinGames will have a function that stops scanning as the laser reaches the same position (i.e., loops) with a certain precision. It is for extracting contours for Takashita project. It can then save on a file or send on osc

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mbedalvaro 0:df6fdd9b99f0 1 #include "lockin.h"
mbedalvaro 0:df6fdd9b99f0 2
mbedalvaro 0:df6fdd9b99f0 3 Lockin lockin=Lockin();//pre-instanciation of object lockin with inter-file scope (declared extern in .h file)
mbedalvaro 0:df6fdd9b99f0 4
mbedalvaro 0:df6fdd9b99f0 5
mbedalvaro 0:df6fdd9b99f0 6 // NOTE: the ADC interrupt catching function is not a method of the Lockin class, hence the use of the pre-instantiated object "lockin":
mbedalvaro 0:df6fdd9b99f0 7 void catchInterupt(uint32_t value){
mbedalvaro 0:df6fdd9b99f0 8 lockin.buffer_pos=(lockin.buffer_pos+1)%BUFFER_SIZE;
mbedalvaro 0:df6fdd9b99f0 9 lockin.buffer[lockin.buffer_pos] = (value>>4)&0xFFF; // this is 12 bit precision ADC (0 to 4095), can be stored in an "unsigned short" (two bytes)
mbedalvaro 0:df6fdd9b99f0 10 }
mbedalvaro 0:df6fdd9b99f0 11
mbedalvaro 0:df6fdd9b99f0 12 // PWM generation is configure as double edge
mbedalvaro 0:df6fdd9b99f0 13 // MR0 (Match Register 0) control the frequency
mbedalvaro 0:df6fdd9b99f0 14 // 'pwm2' uses MR1 and MR2 (rising and falling edges)
mbedalvaro 0:df6fdd9b99f0 15 // 'pwm4' uses MR3 and MR4 (rising and falling edges)
mbedalvaro 0:df6fdd9b99f0 16 // 'pwm1' and 'pwm3' cannot be used since they share the same Match Register
mbedalvaro 0:df6fdd9b99f0 17 // for the moment, all PWM pin are set as output:
mbedalvaro 0:df6fdd9b99f0 18 //PwmOut pwm1(p26);
mbedalvaro 0:df6fdd9b99f0 19 PwmOut pwm2(LOCKIN_LASER_PIN); //USED: this is pin p25, the LOCKIN_LASER_PIN
mbedalvaro 0:df6fdd9b99f0 20 PwmOut pwm3(p24);
mbedalvaro 0:df6fdd9b99f0 21 PwmOut pwm4(LOCKIN_REF_PIN); //USED: this is pin p23, the LOCKIN_REF_PIN
mbedalvaro 0:df6fdd9b99f0 22 //PwmOut pwm5(p22);
mbedalvaro 0:df6fdd9b99f0 23 //PwmOut pwm6(p21);
mbedalvaro 0:df6fdd9b99f0 24
mbedalvaro 0:df6fdd9b99f0 25 //Lockin::Lockin(){}
mbedalvaro 0:df6fdd9b99f0 26
mbedalvaro 0:df6fdd9b99f0 27 void Lockin::init(){
mbedalvaro 0:df6fdd9b99f0 28
mbedalvaro 0:df6fdd9b99f0 29 //configure PWM for the laser and the Lockin
mbedalvaro 0:df6fdd9b99f0 30 refFreq = 147;
mbedalvaro 0:df6fdd9b99f0 31 offsetRef = 40;
mbedalvaro 0:df6fdd9b99f0 32 halfRefFreq = refFreq / 2;
mbedalvaro 0:df6fdd9b99f0 33
mbedalvaro 0:df6fdd9b99f0 34 refFrequency = 653; //init the lock-in frequency at 653 kHz
mbedalvaro 0:df6fdd9b99f0 35 phaseShiftLaser = 0.546; //offset of 54% for the laser signal
mbedalvaro 0:df6fdd9b99f0 36 phaseShiftLockin = 0; //no offset for the lock-in reference
mbedalvaro 0:df6fdd9b99f0 37 initPWM();
mbedalvaro 0:df6fdd9b99f0 38
mbedalvaro 0:df6fdd9b99f0 39 //configure ADC:
mbedalvaro 0:df6fdd9b99f0 40 clearBuffer();
mbedalvaro 0:df6fdd9b99f0 41
mbedalvaro 0:df6fdd9b99f0 42 // SET ADC IN BURST MODE:
mbedalvaro 0:df6fdd9b99f0 43 lockin.setADC_forLockin(1);
mbedalvaro 0:df6fdd9b99f0 44 }
mbedalvaro 0:df6fdd9b99f0 45
mbedalvaro 0:df6fdd9b99f0 46 void Lockin::setADC_forLockin(int mode) {
mbedalvaro 0:df6fdd9b99f0 47 if (mode>0) { // ADC BURST MODE:
mbedalvaro 0:df6fdd9b99f0 48 adc.startmode(0,0);
mbedalvaro 0:df6fdd9b99f0 49 adc.burst(1);
mbedalvaro 0:df6fdd9b99f0 50 adc.setup(LOCKIN_ADC_PIN, 1);
mbedalvaro 0:df6fdd9b99f0 51 adc.select(LOCKIN_ADC_PIN);
mbedalvaro 0:df6fdd9b99f0 52 adc.interrupt_state(LOCKIN_ADC_PIN, 1);
mbedalvaro 0:df6fdd9b99f0 53 adc.append(LOCKIN_ADC_PIN, catchInterupt);
mbedalvaro 0:df6fdd9b99f0 54 } else {
mbedalvaro 0:df6fdd9b99f0 55 // unset the lockin pin:
mbedalvaro 0:df6fdd9b99f0 56 adc.burst(0);
mbedalvaro 0:df6fdd9b99f0 57 adc.setup(LOCKIN_ADC_PIN, 0);
mbedalvaro 0:df6fdd9b99f0 58 adc.interrupt_state(LOCKIN_ADC_PIN, 0);
mbedalvaro 0:df6fdd9b99f0 59 }
mbedalvaro 0:df6fdd9b99f0 60 }
mbedalvaro 0:df6fdd9b99f0 61
mbedalvaro 0:df6fdd9b99f0 62 void Lockin::initPWM(){
mbedalvaro 0:df6fdd9b99f0 63
mbedalvaro 0:df6fdd9b99f0 64 float halfPeriod = 0.5 * MBEDFREQUENCY / refFrequency; // half shared periof
mbedalvaro 0:df6fdd9b99f0 65 _currentMR[0] = int(1.0 * MBEDFREQUENCY / refFrequency); //save the current value of MR0 (shared periof) //147
mbedalvaro 0:df6fdd9b99f0 66 _currentMR[1] = int(phaseShiftLaser * halfPeriod); //save the current value of MR1 //40
mbedalvaro 0:df6fdd9b99f0 67 _currentMR[2] = int(_currentMR[1] + halfPeriod); //save the current value of MR2 //40+73
mbedalvaro 0:df6fdd9b99f0 68 _currentMR[3] = int(phaseShiftLockin * halfPeriod); //save the current value of MR1 //0
mbedalvaro 0:df6fdd9b99f0 69 _currentMR[4] = int(_currentMR[3] + halfPeriod); //save the current value of MR2 //73
mbedalvaro 0:df6fdd9b99f0 70
mbedalvaro 0:df6fdd9b99f0 71
mbedalvaro 0:df6fdd9b99f0 72 // set PWM:
mbedalvaro 0:df6fdd9b99f0 73 LPC_PWM1->TCR = (1 << 1); // Reset counter, disable PWM
mbedalvaro 0:df6fdd9b99f0 74 LPC_SC->PCLKSEL0 &= ~(0x3 << 12);
mbedalvaro 0:df6fdd9b99f0 75 LPC_SC->PCLKSEL0 |= (1 << 12); // Set peripheral clock divider to /1, i.e. system clock
mbedalvaro 0:df6fdd9b99f0 76
mbedalvaro 0:df6fdd9b99f0 77 LPC_PWM1->PCR |= 0x0014; // Double edge PWM for PWM2,4
mbedalvaro 0:df6fdd9b99f0 78
mbedalvaro 0:df6fdd9b99f0 79 LPC_PWM1->MR0 = _currentMR[0]; // Match Register 0 is shared period counter for all PWM1
mbedalvaro 0:df6fdd9b99f0 80
mbedalvaro 0:df6fdd9b99f0 81 LPC_PWM1->MR1 = _currentMR[1]; // Match Register 1 is laser rising edge counter
mbedalvaro 0:df6fdd9b99f0 82 LPC_PWM1->MR2 = _currentMR[2]; // Match Register 2 is laser falling edge counter
mbedalvaro 0:df6fdd9b99f0 83 LPC_PWM1->MR3 = _currentMR[3]; // Match Register 3 is lock-in rising edge counter
mbedalvaro 0:df6fdd9b99f0 84 LPC_PWM1->MR4 = _currentMR[4]; // Match Register 4 is lock-in falling edge counter
mbedalvaro 0:df6fdd9b99f0 85
mbedalvaro 0:df6fdd9b99f0 86 LPC_PWM1->LER |= 1; // Start updating at next period start
mbedalvaro 0:df6fdd9b99f0 87 LPC_PWM1->TCR = (1 << 0) || (1 << 3); // Enable counter and PWM
mbedalvaro 0:df6fdd9b99f0 88 }
mbedalvaro 0:df6fdd9b99f0 89
mbedalvaro 0:df6fdd9b99f0 90 //change the frequency of the PWM after initPWM()
mbedalvaro 0:df6fdd9b99f0 91 void Lockin::setPWMFrequency(float freq){
mbedalvaro 0:df6fdd9b99f0 92 refFrequency = freq;
mbedalvaro 0:df6fdd9b99f0 93 _currentMR[0] = int(MBEDFREQUENCY / refFrequency); //save the current value of MR0
mbedalvaro 0:df6fdd9b99f0 94 LPC_PWM1->MR0 = _currentMR[0]; //update PWM shared period register
mbedalvaro 0:df6fdd9b99f0 95 LPC_PWM1->LER |= 1; //update PWM
mbedalvaro 0:df6fdd9b99f0 96 }
mbedalvaro 0:df6fdd9b99f0 97
mbedalvaro 0:df6fdd9b99f0 98 //change the phase shift of the sensing laser after initPWM()
mbedalvaro 0:df6fdd9b99f0 99 void Lockin::setLaserPhaseShift(float phaseShift){
mbedalvaro 0:df6fdd9b99f0 100 phaseShiftLaser = phaseShift;
mbedalvaro 0:df6fdd9b99f0 101 float halfPeriod = 0.5 * MBEDFREQUENCY / refFrequency;
mbedalvaro 0:df6fdd9b99f0 102 _currentMR[1] = int(phaseShiftLaser * halfPeriod); //save the current value of MR1
mbedalvaro 0:df6fdd9b99f0 103 _currentMR[2] = _currentMR[1] + halfPeriod; //save the current value of MR2
mbedalvaro 0:df6fdd9b99f0 104
mbedalvaro 0:df6fdd9b99f0 105 LPC_PWM1->MR1 = _currentMR[1]; //update Laser rising edge match register
mbedalvaro 0:df6fdd9b99f0 106 LPC_PWM1->MR2 = _currentMR[2]; //update Laser faling edge match register
mbedalvaro 0:df6fdd9b99f0 107 }
mbedalvaro 0:df6fdd9b99f0 108
mbedalvaro 0:df6fdd9b99f0 109 //change the phase shift of the lock-in after initPWM()
mbedalvaro 0:df6fdd9b99f0 110 void Lockin::setLockinPhaseShift(float phaseShift){
mbedalvaro 0:df6fdd9b99f0 111 phaseShiftLockin = phaseShift;
mbedalvaro 0:df6fdd9b99f0 112 float halfPeriod = 0.5 * MBEDFREQUENCY / refFrequency;
mbedalvaro 0:df6fdd9b99f0 113 _currentMR[3] = int(phaseShiftLockin * halfPeriod); //save the current value of MR1
mbedalvaro 0:df6fdd9b99f0 114 _currentMR[4] = _currentMR[3] + halfPeriod; //save the current value of MR2
mbedalvaro 0:df6fdd9b99f0 115
mbedalvaro 0:df6fdd9b99f0 116 LPC_PWM1->MR3 = _currentMR[3]; //update lock-in rising edge match register
mbedalvaro 0:df6fdd9b99f0 117 LPC_PWM1->MR4 = _currentMR[4]; //update lock-in faling edge match register
mbedalvaro 0:df6fdd9b99f0 118 }
mbedalvaro 0:df6fdd9b99f0 119
mbedalvaro 0:df6fdd9b99f0 120
mbedalvaro 0:df6fdd9b99f0 121 void Lockin::setLaserPower(bool power){
mbedalvaro 0:df6fdd9b99f0 122 if(power){
mbedalvaro 0:df6fdd9b99f0 123 LPC_PWM1->MR1 = _currentMR[1];
mbedalvaro 0:df6fdd9b99f0 124 LPC_PWM1->MR2 = _currentMR[2];
mbedalvaro 0:df6fdd9b99f0 125 LPC_PWM1->LER |= 1; // update PWM at the next period
mbedalvaro 0:df6fdd9b99f0 126 }
mbedalvaro 0:df6fdd9b99f0 127 else{
mbedalvaro 0:df6fdd9b99f0 128 LPC_PWM1->MR1 = 0; //set rising edge at 0
mbedalvaro 0:df6fdd9b99f0 129 LPC_PWM1->MR2 = 0; //set falling edge at 0
mbedalvaro 0:df6fdd9b99f0 130 LPC_PWM1->LER |= 1; // update PWM at the next period
mbedalvaro 0:df6fdd9b99f0 131 }
mbedalvaro 0:df6fdd9b99f0 132 }
mbedalvaro 0:df6fdd9b99f0 133
mbedalvaro 0:df6fdd9b99f0 134 void Lockin::clearBuffer(){
mbedalvaro 0:df6fdd9b99f0 135 for(int i=0; i<BUFFER_SIZE; i++){
mbedalvaro 0:df6fdd9b99f0 136 buffer[i] = 0;
mbedalvaro 0:df6fdd9b99f0 137 }
mbedalvaro 0:df6fdd9b99f0 138 buffer_pos = BUFFER_SIZE;
mbedalvaro 0:df6fdd9b99f0 139 }
mbedalvaro 0:df6fdd9b99f0 140
mbedalvaro 0:df6fdd9b99f0 141 /*
mbedalvaro 0:df6fdd9b99f0 142 void Lockin::catchInterupt(uint32_t value){
mbedalvaro 0:df6fdd9b99f0 143 buffer_pos++;
mbedalvaro 0:df6fdd9b99f0 144 buffer_pos%=BUFFER_SIZE;
mbedalvaro 0:df6fdd9b99f0 145 buffer[buffer_pos] = value;
mbedalvaro 0:df6fdd9b99f0 146 }
mbedalvaro 0:df6fdd9b99f0 147 */
mbedalvaro 0:df6fdd9b99f0 148
mbedalvaro 0:df6fdd9b99f0 149 //****** aquisition method *****//
mbedalvaro 0:df6fdd9b99f0 150 unsigned short Lockin::getLastValue(){
mbedalvaro 0:df6fdd9b99f0 151 return buffer[buffer_pos];
mbedalvaro 0:df6fdd9b99f0 152 }
mbedalvaro 0:df6fdd9b99f0 153
mbedalvaro 0:df6fdd9b99f0 154 unsigned short Lockin::getSmoothValue(){
mbedalvaro 0:df6fdd9b99f0 155 unsigned short smoothValue = buffer[0];
mbedalvaro 0:df6fdd9b99f0 156 for(int i=1; i<BUFFER_SIZE; i++){
mbedalvaro 0:df6fdd9b99f0 157 smoothValue += buffer[i];
mbedalvaro 0:df6fdd9b99f0 158 }
mbedalvaro 0:df6fdd9b99f0 159 smoothValue = (unsigned short)(smoothValue/BUFFER_SIZE); // note: we could have more precision (sub-12 bit), but it's not required and would imply using a float as output
mbedalvaro 0:df6fdd9b99f0 160
mbedalvaro 0:df6fdd9b99f0 161 return smoothValue;
mbedalvaro 0:df6fdd9b99f0 162 }
mbedalvaro 0:df6fdd9b99f0 163
mbedalvaro 0:df6fdd9b99f0 164 unsigned short Lockin::getMedianValue(){
mbedalvaro 0:df6fdd9b99f0 165 //this method applies a median filter to the buffer
mbedalvaro 0:df6fdd9b99f0 166 //It reduces the salt-and-pepper noise
mbedalvaro 0:df6fdd9b99f0 167 //It seems that this noise is very strong on certain mBed board, but not all...
mbedalvaro 0:df6fdd9b99f0 168
mbedalvaro 0:df6fdd9b99f0 169 // unsigned short orderedBuffer[BUFFER_SIZE_MEDIAN];
mbedalvaro 0:df6fdd9b99f0 170
mbedalvaro 0:df6fdd9b99f0 171 //sort half of the buffer:
mbedalvaro 0:df6fdd9b99f0 172
mbedalvaro 0:df6fdd9b99f0 173 //copy buffer
mbedalvaro 0:df6fdd9b99f0 174 for(int i=0; i<BUFFER_SIZE_MEDIAN; i++){
mbedalvaro 0:df6fdd9b99f0 175 orderedBuffer[i] = buffer[(buffer_pos+BUFFER_SIZE-i+DELAY_BUFFER_MEDIAN)%BUFFER_SIZE];
mbedalvaro 0:df6fdd9b99f0 176 }
mbedalvaro 0:df6fdd9b99f0 177
mbedalvaro 0:df6fdd9b99f0 178 //order buffer
mbedalvaro 0:df6fdd9b99f0 179 for(int i=0; i<BUFFER_SIZE_MEDIAN-1; i++){
mbedalvaro 0:df6fdd9b99f0 180 int minPos = i;
mbedalvaro 0:df6fdd9b99f0 181
mbedalvaro 0:df6fdd9b99f0 182 //get min
mbedalvaro 0:df6fdd9b99f0 183 for(int j=i+1; j<BUFFER_SIZE_MEDIAN; j++){
mbedalvaro 0:df6fdd9b99f0 184 if(orderedBuffer[j] < orderedBuffer[minPos]) minPos = j;
mbedalvaro 0:df6fdd9b99f0 185 }
mbedalvaro 0:df6fdd9b99f0 186
mbedalvaro 0:df6fdd9b99f0 187 //swap min to the right position
mbedalvaro 0:df6fdd9b99f0 188 if(minPos != i){
mbedalvaro 0:df6fdd9b99f0 189 int tmpMin = orderedBuffer[minPos];
mbedalvaro 0:df6fdd9b99f0 190 orderedBuffer[minPos] = orderedBuffer[i];
mbedalvaro 0:df6fdd9b99f0 191 orderedBuffer[i] = tmpMin;
mbedalvaro 0:df6fdd9b99f0 192 }
mbedalvaro 0:df6fdd9b99f0 193 }
mbedalvaro 0:df6fdd9b99f0 194
mbedalvaro 0:df6fdd9b99f0 195 return orderedBuffer[BUFFER_SIZE_MEDIAN/2];
mbedalvaro 0:df6fdd9b99f0 196 }