Alvaro Cassinelli
/
skinGames_II
save loops
hardwareIO/hardwareIO.cpp@0:df6fdd9b99f0, 2014-12-02 (annotated)
- Committer:
- mbedalvaro
- Date:
- Tue Dec 02 04:39:15 2014 +0000
- Revision:
- 0:df6fdd9b99f0
this new version of skinGames will have a function that stops scanning as the laser reaches the same position (i.e., loops) with a certain precision. It is for extracting contours for Takashita project. It can then save on a file or send on osc
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
mbedalvaro | 0:df6fdd9b99f0 | 1 | #include "hardwareIO.h" |
mbedalvaro | 0:df6fdd9b99f0 | 2 | |
mbedalvaro | 0:df6fdd9b99f0 | 3 | HardwareIO IO; // preintantiation of cross-file global object IO |
mbedalvaro | 0:df6fdd9b99f0 | 4 | |
mbedalvaro | 0:df6fdd9b99f0 | 5 | // -------------------------------------- (0) SETUP ALL IO (call this in the setup() function in main program) |
mbedalvaro | 0:df6fdd9b99f0 | 6 | |
mbedalvaro | 0:df6fdd9b99f0 | 7 | Serial pc(USBTX, USBRX); // tx, rx |
mbedalvaro | 0:df6fdd9b99f0 | 8 | LocalFileSystem local("local"); // Create the local filesystem under the name "local" |
mbedalvaro | 0:df6fdd9b99f0 | 9 | |
mbedalvaro | 0:df6fdd9b99f0 | 10 | SPI spiDAC(MOSI_PIN, MISO_PIN, SCK_PIN); // mosi, miso, sclk |
mbedalvaro | 0:df6fdd9b99f0 | 11 | DigitalOut csDAC(CS_DAC_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 12 | |
mbedalvaro | 0:df6fdd9b99f0 | 13 | DigitalOut Laser_Red(LASER_RED_PIN); // NOTE: this is NOT the lock in sensing laser (actually, not used yet) |
mbedalvaro | 0:df6fdd9b99f0 | 14 | DigitalOut Laser_Green(LASER_GREEN_PIN); |
mbedalvaro | 0:df6fdd9b99f0 | 15 | DigitalOut Laser_Blue(LASER_BLUE_PIN); |
mbedalvaro | 0:df6fdd9b99f0 | 16 | |
mbedalvaro | 0:df6fdd9b99f0 | 17 | // Some manual controls over the hardware function: |
mbedalvaro | 0:df6fdd9b99f0 | 18 | InterruptIn switchOne(SWITCH_ONE); |
mbedalvaro | 0:df6fdd9b99f0 | 19 | InterruptIn switchTwo(SWITCH_TWO); |
mbedalvaro | 0:df6fdd9b99f0 | 20 | AnalogIn ainPot(POT_ANALOG_INPUT); |
mbedalvaro | 0:df6fdd9b99f0 | 21 | //DigitalIn RotaryEncoderPinA(ROTARY_ENCODER_PINA); // not needed: this is done in the CRotaryEncoder library (as input or interrupt) |
mbedalvaro | 0:df6fdd9b99f0 | 22 | //DigitalIn RotaryEncoderPinB(ROTARY_ENCODER_PINB); |
mbedalvaro | 0:df6fdd9b99f0 | 23 | |
mbedalvaro | 0:df6fdd9b99f0 | 24 | DigitalIn twoStateSwitch(TWO_STATE_SWITCH); |
mbedalvaro | 0:df6fdd9b99f0 | 25 | |
mbedalvaro | 0:df6fdd9b99f0 | 26 | void HardwareIO::init(void) { |
mbedalvaro | 0:df6fdd9b99f0 | 27 | |
mbedalvaro | 0:df6fdd9b99f0 | 28 | // Set laser powers down: |
mbedalvaro | 0:df6fdd9b99f0 | 29 | setRedPower(0);// TTL red laser (not used - actually not present) |
mbedalvaro | 0:df6fdd9b99f0 | 30 | setGreenPower(0); |
mbedalvaro | 0:df6fdd9b99f0 | 31 | setBluePower(0); |
mbedalvaro | 0:df6fdd9b99f0 | 32 | |
mbedalvaro | 0:df6fdd9b99f0 | 33 | //Serial Communication setup: |
mbedalvaro | 0:df6fdd9b99f0 | 34 | pc.baud(115200);// |
mbedalvaro | 0:df6fdd9b99f0 | 35 | //pc.printf("Serial Connection established \r\n"); |
mbedalvaro | 0:df6fdd9b99f0 | 36 | // pc.baud(921600);//115200);// |
mbedalvaro | 0:df6fdd9b99f0 | 37 | |
mbedalvaro | 0:df6fdd9b99f0 | 38 | // Setup for lock-in amplifier and pwm references: |
mbedalvaro | 0:df6fdd9b99f0 | 39 | setLaserLockinPower(1);// actually this is the Red laser in the hardware |
mbedalvaro | 0:df6fdd9b99f0 | 40 | lockin.init(); |
mbedalvaro | 0:df6fdd9b99f0 | 41 | |
mbedalvaro | 0:df6fdd9b99f0 | 42 | // Setup for DAC control to move the mirrors: |
mbedalvaro | 0:df6fdd9b99f0 | 43 | // Set spi for 8 bit data, high steady state clock, |
mbedalvaro | 0:df6fdd9b99f0 | 44 | // second edge capture, with a 10MHz clock rate: |
mbedalvaro | 0:df6fdd9b99f0 | 45 | csDAC = 1; |
mbedalvaro | 0:df6fdd9b99f0 | 46 | spiDAC.format(16,0); |
mbedalvaro | 0:df6fdd9b99f0 | 47 | spiDAC.frequency(16000000); |
mbedalvaro | 0:df6fdd9b99f0 | 48 | |
mbedalvaro | 0:df6fdd9b99f0 | 49 | // default initial mirror position: |
mbedalvaro | 0:df6fdd9b99f0 | 50 | writeOutX(CENTER_AD_MIRROR_X); |
mbedalvaro | 0:df6fdd9b99f0 | 51 | writeOutY(CENTER_AD_MIRROR_Y); |
mbedalvaro | 0:df6fdd9b99f0 | 52 | |
mbedalvaro | 0:df6fdd9b99f0 | 53 | // Rotary encoder 1 (to set the FIXED THRESHOLD VALUE): |
mbedalvaro | 0:df6fdd9b99f0 | 54 | rotaryEncoder1.SetMinMax(0,255); |
mbedalvaro | 0:df6fdd9b99f0 | 55 | rotaryEncoder1.Set(0); // initial value |
mbedalvaro | 0:df6fdd9b99f0 | 56 | |
mbedalvaro | 0:df6fdd9b99f0 | 57 | // Rotary encoder 2 (to set the additional correction angle): |
mbedalvaro | 0:df6fdd9b99f0 | 58 | rotaryEncoder2.SetMinMax(-10,10); |
mbedalvaro | 0:df6fdd9b99f0 | 59 | rotaryEncoder2.Set(0); // initial value |
mbedalvaro | 0:df6fdd9b99f0 | 60 | |
mbedalvaro | 0:df6fdd9b99f0 | 61 | // Load LUT table: |
mbedalvaro | 0:df6fdd9b99f0 | 62 | setLUT(); |
mbedalvaro | 0:df6fdd9b99f0 | 63 | |
mbedalvaro | 0:df6fdd9b99f0 | 64 | // Set interrupts on RAISING edge for button-switch functions: |
mbedalvaro | 0:df6fdd9b99f0 | 65 | // Note: The pin input will be logic '0' for any voltage on the pin below 0.8v, and '1' for any voltage above 2.0v. |
mbedalvaro | 0:df6fdd9b99f0 | 66 | // By default, the InterruptIn is setup with an internal pull-down resistor, but for security and clarity I will do it explicitly here: |
mbedalvaro | 0:df6fdd9b99f0 | 67 | switchOne.mode(PullUp); // pull down seems not very good |
mbedalvaro | 0:df6fdd9b99f0 | 68 | switchTwo.mode(PullUp); |
mbedalvaro | 0:df6fdd9b99f0 | 69 | switchOne.fall(this, &HardwareIO::switchOneInterrupt); // attach the address of the flip function to the falling edge |
mbedalvaro | 0:df6fdd9b99f0 | 70 | switchTwo.fall(this, &HardwareIO::switchTwoInterrupt); // attach the address of the flip function to the falling edge |
mbedalvaro | 0:df6fdd9b99f0 | 71 | switchOneState=true; |
mbedalvaro | 0:df6fdd9b99f0 | 72 | switchTwoState=false; |
mbedalvaro | 0:df6fdd9b99f0 | 73 | switchOneChange=false; |
mbedalvaro | 0:df6fdd9b99f0 | 74 | switchTwoChange=false; |
mbedalvaro | 0:df6fdd9b99f0 | 75 | |
mbedalvaro | 0:df6fdd9b99f0 | 76 | // ATTENTION: initial state of the switch should correspond to the inital state of the threshold mode in the constructor of the laser trajectory objects (not nice): |
mbedalvaro | 0:df6fdd9b99f0 | 77 | setSwitchOneState(true); //equal to switchOneState=true, plus set led value. False means fixed threshold, true AUTO THRESHOLD (will be the default mode) |
mbedalvaro | 0:df6fdd9b99f0 | 78 | // NOTE: actually this interrupt switches are not used anymore to change threhold... |
mbedalvaro | 0:df6fdd9b99f0 | 79 | |
mbedalvaro | 0:df6fdd9b99f0 | 80 | // Initial state of the two state switch (and don't forget to set the internal pullup resistors!): |
mbedalvaro | 0:df6fdd9b99f0 | 81 | twoStateSwitch.mode(PullUp);// Use internal pullup for pushbutton |
mbedalvaro | 0:df6fdd9b99f0 | 82 | twoStateSwitchState=twoStateSwitch.read(); // attention: twoStateSwitch is actually a method (this is equal to twoStateSwitch.read()); |
mbedalvaro | 0:df6fdd9b99f0 | 83 | twoStateSwitchChange=true; // this will force reading the initial threshold mode the first time the program runs |
mbedalvaro | 0:df6fdd9b99f0 | 84 | |
mbedalvaro | 0:df6fdd9b99f0 | 85 | // Read and update pot value: |
mbedalvaro | 0:df6fdd9b99f0 | 86 | // updatePotValue(); // the value will be ajusted in the range 0-255 |
mbedalvaro | 0:df6fdd9b99f0 | 87 | } |
mbedalvaro | 0:df6fdd9b99f0 | 88 | |
mbedalvaro | 0:df6fdd9b99f0 | 89 | void HardwareIO::setSwitchOneState(bool newstate) { |
mbedalvaro | 0:df6fdd9b99f0 | 90 | switchOneState=newstate; |
mbedalvaro | 0:df6fdd9b99f0 | 91 | //ledSwitchOne=(switchOneState? 1 :0); |
mbedalvaro | 0:df6fdd9b99f0 | 92 | } |
mbedalvaro | 0:df6fdd9b99f0 | 93 | |
mbedalvaro | 0:df6fdd9b99f0 | 94 | // these ISR could do more (like debouncing). |
mbedalvaro | 0:df6fdd9b99f0 | 95 | // For the time being, I will debounce electrically with a small capacitor. |
mbedalvaro | 0:df6fdd9b99f0 | 96 | void HardwareIO::switchOneInterrupt() { |
mbedalvaro | 0:df6fdd9b99f0 | 97 | switchOneState=!switchOneState; |
mbedalvaro | 0:df6fdd9b99f0 | 98 | switchOneChange=true; |
mbedalvaro | 0:df6fdd9b99f0 | 99 | } |
mbedalvaro | 0:df6fdd9b99f0 | 100 | |
mbedalvaro | 0:df6fdd9b99f0 | 101 | void HardwareIO::switchTwoInterrupt() { |
mbedalvaro | 0:df6fdd9b99f0 | 102 | switchTwoState=!switchTwoState; |
mbedalvaro | 0:df6fdd9b99f0 | 103 | switchTwoChange=true; |
mbedalvaro | 0:df6fdd9b99f0 | 104 | } |
mbedalvaro | 0:df6fdd9b99f0 | 105 | |
mbedalvaro | 0:df6fdd9b99f0 | 106 | bool HardwareIO::switchOneCheck(bool& new_state) { |
mbedalvaro | 0:df6fdd9b99f0 | 107 | new_state=switchOneState; |
mbedalvaro | 0:df6fdd9b99f0 | 108 | if (switchOneChange) { |
mbedalvaro | 0:df6fdd9b99f0 | 109 | switchOneChange=false; |
mbedalvaro | 0:df6fdd9b99f0 | 110 | return(true); |
mbedalvaro | 0:df6fdd9b99f0 | 111 | } else |
mbedalvaro | 0:df6fdd9b99f0 | 112 | return(false); |
mbedalvaro | 0:df6fdd9b99f0 | 113 | } |
mbedalvaro | 0:df6fdd9b99f0 | 114 | |
mbedalvaro | 0:df6fdd9b99f0 | 115 | bool HardwareIO::switchTwoCheck(bool& new_state) { |
mbedalvaro | 0:df6fdd9b99f0 | 116 | new_state=switchTwoState; |
mbedalvaro | 0:df6fdd9b99f0 | 117 | if (switchTwoChange) { |
mbedalvaro | 0:df6fdd9b99f0 | 118 | switchTwoChange=false; |
mbedalvaro | 0:df6fdd9b99f0 | 119 | return(true); |
mbedalvaro | 0:df6fdd9b99f0 | 120 | } else return(false); |
mbedalvaro | 0:df6fdd9b99f0 | 121 | } |
mbedalvaro | 0:df6fdd9b99f0 | 122 | |
mbedalvaro | 0:df6fdd9b99f0 | 123 | // NOT interrupt-based switch: |
mbedalvaro | 0:df6fdd9b99f0 | 124 | bool HardwareIO::twoStateSwitchCheck(bool& new_state) { |
mbedalvaro | 0:df6fdd9b99f0 | 125 | new_state=twoStateSwitch; // note: twoStateSwitch is a method! |
mbedalvaro | 0:df6fdd9b99f0 | 126 | if (twoStateSwitchState==new_state) { |
mbedalvaro | 0:df6fdd9b99f0 | 127 | // this means that the switch did not change state: |
mbedalvaro | 0:df6fdd9b99f0 | 128 | return(false); |
mbedalvaro | 0:df6fdd9b99f0 | 129 | } else { |
mbedalvaro | 0:df6fdd9b99f0 | 130 | twoStateSwitchState=new_state; |
mbedalvaro | 0:df6fdd9b99f0 | 131 | return(true); |
mbedalvaro | 0:df6fdd9b99f0 | 132 | } |
mbedalvaro | 0:df6fdd9b99f0 | 133 | } |
mbedalvaro | 0:df6fdd9b99f0 | 134 | |
mbedalvaro | 0:df6fdd9b99f0 | 135 | |
mbedalvaro | 0:df6fdd9b99f0 | 136 | // THIS IS NOT WORKING!!!!!! |
mbedalvaro | 0:df6fdd9b99f0 | 137 | unsigned char HardwareIO::updatePotValue() { // this will update the pot value, and return it too. |
mbedalvaro | 0:df6fdd9b99f0 | 138 | //The value will be ajusted in the range 0-255 |
mbedalvaro | 0:df6fdd9b99f0 | 139 | //The 0.0v to 3.3v range of the AnalogIn is represented in software as a normalised floating point number from 0.0 to 1.0. |
mbedalvaro | 0:df6fdd9b99f0 | 140 | |
mbedalvaro | 0:df6fdd9b99f0 | 141 | // potValue=(unsigned char )(ainPot*255); |
mbedalvaro | 0:df6fdd9b99f0 | 142 | // Attention: go back to burst mode: |
mbedalvaro | 0:df6fdd9b99f0 | 143 | // lockin.setADC_forLockin(1); |
mbedalvaro | 0:df6fdd9b99f0 | 144 | // wait(1); |
mbedalvaro | 0:df6fdd9b99f0 | 145 | |
mbedalvaro | 0:df6fdd9b99f0 | 146 | //USING the adc library: |
mbedalvaro | 0:df6fdd9b99f0 | 147 | // unset fast adc for lockin, and set normal adc for conversion from analog input pin: |
mbedalvaro | 0:df6fdd9b99f0 | 148 | lockin.setADC_forLockin(0); |
mbedalvaro | 0:df6fdd9b99f0 | 149 | // wait(1); |
mbedalvaro | 0:df6fdd9b99f0 | 150 | |
mbedalvaro | 0:df6fdd9b99f0 | 151 | //Measure pin POT_ANALOG_INPUT |
mbedalvaro | 0:df6fdd9b99f0 | 152 | adc.select(POT_ANALOG_INPUT); |
mbedalvaro | 0:df6fdd9b99f0 | 153 | //Start ADC conversion |
mbedalvaro | 0:df6fdd9b99f0 | 154 | adc.start(); |
mbedalvaro | 0:df6fdd9b99f0 | 155 | //Wait for it to complete |
mbedalvaro | 0:df6fdd9b99f0 | 156 | while(!adc.done(POT_ANALOG_INPUT)); |
mbedalvaro | 0:df6fdd9b99f0 | 157 | potValue=adc.read(POT_ANALOG_INPUT); |
mbedalvaro | 0:df6fdd9b99f0 | 158 | |
mbedalvaro | 0:df6fdd9b99f0 | 159 | //Unset pin POT_ANALOG_INPUT |
mbedalvaro | 0:df6fdd9b99f0 | 160 | adc.setup(POT_ANALOG_INPUT,0); |
mbedalvaro | 0:df6fdd9b99f0 | 161 | |
mbedalvaro | 0:df6fdd9b99f0 | 162 | lockin.setADC_forLockin(1); |
mbedalvaro | 0:df6fdd9b99f0 | 163 | wait(0.5); |
mbedalvaro | 0:df6fdd9b99f0 | 164 | |
mbedalvaro | 0:df6fdd9b99f0 | 165 | return(potValue); |
mbedalvaro | 0:df6fdd9b99f0 | 166 | } |
mbedalvaro | 0:df6fdd9b99f0 | 167 | |
mbedalvaro | 0:df6fdd9b99f0 | 168 | //write on the first DAC, output A (mirror X) |
mbedalvaro | 0:df6fdd9b99f0 | 169 | void HardwareIO::writeOutX(unsigned short value){ |
mbedalvaro | 0:df6fdd9b99f0 | 170 | if(value > MAX_AD_MIRRORS) value = MAX_AD_MIRRORS; |
mbedalvaro | 0:df6fdd9b99f0 | 171 | if(value < MIN_AD_MIRRORS) value = MIN_AD_MIRRORS; |
mbedalvaro | 0:df6fdd9b99f0 | 172 | |
mbedalvaro | 0:df6fdd9b99f0 | 173 | value |= 0x7000; |
mbedalvaro | 0:df6fdd9b99f0 | 174 | value &= 0x7FFF; |
mbedalvaro | 0:df6fdd9b99f0 | 175 | |
mbedalvaro | 0:df6fdd9b99f0 | 176 | csDAC = 0; // this means the chip is enabled (negated logic), so CLK and SDI (data) can be transfered |
mbedalvaro | 0:df6fdd9b99f0 | 177 | spiDAC.write(value); |
mbedalvaro | 0:df6fdd9b99f0 | 178 | csDAC = 1; // rising the pin actually writes the data in the corresponding DAC register... |
mbedalvaro | 0:df6fdd9b99f0 | 179 | } |
mbedalvaro | 0:df6fdd9b99f0 | 180 | |
mbedalvaro | 0:df6fdd9b99f0 | 181 | //write on the first DAC, output B (mirror Y) |
mbedalvaro | 0:df6fdd9b99f0 | 182 | void HardwareIO::writeOutY(unsigned short value){ |
mbedalvaro | 0:df6fdd9b99f0 | 183 | if(value > MAX_AD_MIRRORS) value = MAX_AD_MIRRORS; |
mbedalvaro | 0:df6fdd9b99f0 | 184 | if(value < MIN_AD_MIRRORS) value = MIN_AD_MIRRORS; |
mbedalvaro | 0:df6fdd9b99f0 | 185 | |
mbedalvaro | 0:df6fdd9b99f0 | 186 | value |= 0xF000; |
mbedalvaro | 0:df6fdd9b99f0 | 187 | value &= 0xFFFF; |
mbedalvaro | 0:df6fdd9b99f0 | 188 | |
mbedalvaro | 0:df6fdd9b99f0 | 189 | csDAC = 0; |
mbedalvaro | 0:df6fdd9b99f0 | 190 | spiDAC.write(value); |
mbedalvaro | 0:df6fdd9b99f0 | 191 | csDAC = 1; |
mbedalvaro | 0:df6fdd9b99f0 | 192 | } |
mbedalvaro | 0:df6fdd9b99f0 | 193 | |
mbedalvaro | 0:df6fdd9b99f0 | 194 | void HardwareIO::setLaserLockinPower(int powerValue){ |
mbedalvaro | 0:df6fdd9b99f0 | 195 | if(powerValue > 0){ |
mbedalvaro | 0:df6fdd9b99f0 | 196 | lockin.setLaserPower(true); |
mbedalvaro | 0:df6fdd9b99f0 | 197 | } |
mbedalvaro | 0:df6fdd9b99f0 | 198 | else{ |
mbedalvaro | 0:df6fdd9b99f0 | 199 | lockin.setLaserPower(false); |
mbedalvaro | 0:df6fdd9b99f0 | 200 | } |
mbedalvaro | 0:df6fdd9b99f0 | 201 | } |
mbedalvaro | 0:df6fdd9b99f0 | 202 | // THE TTL controlled lasers: |
mbedalvaro | 0:df6fdd9b99f0 | 203 | // Note: the red one is not used here |
mbedalvaro | 0:df6fdd9b99f0 | 204 | void HardwareIO::setRedPower(int powerValue){ |
mbedalvaro | 0:df6fdd9b99f0 | 205 | if(powerValue > 0){ |
mbedalvaro | 0:df6fdd9b99f0 | 206 | Laser_Red = 1; |
mbedalvaro | 0:df6fdd9b99f0 | 207 | } |
mbedalvaro | 0:df6fdd9b99f0 | 208 | else{ |
mbedalvaro | 0:df6fdd9b99f0 | 209 | Laser_Red = 0; |
mbedalvaro | 0:df6fdd9b99f0 | 210 | } |
mbedalvaro | 0:df6fdd9b99f0 | 211 | } |
mbedalvaro | 0:df6fdd9b99f0 | 212 | void HardwareIO::setGreenPower(int powerValue){ |
mbedalvaro | 0:df6fdd9b99f0 | 213 | if(powerValue > 0){ |
mbedalvaro | 0:df6fdd9b99f0 | 214 | Laser_Green = 1; |
mbedalvaro | 0:df6fdd9b99f0 | 215 | } |
mbedalvaro | 0:df6fdd9b99f0 | 216 | else{ |
mbedalvaro | 0:df6fdd9b99f0 | 217 | Laser_Green = 0; |
mbedalvaro | 0:df6fdd9b99f0 | 218 | } |
mbedalvaro | 0:df6fdd9b99f0 | 219 | } |
mbedalvaro | 0:df6fdd9b99f0 | 220 | void HardwareIO::setBluePower(int powerValue){ |
mbedalvaro | 0:df6fdd9b99f0 | 221 | if(powerValue > 0){ |
mbedalvaro | 0:df6fdd9b99f0 | 222 | Laser_Blue = 1; |
mbedalvaro | 0:df6fdd9b99f0 | 223 | } |
mbedalvaro | 0:df6fdd9b99f0 | 224 | else{ |
mbedalvaro | 0:df6fdd9b99f0 | 225 | Laser_Blue = 0; |
mbedalvaro | 0:df6fdd9b99f0 | 226 | } |
mbedalvaro | 0:df6fdd9b99f0 | 227 | } |
mbedalvaro | 0:df6fdd9b99f0 | 228 | |
mbedalvaro | 0:df6fdd9b99f0 | 229 | void HardwareIO::setRGBPower(unsigned char color) { |
mbedalvaro | 0:df6fdd9b99f0 | 230 | lockin.setLaserPower((color&0x04)>0? true : false); // NOTE: here the "red" is the lockin laser, not the TTL one (not used yet) |
mbedalvaro | 0:df6fdd9b99f0 | 231 | Laser_Green=(color&0x02)>>1; |
mbedalvaro | 0:df6fdd9b99f0 | 232 | Laser_Blue =color&0x01; |
mbedalvaro | 0:df6fdd9b99f0 | 233 | } |
mbedalvaro | 0:df6fdd9b99f0 | 234 | |
mbedalvaro | 0:df6fdd9b99f0 | 235 | void HardwareIO::showLimitsMirrors(int seconds) { |
mbedalvaro | 0:df6fdd9b99f0 | 236 | unsigned short pointsPerLine=150; |
mbedalvaro | 0:df6fdd9b99f0 | 237 | int shiftX = (MAX_AD_MIRRORS - MIN_AD_MIRRORS) / pointsPerLine; |
mbedalvaro | 0:df6fdd9b99f0 | 238 | int shiftY = (MAX_AD_MIRRORS - MIN_AD_MIRRORS) / pointsPerLine; |
mbedalvaro | 0:df6fdd9b99f0 | 239 | |
mbedalvaro | 0:df6fdd9b99f0 | 240 | Laser_Green=1; |
mbedalvaro | 0:df6fdd9b99f0 | 241 | |
mbedalvaro | 0:df6fdd9b99f0 | 242 | //for (int repeat=0; repeat<times; repeat++) { |
mbedalvaro | 0:df6fdd9b99f0 | 243 | |
mbedalvaro | 0:df6fdd9b99f0 | 244 | Timer t; |
mbedalvaro | 0:df6fdd9b99f0 | 245 | t.start(); |
mbedalvaro | 0:df6fdd9b99f0 | 246 | while(t.read_ms()<seconds*1000) { |
mbedalvaro | 0:df6fdd9b99f0 | 247 | |
mbedalvaro | 0:df6fdd9b99f0 | 248 | writeOutX(MIN_AD_MIRRORS);writeOutY(MIN_AD_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 249 | |
mbedalvaro | 0:df6fdd9b99f0 | 250 | for(int j=0; j<pointsPerLine; j++){ |
mbedalvaro | 0:df6fdd9b99f0 | 251 | wait_us(200);//delay between each points |
mbedalvaro | 0:df6fdd9b99f0 | 252 | writeOutY(j*shiftY + MIN_AD_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 253 | } |
mbedalvaro | 0:df6fdd9b99f0 | 254 | |
mbedalvaro | 0:df6fdd9b99f0 | 255 | writeOutX(MIN_AD_MIRRORS);writeOutY(MAX_AD_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 256 | for(int j=0; j<pointsPerLine; j++) { |
mbedalvaro | 0:df6fdd9b99f0 | 257 | wait_us(200);//delay between each points |
mbedalvaro | 0:df6fdd9b99f0 | 258 | writeOutX(j*shiftX + MIN_AD_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 259 | } |
mbedalvaro | 0:df6fdd9b99f0 | 260 | |
mbedalvaro | 0:df6fdd9b99f0 | 261 | writeOutX(MAX_AD_MIRRORS);writeOutY(MAX_AD_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 262 | for(int j=0; j<pointsPerLine; j++) { |
mbedalvaro | 0:df6fdd9b99f0 | 263 | wait_us(200);//delay between each points |
mbedalvaro | 0:df6fdd9b99f0 | 264 | writeOutY(-j*shiftX + MAX_AD_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 265 | } |
mbedalvaro | 0:df6fdd9b99f0 | 266 | |
mbedalvaro | 0:df6fdd9b99f0 | 267 | writeOutX(MAX_AD_MIRRORS);writeOutY(MIN_AD_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 268 | for(int j=0; j<pointsPerLine; j++) { |
mbedalvaro | 0:df6fdd9b99f0 | 269 | wait_us(200);//delay between each points |
mbedalvaro | 0:df6fdd9b99f0 | 270 | writeOutX(-j*shiftX + MAX_AD_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 271 | } |
mbedalvaro | 0:df6fdd9b99f0 | 272 | |
mbedalvaro | 0:df6fdd9b99f0 | 273 | } |
mbedalvaro | 0:df6fdd9b99f0 | 274 | t.stop(); |
mbedalvaro | 0:df6fdd9b99f0 | 275 | Laser_Green=0; |
mbedalvaro | 0:df6fdd9b99f0 | 276 | } |
mbedalvaro | 0:df6fdd9b99f0 | 277 | |
mbedalvaro | 0:df6fdd9b99f0 | 278 | void HardwareIO::scan_serial(unsigned short pointsPerLine){ |
mbedalvaro | 0:df6fdd9b99f0 | 279 | //scan the total surface with a custom resolution |
mbedalvaro | 0:df6fdd9b99f0 | 280 | //send the lockin value for each point as a byte on the serial port to the PC |
mbedalvaro | 0:df6fdd9b99f0 | 281 | //use "scanSLP_save" to see the data on processing |
mbedalvaro | 0:df6fdd9b99f0 | 282 | // First, set the red laser on, and other off: |
mbedalvaro | 0:df6fdd9b99f0 | 283 | setRGBPower(0x4); |
mbedalvaro | 0:df6fdd9b99f0 | 284 | wait_us(1000); // just to give time to the lockin to set |
mbedalvaro | 0:df6fdd9b99f0 | 285 | |
mbedalvaro | 0:df6fdd9b99f0 | 286 | int shiftX = (MAX_AD_MIRRORS - MIN_AD_MIRRORS) / pointsPerLine; |
mbedalvaro | 0:df6fdd9b99f0 | 287 | int shiftY = (MAX_AD_MIRRORS - MIN_AD_MIRRORS) / pointsPerLine; |
mbedalvaro | 0:df6fdd9b99f0 | 288 | |
mbedalvaro | 0:df6fdd9b99f0 | 289 | for(int j=0; j<pointsPerLine; j++){ |
mbedalvaro | 0:df6fdd9b99f0 | 290 | writeOutX(MIN_AD_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 291 | writeOutY(j*shiftY + MIN_AD_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 292 | |
mbedalvaro | 0:df6fdd9b99f0 | 293 | wait_us(300);//begining of line delay |
mbedalvaro | 0:df6fdd9b99f0 | 294 | for(int i=0; i<pointsPerLine; i++){ |
mbedalvaro | 0:df6fdd9b99f0 | 295 | writeOutX(i*shiftX + MIN_AD_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 296 | |
mbedalvaro | 0:df6fdd9b99f0 | 297 | wait_us(200);//delay between each points |
mbedalvaro | 0:df6fdd9b99f0 | 298 | |
mbedalvaro | 0:df6fdd9b99f0 | 299 | // SEND A VALUE BETWEEN 0 and 255: |
mbedalvaro | 0:df6fdd9b99f0 | 300 | pc.putc(int(255.0*lockin.getMedianValue()/4095));//printf("%dL",int(valueLockin*255));//pc.putc(int(lockin*255));// |
mbedalvaro | 0:df6fdd9b99f0 | 301 | } |
mbedalvaro | 0:df6fdd9b99f0 | 302 | } |
mbedalvaro | 0:df6fdd9b99f0 | 303 | } |
mbedalvaro | 0:df6fdd9b99f0 | 304 | |
mbedalvaro | 0:df6fdd9b99f0 | 305 | //load Look-up Table from LUT.TXT file |
mbedalvaro | 0:df6fdd9b99f0 | 306 | //or create the file with scanLUT() if not existing. |
mbedalvaro | 0:df6fdd9b99f0 | 307 | void HardwareIO::setLUT(){ |
mbedalvaro | 0:df6fdd9b99f0 | 308 | |
mbedalvaro | 0:df6fdd9b99f0 | 309 | FILE *fp = fopen(LUT_FILENAME, "r"); // Open file on the local file system for writing |
mbedalvaro | 0:df6fdd9b99f0 | 310 | if(fp){ |
mbedalvaro | 0:df6fdd9b99f0 | 311 | //load the file into the lut table; keep the SAME resolution! |
mbedalvaro | 0:df6fdd9b99f0 | 312 | fread(lut,sizeof(uint16),LUT_RESOLUTION*LUT_RESOLUTION,fp); |
mbedalvaro | 0:df6fdd9b99f0 | 313 | fclose(fp); |
mbedalvaro | 0:df6fdd9b99f0 | 314 | } |
mbedalvaro | 0:df6fdd9b99f0 | 315 | else{ |
mbedalvaro | 0:df6fdd9b99f0 | 316 | //fclose(fp); |
mbedalvaro | 0:df6fdd9b99f0 | 317 | //if the file "LUT.TXT" doesn't exist, create one with scanLUT() |
mbedalvaro | 0:df6fdd9b99f0 | 318 | lockin.setLaserPower(true); |
mbedalvaro | 0:df6fdd9b99f0 | 319 | scanLUT(); |
mbedalvaro | 0:df6fdd9b99f0 | 320 | } |
mbedalvaro | 0:df6fdd9b99f0 | 321 | |
mbedalvaro | 0:df6fdd9b99f0 | 322 | } |
mbedalvaro | 0:df6fdd9b99f0 | 323 | |
mbedalvaro | 0:df6fdd9b99f0 | 324 | //scan the total surface with a fixed 2^x resolution |
mbedalvaro | 0:df6fdd9b99f0 | 325 | //create the Look-Up Table used to "flatten" the scan according to the position |
mbedalvaro | 0:df6fdd9b99f0 | 326 | // |
mbedalvaro | 0:df6fdd9b99f0 | 327 | //To Do: maybe detect high frequency to be sure the area is clean and empty? |
mbedalvaro | 0:df6fdd9b99f0 | 328 | void HardwareIO::scanLUT(){ |
mbedalvaro | 0:df6fdd9b99f0 | 329 | |
mbedalvaro | 0:df6fdd9b99f0 | 330 | //reset lut table |
mbedalvaro | 0:df6fdd9b99f0 | 331 | for(int j=0; j<LUT_RESOLUTION; j++){ |
mbedalvaro | 0:df6fdd9b99f0 | 332 | for(int i=0; i<LUT_RESOLUTION; i++){ |
mbedalvaro | 0:df6fdd9b99f0 | 333 | lut[i][j] =0; |
mbedalvaro | 0:df6fdd9b99f0 | 334 | } |
mbedalvaro | 0:df6fdd9b99f0 | 335 | } |
mbedalvaro | 0:df6fdd9b99f0 | 336 | |
mbedalvaro | 0:df6fdd9b99f0 | 337 | int delayScanning = 300; //in us |
mbedalvaro | 0:df6fdd9b99f0 | 338 | |
mbedalvaro | 0:df6fdd9b99f0 | 339 | //define the distance between each points (from 0 to 4096) and the offset (here 0) |
mbedalvaro | 0:df6fdd9b99f0 | 340 | float shiftX = 1.0*(MAX_AD_MIRRORS - MIN_AD_MIRRORS) / (LUT_RESOLUTION-1); |
mbedalvaro | 0:df6fdd9b99f0 | 341 | float shiftY = 1.0*(MAX_AD_MIRRORS - MIN_AD_MIRRORS) / (LUT_RESOLUTION-1); |
mbedalvaro | 0:df6fdd9b99f0 | 342 | float offsetX = MIN_AD_MIRRORS; |
mbedalvaro | 0:df6fdd9b99f0 | 343 | float offsetY = MIN_AD_MIRRORS; |
mbedalvaro | 0:df6fdd9b99f0 | 344 | |
mbedalvaro | 0:df6fdd9b99f0 | 345 | //move the mirrors to the first position |
mbedalvaro | 0:df6fdd9b99f0 | 346 | writeOutX(MAX_AD_MIRRORS);writeOutY(MIN_AD_MIRRORS); |
mbedalvaro | 0:df6fdd9b99f0 | 347 | wait_us(500); |
mbedalvaro | 0:df6fdd9b99f0 | 348 | |
mbedalvaro | 0:df6fdd9b99f0 | 349 | float x, y; |
mbedalvaro | 0:df6fdd9b99f0 | 350 | |
mbedalvaro | 0:df6fdd9b99f0 | 351 | //scan the surface NB_SCANS times |
mbedalvaro | 0:df6fdd9b99f0 | 352 | //the total value in lut[i][j] shouldn't exceed uint16 !!! |
mbedalvaro | 0:df6fdd9b99f0 | 353 | for(int loop=0; loop<NB_SCANS; loop++){ |
mbedalvaro | 0:df6fdd9b99f0 | 354 | for(int j=0; j<LUT_RESOLUTION; j++){ |
mbedalvaro | 0:df6fdd9b99f0 | 355 | y = shiftY*j + offsetY ; |
mbedalvaro | 0:df6fdd9b99f0 | 356 | writeOutY(int(y)); |
mbedalvaro | 0:df6fdd9b99f0 | 357 | //scan from right to left |
mbedalvaro | 0:df6fdd9b99f0 | 358 | for(int i=LUT_RESOLUTION-1; i>=0; i--){ |
mbedalvaro | 0:df6fdd9b99f0 | 359 | x = shiftX*i + offsetX; |
mbedalvaro | 0:df6fdd9b99f0 | 360 | writeOutX(int(x)); |
mbedalvaro | 0:df6fdd9b99f0 | 361 | wait_us(delayScanning); |
mbedalvaro | 0:df6fdd9b99f0 | 362 | lut[i][j] += lockin_read(); |
mbedalvaro | 0:df6fdd9b99f0 | 363 | } |
mbedalvaro | 0:df6fdd9b99f0 | 364 | //re-scan from left to right |
mbedalvaro | 0:df6fdd9b99f0 | 365 | for(int i=0; i<LUT_RESOLUTION; i++){ |
mbedalvaro | 0:df6fdd9b99f0 | 366 | x = shiftX*i + offsetX; |
mbedalvaro | 0:df6fdd9b99f0 | 367 | writeOutX(int(x)); |
mbedalvaro | 0:df6fdd9b99f0 | 368 | wait_us(delayScanning); |
mbedalvaro | 0:df6fdd9b99f0 | 369 | lut[i][j] += lockin_read(); |
mbedalvaro | 0:df6fdd9b99f0 | 370 | } |
mbedalvaro | 0:df6fdd9b99f0 | 371 | } |
mbedalvaro | 0:df6fdd9b99f0 | 372 | } |
mbedalvaro | 0:df6fdd9b99f0 | 373 | |
mbedalvaro | 0:df6fdd9b99f0 | 374 | |
mbedalvaro | 0:df6fdd9b99f0 | 375 | //save tab in file |
mbedalvaro | 0:df6fdd9b99f0 | 376 | FILE *fp; |
mbedalvaro | 0:df6fdd9b99f0 | 377 | #ifdef LUT_FILENAME |
mbedalvaro | 0:df6fdd9b99f0 | 378 | fp = fopen(LUT_FILENAME, "w"); // Open file on the local file system for writing |
mbedalvaro | 0:df6fdd9b99f0 | 379 | fwrite(lut,sizeof(uint16),LUT_RESOLUTION*LUT_RESOLUTION,fp); |
mbedalvaro | 0:df6fdd9b99f0 | 380 | fclose(fp); //close the file (the mBed will appear connected again) |
mbedalvaro | 0:df6fdd9b99f0 | 381 | #endif |
mbedalvaro | 0:df6fdd9b99f0 | 382 | |
mbedalvaro | 0:df6fdd9b99f0 | 383 | #ifdef LUT_H_FILENAME |
mbedalvaro | 0:df6fdd9b99f0 | 384 | //save tab in Human readable file (not used by the program, this is just for checking) |
mbedalvaro | 0:df6fdd9b99f0 | 385 | // NOTE: we divide the content of the lut table by NB_SCANS, for easy reading (values should be between 0-4095) |
mbedalvaro | 0:df6fdd9b99f0 | 386 | fp = fopen(LUT_H_FILENAME, "w"); // Open file on the local file system for writing |
mbedalvaro | 0:df6fdd9b99f0 | 387 | fprintf(fp, "scan resolution: %d x %d\r\n",LUT_RESOLUTION, LUT_RESOLUTION); |
mbedalvaro | 0:df6fdd9b99f0 | 388 | for(int j=0; j<LUT_RESOLUTION; j++){ |
mbedalvaro | 0:df6fdd9b99f0 | 389 | for(int i=0; i<LUT_RESOLUTION; i++){ |
mbedalvaro | 0:df6fdd9b99f0 | 390 | fprintf(fp, "X=%d,\tY=%d,\tI=%d\t \r\n", int(shiftX*i + offsetX), int(shiftY*j + offsetY), int(1.0*lut[i][j]/NB_SCANS) ); |
mbedalvaro | 0:df6fdd9b99f0 | 391 | } |
mbedalvaro | 0:df6fdd9b99f0 | 392 | } |
mbedalvaro | 0:df6fdd9b99f0 | 393 | fclose(fp); //close the file (the mBed will appear connected again) |
mbedalvaro | 0:df6fdd9b99f0 | 394 | #endif |
mbedalvaro | 0:df6fdd9b99f0 | 395 | |
mbedalvaro | 0:df6fdd9b99f0 | 396 | } |
mbedalvaro | 0:df6fdd9b99f0 | 397 | |
mbedalvaro | 0:df6fdd9b99f0 | 398 | |
mbedalvaro | 0:df6fdd9b99f0 | 399 | //Return the lockin value "corrected with the Look-UpTable" - this means a RATIO between two reflectivities (and normally, this is <1). |
mbedalvaro | 0:df6fdd9b99f0 | 400 | float HardwareIO::lockInCorrectedValue(unsigned short x, unsigned short y){ |
mbedalvaro | 0:df6fdd9b99f0 | 401 | //*******Correction using DIRECT approximation |
mbedalvaro | 0:df6fdd9b99f0 | 402 | #ifdef LUT_DIRECT |
mbedalvaro | 0:df6fdd9b99f0 | 403 | return 2.0* NB_SCANS * lockin_read() / (lut[x >> LUT_BITS_SHIFT][y >> LUT_BITS_SHIFT]); // 2 * NB_SCANS is the number of recorded sample added to one position of the LUT (scan is performed twice: left-right and right-left) |
mbedalvaro | 0:df6fdd9b99f0 | 404 | #endif |
mbedalvaro | 0:df6fdd9b99f0 | 405 | |
mbedalvaro | 0:df6fdd9b99f0 | 406 | //*******Correction using BILINEAR approximation |
mbedalvaro | 0:df6fdd9b99f0 | 407 | #ifdef LUT_BILINEAR |
mbedalvaro | 0:df6fdd9b99f0 | 408 | unsigned short X = x >> LUT_BITS_SHIFT; //mirror "x" is 12bits, LUT "X" needs 4bits when lut is 17x17 |
mbedalvaro | 0:df6fdd9b99f0 | 409 | unsigned short Y = y >> LUT_BITS_SHIFT; //mirror "y" is 12bits, LUT "Y" needs 4bits when lut is 17x17 |
mbedalvaro | 0:df6fdd9b99f0 | 410 | float dx = 1.0*(x & LUT_BITS_MASK)/(LUT_BITS_MASK+1); //weight to apply on X (mask with 255 and norm) |
mbedalvaro | 0:df6fdd9b99f0 | 411 | float dy = 1.0*(y & LUT_BITS_MASK)/(LUT_BITS_MASK+1); //weight to apply on Y (mask with 255 and norm) |
mbedalvaro | 0:df6fdd9b99f0 | 412 | |
mbedalvaro | 0:df6fdd9b99f0 | 413 | //Wheighted mean approximation of the Look-Up Table at the position (x,y): |
mbedalvaro | 0:df6fdd9b99f0 | 414 | float wmLUT = (1-dy)*( (1-dx)*lut[X][Y] + dx*lut[X+1][Y] ) + dy*( (1-dx)*lut[X][Y+1] + dx*lut[X+1][Y+1] ); |
mbedalvaro | 0:df6fdd9b99f0 | 415 | |
mbedalvaro | 0:df6fdd9b99f0 | 416 | return 2.0* NB_SCANS * lockin_read() / wmLUT;// 2 * NB_SCANS is the number of recorded sample added to one position of the LUT (scan is performed twice: left-right and right-left) |
mbedalvaro | 0:df6fdd9b99f0 | 417 | #endif |
mbedalvaro | 0:df6fdd9b99f0 | 418 | |
mbedalvaro | 0:df6fdd9b99f0 | 419 | //*******Correction using LINEAR approximation |
mbedalvaro | 0:df6fdd9b99f0 | 420 | #ifdef LUT_LINEAR |
mbedalvaro | 0:df6fdd9b99f0 | 421 | unsigned short X = x >> LUT_BITS_SHIFT; //mirror "x" is 12bits, LUT "X" needs 4bits when lut is 17x17 |
mbedalvaro | 0:df6fdd9b99f0 | 422 | unsigned short Y = y >> LUT_BITS_SHIFT; //mirror "y" is 12bits, LUT "Y" needs 4bits when lut is 17x17 |
mbedalvaro | 0:df6fdd9b99f0 | 423 | float dx = 1.0*(x & LUT_BITS_MASK)/(LUT_BITS_MASK+1); //weight to apply on X (mask with 255 and norm) |
mbedalvaro | 0:df6fdd9b99f0 | 424 | float dy = 1.0*(y & LUT_BITS_MASK)/(LUT_BITS_MASK+1); //weight to apply on Y (mask with 255 and norm) |
mbedalvaro | 0:df6fdd9b99f0 | 425 | float linearLUT, dzx, dzy; |
mbedalvaro | 0:df6fdd9b99f0 | 426 | |
mbedalvaro | 0:df6fdd9b99f0 | 427 | if(dx>dy){ //if the position is on the "top-right" triangle |
mbedalvaro | 0:df6fdd9b99f0 | 428 | dzx = (lut[X+1][Y] - lut[X][Y]) * dx; |
mbedalvaro | 0:df6fdd9b99f0 | 429 | dzy = (lut[X+1][Y+1] - lut[X+1][Y]) * dy; |
mbedalvaro | 0:df6fdd9b99f0 | 430 | } |
mbedalvaro | 0:df6fdd9b99f0 | 431 | else{ //if the position is on the "bottom-left" triangle |
mbedalvaro | 0:df6fdd9b99f0 | 432 | dzy = (lut[X][Y+1] - lut[X][Y]) * dy; |
mbedalvaro | 0:df6fdd9b99f0 | 433 | dzx = (lut[X+1][Y+1] - lut[X][Y+1]) * dx; |
mbedalvaro | 0:df6fdd9b99f0 | 434 | } |
mbedalvaro | 0:df6fdd9b99f0 | 435 | |
mbedalvaro | 0:df6fdd9b99f0 | 436 | //linear approximation of the Look-Up Table at the position (x,y): |
mbedalvaro | 0:df6fdd9b99f0 | 437 | linearLUT = lut[X][Y] + dzx + dzy; |
mbedalvaro | 0:df6fdd9b99f0 | 438 | return 2.0* NB_SCANS * lockin_read() / linearLUT; // 2 * NB_SCANS is the number of recorded sample added to one position of the LUT (scan is performed twice: left-right and right-left) |
mbedalvaro | 0:df6fdd9b99f0 | 439 | |
mbedalvaro | 0:df6fdd9b99f0 | 440 | #endif |
mbedalvaro | 0:df6fdd9b99f0 | 441 | |
mbedalvaro | 0:df6fdd9b99f0 | 442 | //*******No corrections, just return the value divided by 4096 (this means we are assuming that the surface is everywhere perfectly reflective - we supposedly get the max value always) |
mbedalvaro | 0:df6fdd9b99f0 | 443 | #ifdef NO_LUT |
mbedalvaro | 0:df6fdd9b99f0 | 444 | return 1.0* lockin_read()/4096; |
mbedalvaro | 0:df6fdd9b99f0 | 445 | #endif |
mbedalvaro | 0:df6fdd9b99f0 | 446 | |
mbedalvaro | 0:df6fdd9b99f0 | 447 | } |