mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/cmsis/TARGET_STM/TARGET_STM32L0/stm32l0xx_hal_cryp.c

Committer:
mbed_official
Date:
2015-07-01
Revision:
579:53297373a894
Parent:
489:119543c9f674

File content as of revision 579:53297373a894:

/**
  ******************************************************************************
  * @file    stm32l0xx_hal_cryp.c
  * @author  MCD Application Team
  * @version V1.2.0
  * @date    06-February-2015
  * @brief   CRYP HAL module driver.
  *    
  *          This file provides firmware functions to manage the following 
  *          functionalities of the Cryptography (CRYP) peripheral:
  *           + Initialization and de-initialization functions
  *           + Processing functions by algorithm using polling mode
  *           + Processing functions by algorithm using interrupt mode
  *           + Processing functions by algorithm using DMA mode
  *           + Peripheral State functions
  *         
  @verbatim
  ==============================================================================
                     ##### How to use this driver #####
  ==============================================================================
    [..]
      The CRYP HAL driver can be used as follows:

      (#)Initialize the CRYP low level resources by implementing the HAL_CRYP_MspInit():
         (##) Enable the CRYP interface clock using __HAL_RCC_AES_CLK_ENABLE()
         (##) In case of using interrupts (e.g. HAL_CRYP_AESECB_Encrypt_IT())
             (+) Configure the CRYP interrupt priority using HAL_NVIC_SetPriority()
             (+) Enable the CRYP IRQ handler using HAL_NVIC_EnableIRQ()
             (+) In CRYP IRQ handler, call HAL_CRYP_IRQHandler()
         (##) In case of using DMA to control data transfer (e.g. HAL_CRYP_AESECB_Encrypt_DMA())
             (+) Enable the DMA1 interface clock using 
                 (++) __HAL_RCC_DMA1_CLK_ENABLE()
             (+) Configure and enable two DMA Channels one for managing data transfer from
                 memory to peripheral (input channel) and another channel for managing data
                 transfer from peripheral to memory (output channel)
             (+) Associate the initialized DMA handle to the CRYP DMA handle
                 using  __HAL_LINKDMA()
             (+) Configure the priority and enable the NVIC for the transfer complete
                 interrupt on the two DMA Streams. The output stream should have higher
                 priority than the input stream.
                 (++) HAL_NVIC_SetPriority()
                 (++) HAL_NVIC_EnableIRQ()
    
      (#)Initialize the CRYP HAL using HAL_CRYP_Init(). This function configures mainly:
         (##) The data type: 1-bit, 8-bit, 16-bit and 32-bit
         (##) The encryption/decryption key.
         (##) The initialization vector (counter). It is not used ECB mode.
    
      (#)Three processing (encryption/decryption) functions are available:
         (##) Polling mode: encryption and decryption APIs are blocking functions
              i.e. they process the data and wait till the processing is finished
              e.g. HAL_CRYP_AESCBC_Encrypt()
         (##) Interrupt mode: encryption and decryption APIs are not blocking functions
              i.e. they process the data under interrupt
              e.g. HAL_CRYP_AESCBC_Encrypt_IT()
         (##) DMA mode: encryption and decryption APIs are not blocking functions
              i.e. the data transfer is ensured by DMA
              e.g. HAL_CRYP_AESCBC_Encrypt_DMA()
    
      (#)When the processing function is called for the first time after HAL_CRYP_Init()
         the CRYP peripheral is initialized and processes the buffer in input.
         At second call, the processing function performs an append of the already
         processed buffer.
         When a new data block is to be processed, call HAL_CRYP_Init() then the
         processing function.
         
      (#)Call HAL_CRYP_DeInit() to deinitialize the CRYP peripheral.

  @endverbatim
  ******************************************************************************
  * @attention
  *
  * <h2><center>&copy; COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
  *
  * Redistribution and use in source and binary forms, with or without modification,
  * are permitted provided that the following conditions are met:
  *   1. Redistributions of source code must retain the above copyright notice,
  *      this list of conditions and the following disclaimer.
  *   2. Redistributions in binary form must reproduce the above copyright notice,
  *      this list of conditions and the following disclaimer in the documentation
  *      and/or other materials provided with the distribution.
  *   3. Neither the name of STMicroelectronics nor the names of its contributors
  *      may be used to endorse or promote products derived from this software
  *      without specific prior written permission.
  *
  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
  * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
  * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  *
  ******************************************************************************  
  */ 

#if defined (STM32L041xx) || defined (STM32L061xx) || defined (STM32L062xx) || defined (STM32L063xx) || (STM32L081xx) || defined (STM32L082xx) || defined (STM32L083xx)
/* Includes ------------------------------------------------------------------*/
#include "stm32l0xx_hal.h"

#ifdef HAL_CRYP_MODULE_ENABLED
/** @addtogroup STM32L0xx_HAL_Driver
  * @{
  */

/** @defgroup CRYP CRYP
  * @brief CRYP HAL module driver.
  * @{
  */


/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/

/** @defgroup CRYP_Private_Defines CRYP Private Defines
  * @{
  */

#define  CRYP_ALGO_CHAIN_MASK         (AES_CR_MODE | AES_CR_CHMOD)

/**
  * @}
  */

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/

/** @defgroup CRYP_Private_Functions CRYP Private Functions
  * @{
  */

static HAL_StatusTypeDef  CRYP_EncryptDecrypt_IT(CRYP_HandleTypeDef *hcryp);
static void               CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector);
static void               CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key);
static HAL_StatusTypeDef  CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout);
static void               CRYP_DMAInCplt(DMA_HandleTypeDef *hdma);
static void               CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma);
static void               CRYP_DMAError(DMA_HandleTypeDef *hdma);
static void               CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr);

/**
  * @}
  */

/* Private functions ---------------------------------------------------------*/

/** @defgroup CRYP_Exported_Functions CRYP Exported Functions
  * @{
  */

/** @defgroup CRYP_Exported_Functions_Group1 Initialization and de-initialization functions 
 *  @brief    Initialization and Configuration functions. 
 *
@verbatim    
  ==============================================================================
              ##### Initialization and de-initialization functions #####
  ==============================================================================
    [..]  This section provides functions allowing to:
      (+) Initialize the CRYP according to the specified parameters 
          in the CRYP_InitTypeDef and creates the associated handle
      (+) DeInitialize the CRYP peripheral
      (+) Initialize the CRYP MSP
      (+) DeInitialize CRYP MSP 
 
@endverbatim
  * @{
  */

/**
  * @brief  Initializes the CRYP according to the specified
  *         parameters in the CRYP_InitTypeDef and creates the associated handle.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_Init(CRYP_HandleTypeDef *hcryp)
{ 
  /* Check the CRYP handle allocation */
  if(hcryp == NULL)
  {
    return HAL_ERROR;
  }
  
  /* Check the parameters */
  assert_param(IS_AES_ALL_INSTANCE(hcryp->Instance));
  assert_param(IS_CRYP_DATATYPE(hcryp->Init.DataType));
  
  if(hcryp->State == HAL_CRYP_STATE_RESET)
  {
    /* Allocate lock resource and initialize it */
    hcryp->Lock = HAL_UNLOCKED;

    /* Init the low level hardware */
    HAL_CRYP_MspInit(hcryp);
  }
  
  /* Check if AES already enabled */
  if (HAL_IS_BIT_CLR(hcryp->Instance->CR, AES_CR_EN))
  {
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;  

    /* Set the data type*/
    MODIFY_REG(hcryp->Instance->CR, AES_CR_DATATYPE, hcryp->Init.DataType);
    
    /* Reset CrypInCount and CrypOutCount */
    hcryp->CrypInCount = 0;
    hcryp->CrypOutCount = 0;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_READY;
    
    /* Set the default CRYP phase */
    hcryp->Phase = HAL_CRYP_PHASE_READY;
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* The Datatype selection must be changed if the AES is disabled. Writing these bits while the AES is */
    /* enabled is forbidden to avoid unpredictable AES behavior.*/

    /* Return function status */
    return HAL_ERROR;
  }

}

/**
  * @brief  DeInitializes the CRYP peripheral. 
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_DeInit(CRYP_HandleTypeDef *hcryp)
{
  /* Check the CRYP handle allocation */
  if(hcryp == NULL)
  {
    return HAL_ERROR;
  }
  
  /* Change the CRYP state */
  hcryp->State = HAL_CRYP_STATE_BUSY;
  
  /* Set the default CRYP phase */
  hcryp->Phase = HAL_CRYP_PHASE_READY;
  
  /* Reset CrypInCount and CrypOutCount */
  hcryp->CrypInCount = 0;
  hcryp->CrypOutCount = 0;
  
  /* Disable the CRYP Peripheral Clock */
  __HAL_CRYP_DISABLE(hcryp);
  
  /* DeInit the low level hardware: CLOCK, NVIC.*/
  HAL_CRYP_MspDeInit(hcryp);
  
  /* Change the CRYP state */
  hcryp->State = HAL_CRYP_STATE_RESET;
  
  /* Release Lock */
  __HAL_UNLOCK(hcryp);
  
  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Initializes the CRYP MSP.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @retval None
  */
__weak void HAL_CRYP_MspInit(CRYP_HandleTypeDef *hcryp)
{
  /* NOTE : This function should not be modified; when the callback is needed, 
            the HAL_CRYP_MspInit can be implemented in the user file */
}

/**
  * @brief  DeInitializes CRYP MSP.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @retval None
  */
__weak void HAL_CRYP_MspDeInit(CRYP_HandleTypeDef *hcryp)
{
  /* NOTE : This function should not be modified; when the callback is needed, 
            the HAL_CRYP_MspDeInit can be implemented in the user file */
}

/**
  * @}
  */

/** @defgroup CRYP_Exported_Functions_Group2 AES processing functions 
 *  @brief   processing functions. 
 *
@verbatim   
  ==============================================================================
                      ##### AES processing functions #####
  ==============================================================================  
    [..]  This section provides functions allowing to:
      (+) Encrypt plaintext using AES algorithm in different chaining modes
      (+) Decrypt cyphertext using AES algorithm in different chaining modes
    [..]  Three processing functions are available:
      (+) Polling mode
      (+) Interrupt mode
      (+) DMA mode

@endverbatim
  * @{
  */

/**
  * @brief  Initializes the CRYP peripheral in AES ECB encryption mode
  *         then encrypt pPlainData. The cypher data are available in pCypherData
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16.
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @param  Timeout: Specify Timeout value 
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
  /* Process Locked */
  __HAL_LOCK(hcryp);

  /* Check that data aligned on u32 and Size multiple of 16*/
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  /* Check if HAL_CRYP_Init has been called */
  if(hcryp->State != HAL_CRYP_STATE_RESET)
  {
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES ECB mode */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT);
      
      /* Enable CRYP */
      __HAL_CRYP_ENABLE(hcryp);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Write Plain Data and Get Cypher Data */
    if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
    {
      return HAL_TIMEOUT;
    }
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);
	
    /* Return function status */
    return HAL_ERROR;
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES CBC encryption mode
  *         then encrypt pPlainData. The cypher data are available in pCypherData
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16.
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @param  Timeout: Specify Timeout value  
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{
  /* Process Locked */
  __HAL_LOCK(hcryp);
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  /* Check if HAL_CRYP_Init has been called */
  if(hcryp->State != HAL_CRYP_STATE_RESET)
  {
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES CBC mode */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT);
      
      /* Set the Initialization Vector */
      CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
      
      /* Enable CRYP */
      __HAL_CRYP_ENABLE(hcryp);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Write Plain Data and Get Cypher Data */
    if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
    {
      return HAL_TIMEOUT;
    }
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES CTR encryption mode
  *         then encrypt pPlainData. The cypher data are available in pCypherData
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16.
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @param  Timeout: Specify Timeout value  
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData, uint32_t Timeout)
{  
  /* Process Locked */
  __HAL_LOCK(hcryp);
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  /* Check if HAL_CRYP_Init has been called */
  if(hcryp->State != HAL_CRYP_STATE_RESET)
  {
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES CTR mode */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT);
      
      /* Set the Initialization Vector */
      CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
      
      /* Enable CRYP */
      __HAL_CRYP_ENABLE(hcryp);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Write Plain Data and Get Cypher Data */
    if(CRYP_ProcessData(hcryp, pPlainData, Size, pCypherData, Timeout) != HAL_OK)
    {
      return HAL_TIMEOUT;
    }
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    /* Return function status */
    return HAL_ERROR;
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES ECB decryption mode
  *         then decrypted pCypherData. The cypher data are available in pPlainData
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16.
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @param  Timeout: Specify Timeout value  
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
  /* Process Locked */
  __HAL_LOCK(hcryp);
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  /* Check if HAL_CRYP_Init has been called */
  if(hcryp->State != HAL_CRYP_STATE_RESET)
  {
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES ECB decryption mode (with key derivation) */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_KEYDERDECRYPT);
      
      /* Enable CRYP */
      __HAL_CRYP_ENABLE(hcryp);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Write Cypher Data and Get Plain Data */
    if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
    {
      return HAL_TIMEOUT;
    }
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    /* Return function status */
    return HAL_ERROR;
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES ECB decryption mode
  *         then decrypted pCypherData. The cypher data are available in pPlainData
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16.
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @param  Timeout: Specify Timeout value  
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{
  /* Process Locked */
  __HAL_LOCK(hcryp);
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  /* Check if HAL_CRYP_Init has been called */
  if(hcryp->State != HAL_CRYP_STATE_RESET)
  {
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES CBC decryption mode (with key derivation) */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_KEYDERDECRYPT);
      
      /* Set the Initialization Vector */
      CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
      
      /* Enable CRYP */
      __HAL_CRYP_ENABLE(hcryp);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Write Cypher Data and Get Plain Data */
    if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
    {
      return HAL_TIMEOUT;
    }
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_READY;
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    /* Return function status */
    return HAL_ERROR;
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES CTR decryption mode
  *         then decrypted pCypherData. The cypher data are available in pPlainData
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16.
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @param  Timeout: Specify Timeout value   
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData, uint32_t Timeout)
{  
  /* Process Locked */
  __HAL_LOCK(hcryp);
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  /* Check if initialization phase has already been performed */
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->Phase == HAL_CRYP_PHASE_READY))
  {
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Set the key */
    CRYP_SetKey(hcryp, hcryp->Init.pKey);
    
    /* Reset the CHMOD & MODE bits */
    CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
    
    /* Set the CRYP peripheral in AES CTR decryption mode */
    __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_DECRYPT);
    
    /* Set the Initialization Vector */
    CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
    
    /* Enable CRYP */
    __HAL_CRYP_ENABLE(hcryp);
    
    /* Set the phase */
    hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
  }
  
  /* Write Cypher Data and Get Plain Data */
  if(CRYP_ProcessData(hcryp, pCypherData, Size, pPlainData, Timeout) != HAL_OK)
  {
    return HAL_TIMEOUT;
  }
  
  /* Change the CRYP state */
  hcryp->State = HAL_CRYP_STATE_READY;
  
  /* Process Unlocked */
  __HAL_UNLOCK(hcryp);
  
  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Initializes the CRYP peripheral in AES ECB encryption mode using Interrupt.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16 bytes
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
  uint32_t inputaddr = 0;
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
  {
    /* Process Locked */
    __HAL_LOCK(hcryp);
    
    /* Get the buffer addresses and sizes */
    hcryp->CrypInCount = Size;
    hcryp->pCrypInBuffPtr = pPlainData;
    hcryp->pCrypOutBuffPtr = pCypherData;
    hcryp->CrypOutCount = Size;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES ECB mode */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Enable Interrupts */
    __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC);
    
    /* Enable CRYP */
    __HAL_CRYP_ENABLE(hcryp);
    
    /* Get the last input data adress */
    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
    
    /* Write the Input block in the Data Input register */
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    hcryp->pCrypInBuffPtr += 16;
    hcryp->CrypInCount -= 16;
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    /* Return function status */
    return HAL_ERROR;
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES CBC encryption mode using Interrupt.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16 bytes
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
  uint32_t inputaddr = 0;
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
  {
    /* Process Locked */
    __HAL_LOCK(hcryp);
    
    /* Get the buffer addresses and sizes */
    hcryp->CrypInCount = Size;
    hcryp->pCrypInBuffPtr = pPlainData;
    hcryp->pCrypOutBuffPtr = pCypherData;
    hcryp->CrypOutCount = Size;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES CBC mode */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT);
      
      /* Set the Initialization Vector */
      CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Enable Interrupts */
    __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC);
    
    /* Enable CRYP */
    __HAL_CRYP_ENABLE(hcryp);
    
    /* Get the last input data adress */
    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
    
    /* Write the Input block in the Data Input register */
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    hcryp->pCrypInBuffPtr += 16;
    hcryp->CrypInCount -= 16;
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
   
    /* Return function status */
    return HAL_ERROR;
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES CTR encryption mode using Interrupt.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16 bytes
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
  uint32_t inputaddr = 0;
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
  {
    /* Process Locked */
    __HAL_LOCK(hcryp);
    
    /* Get the buffer addresses and sizes */
    hcryp->CrypInCount = Size;
    hcryp->pCrypInBuffPtr = pPlainData;
    hcryp->pCrypOutBuffPtr = pCypherData;
    hcryp->CrypOutCount = Size;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES CTR mode */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT);
      
      /* Set the Initialization Vector */
      CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Enable Interrupts */
    __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC);
    
    /* Enable CRYP */
    __HAL_CRYP_ENABLE(hcryp);
    
    /* Get the last input data adress */
    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
    
    /* Write the Input block in the Data Input register */
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    hcryp->pCrypInBuffPtr += 16;
    hcryp->CrypInCount -= 16;
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    /* Return function status */
    return HAL_ERROR;
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES ECB decryption mode using Interrupt.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16.
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
  uint32_t inputaddr = 0;
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
  {
    /* Process Locked */
    __HAL_LOCK(hcryp);
    
    /* Get the buffer addresses and sizes */
    hcryp->CrypInCount = Size;
    hcryp->pCrypInBuffPtr = pCypherData;
    hcryp->pCrypOutBuffPtr = pPlainData;
    hcryp->CrypOutCount = Size;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES ECB decryption mode (with key derivation) */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_KEYDERDECRYPT);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Enable Interrupts */
    __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC);
    
    /* Enable CRYP */
    __HAL_CRYP_ENABLE(hcryp);
    
    /* Get the last input data adress */
    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
    
    /* Write the Input block in the Data Input register */
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    hcryp->pCrypInBuffPtr += 16;
    hcryp->CrypInCount -= 16;    
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    /* Return function status */
    return HAL_ERROR;
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES CBC decryption mode using IT.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
  uint32_t inputaddr = 0;
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
  {
    /* Process Locked */
    __HAL_LOCK(hcryp);
    
    /* Get the buffer addresses and sizes */
    hcryp->CrypInCount = Size;
    hcryp->pCrypInBuffPtr = pCypherData;
    hcryp->pCrypOutBuffPtr = pPlainData;
    hcryp->CrypOutCount = Size;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES CBC decryption mode (with key derivation) */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_KEYDERDECRYPT);
      
      /* Set the Initialization Vector */
      CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Enable Interrupts */
    __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC);
    
    /* Enable CRYP */
    __HAL_CRYP_ENABLE(hcryp);
    
    /* Get the last input data adress */
    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
    
    /* Write the Input block in the Data Input register */
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    hcryp->pCrypInBuffPtr += 16;
    hcryp->CrypInCount -= 16;    
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    /* Return function status */
    return HAL_ERROR;
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES CTR decryption mode using Interrupt.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_IT(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
  uint32_t inputaddr = 0;
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
  {
    /* Process Locked */
    __HAL_LOCK(hcryp);
    
    /* Get the buffer addresses and sizes */
    hcryp->CrypInCount = Size;
    hcryp->pCrypInBuffPtr = pCypherData;
    hcryp->pCrypOutBuffPtr = pPlainData;
    hcryp->CrypOutCount = Size;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES CTR decryption mode */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_DECRYPT);
      
      /* Set the Initialization Vector */
      CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Enable Interrupts */
    __HAL_CRYP_ENABLE_IT(hcryp, CRYP_IT_CC);
    
    /* Enable CRYP */
    __HAL_CRYP_ENABLE(hcryp);
    
    /* Get the last input data adress */
    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
    
    /* Write the Input block in the Data Input register */
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    hcryp->pCrypInBuffPtr += 16;
    hcryp->CrypInCount -= 16;    
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    /* Return function status */
    return HAL_ERROR;
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES ECB encryption mode using DMA.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16 bytes
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESECB_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
  uint32_t inputaddr = 0, outputaddr = 0;
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  /* Check if HAL_CRYP_Init has been called */
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
  {
    /* Process Locked */
    __HAL_LOCK(hcryp);
    
    inputaddr  = (uint32_t)pPlainData;
    outputaddr = (uint32_t)pCypherData;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Set the CRYP peripheral in AES ECB mode */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_ENCRYPT);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    /* Set the input and output addresses and start DMA transfer */ 
    CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {  
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    return HAL_ERROR;   
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES CBC encryption mode using DMA.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16.
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESCBC_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
  uint32_t inputaddr = 0, outputaddr = 0;
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  /* Check if HAL_CRYP_Init has been called */
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
  {
    /* Process Locked */
    __HAL_LOCK(hcryp);
    
    inputaddr  = (uint32_t)pPlainData;
    outputaddr = (uint32_t)pCypherData;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Set the CRYP peripheral in AES CBC mode */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_ENCRYPT);
      
      /* Set the Initialization Vector */
      CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    /* Set the input and output addresses and start DMA transfer */ 
    CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    return HAL_ERROR;   
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES CTR encryption mode using DMA.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16.
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESCTR_Encrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pPlainData, uint16_t Size, uint8_t *pCypherData)
{
  uint32_t inputaddr = 0, outputaddr = 0;
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  /* Check if HAL_CRYP_Init has been called */
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
  {
    /* Process Locked */
    __HAL_LOCK(hcryp);
    
    inputaddr  = (uint32_t)pPlainData;
    outputaddr = (uint32_t)pCypherData;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Set the CRYP peripheral in AES CTR mode */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_ENCRYPT);
      
      /* Set the Initialization Vector */
      CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Set the input and output addresses and start DMA transfer */ 
    CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    return HAL_ERROR;   
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES ECB decryption mode using DMA.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16 bytes
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESECB_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{  
  uint32_t inputaddr = 0, outputaddr = 0;
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  /* Check if HAL_CRYP_Init has been called */
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
  {
    /* Process Locked */
    __HAL_LOCK(hcryp);
    
    inputaddr  = (uint32_t)pCypherData;
    outputaddr = (uint32_t)pPlainData;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES ECB decryption mode (with key derivation) */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_ECB_KEYDERDECRYPT);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Set the input and output addresses and start DMA transfer */ 
    CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    return HAL_ERROR;   
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES CBC encryption mode using DMA.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16 bytes
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESCBC_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{
  uint32_t inputaddr = 0, outputaddr = 0;
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  /* Check if HAL_CRYP_Init has been called */
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
  {
    /* Process Locked */
    __HAL_LOCK(hcryp);
    
    inputaddr  = (uint32_t)pCypherData;
    outputaddr = (uint32_t)pPlainData;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Reset the CHMOD & MODE bits */
      CLEAR_BIT(hcryp->Instance->CR, CRYP_ALGO_CHAIN_MASK);
      
      /* Set the CRYP peripheral in AES CBC decryption mode (with key derivation) */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CBC_KEYDERDECRYPT);
      
      /* Set the Initialization Vector */
      CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Set the input and output addresses and start DMA transfer */ 
    CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    return HAL_ERROR;   
  }
}

/**
  * @brief  Initializes the CRYP peripheral in AES CTR decryption mode using DMA.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  pCypherData: Pointer to the cyphertext buffer (aligned on u32)
  * @param  Size: Length of the plaintext buffer, must be a multiple of 16
  * @param  pPlainData: Pointer to the plaintext buffer (aligned on u32)
  * @retval HAL status
  */
HAL_StatusTypeDef HAL_CRYP_AESCTR_Decrypt_DMA(CRYP_HandleTypeDef *hcryp, uint8_t *pCypherData, uint16_t Size, uint8_t *pPlainData)
{  
  uint32_t inputaddr = 0, outputaddr = 0;
  
  /* Check that data aligned on u32 */
  if((((uint32_t)pPlainData & (uint32_t)0x00000003) != 0) || (((uint32_t)pCypherData & (uint32_t)0x00000003) != 0) || ((Size & (uint16_t)0x000F) != 0))
  {
    /* Process Locked */
    __HAL_UNLOCK(hcryp);

    /* Return function status */
    return HAL_ERROR;
  }
  
  /* Check if HAL_CRYP_Init has been called */
  if ((hcryp->State != HAL_CRYP_STATE_RESET) && (hcryp->State == HAL_CRYP_STATE_READY))
  {
    /* Process Locked */
    __HAL_LOCK(hcryp);
    
    inputaddr  = (uint32_t)pCypherData;
    outputaddr = (uint32_t)pPlainData;
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_BUSY;
    
    /* Check if initialization phase has already been performed */
    if(hcryp->Phase == HAL_CRYP_PHASE_READY)
    {
      /* Set the key */
      CRYP_SetKey(hcryp, hcryp->Init.pKey);
      
      /* Set the CRYP peripheral in AES CTR mode */
      __HAL_CRYP_SET_MODE(hcryp, CRYP_CR_ALGOMODE_AES_CTR_DECRYPT);
      
      /* Set the Initialization Vector */
      CRYP_SetInitVector(hcryp, hcryp->Init.pInitVect);
      
      /* Set the phase */
      hcryp->Phase = HAL_CRYP_PHASE_PROCESS;
    }
    
    /* Set the input and output addresses and start DMA transfer */ 
    CRYP_SetDMAConfig(hcryp, inputaddr, Size, outputaddr);
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    /* Return function status */
    return HAL_OK;
  }
  else
  {
    /* Release Lock */
    __HAL_UNLOCK(hcryp);
  
    return HAL_ERROR;   
  }
}

/**
  * @}
  */

/** @defgroup CRYP_Exported_Functions_Group3 DMA callback functions 
 *  @brief   DMA callback functions. 
 *
@verbatim   
  ==============================================================================
                      ##### DMA callback functions  #####
  ==============================================================================  
    [..]  This section provides DMA callback functions:
      (+) DMA Input data transfer complete
      (+) DMA Output data transfer complete
      (+) DMA error

@endverbatim
  * @{
  */

/**
  * @brief  CRYP error callback.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @retval None
  */
 __weak void HAL_CRYP_ErrorCallback(CRYP_HandleTypeDef *hcryp)
{
  /* NOTE : This function should not be modified; when the callback is needed, 
            the HAL_CRYP_ErrorCallback can be implemented in the user file
   */ 
}

/**
  * @brief  Input transfer completed callback.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @retval None
  */
__weak void HAL_CRYP_InCpltCallback(CRYP_HandleTypeDef *hcryp)
{
  /* NOTE : This function should not be modified; when the callback is needed, 
            the HAL_CRYP_InCpltCallback can be implemented in the user file
   */ 
}

/**
  * @brief  Output transfer completed callback.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @retval None
  */
__weak void HAL_CRYP_OutCpltCallback(CRYP_HandleTypeDef *hcryp)
{
  /* NOTE : This function should not be modified; when the callback is needed, 
            the HAL_CRYP_OutCpltCallback can be implemented in the user file
   */ 
}

/**
  * @}
  */

/** @defgroup CRYP_Exported_Functions_Group4 CRYP IRQ handler 
 *  @brief   CRYP IRQ handler.
 *
@verbatim   
  ==============================================================================
                ##### CRYP IRQ handler management #####
  ==============================================================================  
[..]  This section provides CRYP IRQ handler function.

@endverbatim
  * @{
  */

/**
  * @brief  This function handles CRYP interrupt request.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @retval None
  */
void HAL_CRYP_IRQHandler(CRYP_HandleTypeDef *hcryp)
{
  /* Check if error occurred*/
  if (__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_ERR) != RESET)
  {
    if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_FLAG_RDERR) != RESET)
    {
      __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_RDERR);
    }
    
    if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_FLAG_WRERR) != RESET)
    {
      __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_WRERR);
    }
    
    if (__HAL_CRYP_GET_FLAG(hcryp,CRYP_FLAG_CCF) != RESET)
    {
      __HAL_CRYP_CLEAR_FLAG(hcryp,CRYP_CLEARFLAG_CCF);
    }
    
    hcryp->State= HAL_CRYP_STATE_ERROR;
    /* Disable Computation Complete Interrupt */
    __HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_CC);
    __HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_ERR);
    
    HAL_CRYP_ErrorCallback(hcryp);
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    return;
  }
  
  /* Check if computation complete interrupt was enabled*/
  if (__HAL_CRYP_GET_IT_SOURCE(hcryp, CRYP_IT_CC) != RESET)
  {
    /* Clear CCF Flag */
    __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF);
  
    CRYP_EncryptDecrypt_IT(hcryp);
  }
}

/**
  * @}
  */

/** @defgroup CRYP_Exported_Functions_Group5 Peripheral State functions 
 *  @brief   Peripheral State functions. 
 *
@verbatim   
  ==============================================================================
                      ##### Peripheral State functions #####
  ==============================================================================  
    [..]
    This subsection permits to get in run-time the status of the peripheral.

@endverbatim
  * @{
  */

/**
  * @brief  Returns the CRYP state.
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @retval HAL state
  */
HAL_CRYP_STATETypeDef HAL_CRYP_GetState(CRYP_HandleTypeDef *hcryp)
{
  return hcryp->State;
}

/**
  * @}
  */

/**
  * @}
  */

/** @addtogroup CRYP_Private_Functions
  * @{
  */

/**
  * @brief  IT function called under interruption context to continue encryption or decryption
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @retval HAL status
  */
static HAL_StatusTypeDef CRYP_EncryptDecrypt_IT(CRYP_HandleTypeDef *hcryp)
{
  uint32_t inputaddr = 0, outputaddr = 0;

  /* Get the last Output data adress */
  outputaddr = (uint32_t)hcryp->pCrypOutBuffPtr;
  
  /* Read the Output block from the Output Register */
  *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
  outputaddr+=4;
  *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
  outputaddr+=4;
  *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
  outputaddr+=4;
  *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
  
  hcryp->pCrypOutBuffPtr += 16;
  hcryp->CrypOutCount -= 16;
  
  /* Check if all input text is encrypted or decrypted */
  if(hcryp->CrypOutCount == 0)
  {
    /* Disable Computation Complete Interrupt */
    __HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_CC);
    __HAL_CRYP_DISABLE_IT(hcryp,CRYP_IT_ERR);
    
    /* Process Unlocked */
    __HAL_UNLOCK(hcryp);
    
    /* Change the CRYP state */
    hcryp->State = HAL_CRYP_STATE_READY;
    
    /* Call computation complete callback */
    HAL_CRYPEx_ComputationCpltCallback(hcryp);
  }
  else /* Process the rest of input text */
  {
    /* Get the last Intput data adress */
    inputaddr = (uint32_t)hcryp->pCrypInBuffPtr;
    
    /* Write the Input block in the Data Input register */
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    hcryp->pCrypInBuffPtr += 16;
    hcryp->CrypInCount -= 16;      
  }
  return HAL_OK;
}
/**
  * @brief  DMA CRYP Input Data process complete callback.
  * @param  hdma: DMA handle
  * @retval None
  */
static void CRYP_DMAInCplt(DMA_HandleTypeDef *hdma)  
{
  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
  
  /* Disable the DMA transfer for input request  */
  CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAINEN);
  
  /* Call input data transfer complete callback */
  HAL_CRYP_InCpltCallback(hcryp);
}

/**
  * @brief  DMA CRYP Output Data process complete callback.
  * @param  hdma: DMA handle
  * @retval None
  */
static void CRYP_DMAOutCplt(DMA_HandleTypeDef *hdma)
{
  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
  
  /* Disable the DMA transfer for output request by resetting the DMAOUTEN bit
     in the DMACR register */
  CLEAR_BIT(hcryp->Instance->CR, AES_CR_DMAOUTEN);

  /* Clear CCF Flag */
  __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF);

  /* Disable CRYP */
  __HAL_CRYP_DISABLE(hcryp);
  
  /* Change the CRYP state to ready */
  hcryp->State = HAL_CRYP_STATE_READY;
  
  /* Call output data transfer complete callback */
  HAL_CRYP_OutCpltCallback(hcryp);
}

/**
  * @brief  DMA CRYP communication error callback. 
  * @param  hdma: DMA handle
  * @retval None
  */
static void CRYP_DMAError(DMA_HandleTypeDef *hdma)
{
  CRYP_HandleTypeDef* hcryp = (CRYP_HandleTypeDef*)((DMA_HandleTypeDef*)hdma)->Parent;
  hcryp->State= HAL_CRYP_STATE_ERROR;
  HAL_CRYP_ErrorCallback(hcryp);
}

/**
  * @brief  Writes the Key in Key registers. 
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  Key: Pointer to Key buffer
  * @note Key must be written as little endian.
  *         If Key pointer points at address n, 
  *         n[15:0] contains key[96:127], 
  *         (n+4)[15:0] contains key[64:95], 
  *         (n+8)[15:0] contains key[32:63] and 
  *         (n+12)[15:0] contains key[0:31]
  * @retval None
  */
static void CRYP_SetKey(CRYP_HandleTypeDef *hcryp, uint8_t *Key)
{  
  uint32_t keyaddr = (uint32_t)Key;
  
  hcryp->Instance->KEYR3 = __REV(*(uint32_t*)(keyaddr));
  keyaddr+=4;
  hcryp->Instance->KEYR2 = __REV(*(uint32_t*)(keyaddr));
  keyaddr+=4;
  hcryp->Instance->KEYR1 = __REV(*(uint32_t*)(keyaddr));
  keyaddr+=4;
  hcryp->Instance->KEYR0 = __REV(*(uint32_t*)(keyaddr));
}

/**
  * @brief  Writes the InitVector/InitCounter in IV registers. 
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  InitVector: Pointer to InitVector/InitCounter buffer
  * @note Init Vector must be written as little endian.
  *         If Init Vector pointer points at address n, 
  *         n[15:0] contains Vector[96:127], 
  *         (n+4)[15:0] contains Vector[64:95], 
  *         (n+8)[15:0] contains Vector[32:63] and 
  *         (n+12)[15:0] contains Vector[0:31]
  * @retval None
  */
static void CRYP_SetInitVector(CRYP_HandleTypeDef *hcryp, uint8_t *InitVector)
{
  uint32_t ivaddr = (uint32_t)InitVector;
  
  hcryp->Instance->IVR3 = __REV(*(uint32_t*)(ivaddr));
  ivaddr+=4;
  hcryp->Instance->IVR2 = __REV(*(uint32_t*)(ivaddr));
  ivaddr+=4;
  hcryp->Instance->IVR1 = __REV(*(uint32_t*)(ivaddr));
  ivaddr+=4;
  hcryp->Instance->IVR0 = __REV(*(uint32_t*)(ivaddr));
}

/**
  * @brief  Process Data: Writes Input data in polling mode and reads the output data
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  Input: Pointer to the Input buffer
  * @param  Ilength: Length of the Input buffer, must be a multiple of 16.
  * @param  Output: Pointer to the returned buffer
  * @param  Timeout: Specify Timeout value  
  * @retval None
  */
static HAL_StatusTypeDef CRYP_ProcessData(CRYP_HandleTypeDef *hcryp, uint8_t* Input, uint16_t Ilength, uint8_t* Output, uint32_t Timeout)
{
  uint32_t tickstart = 0;
  
  uint32_t index = 0;
  uint32_t inputaddr  = (uint32_t)Input;
  uint32_t outputaddr = (uint32_t)Output;
  
  for(index=0; (index < Ilength); index += 16)
  {
    /* Write the Input block in the Data Input register */
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR  = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    hcryp->Instance->DINR = *(uint32_t*)(inputaddr);
    inputaddr+=4;
    
    /* Get timeout */
    tickstart = HAL_GetTick();
    
    while(HAL_IS_BIT_CLR(hcryp->Instance->SR, AES_SR_CCF))
    {    
      /* Check for the Timeout */
      if(Timeout != HAL_MAX_DELAY)
      {
        if((Timeout == 0)||((HAL_GetTick() - tickstart ) > Timeout))
        {
          /* Change state */
          hcryp->State = HAL_CRYP_STATE_TIMEOUT;
          
          /* Process Unlocked */          
          __HAL_UNLOCK(hcryp);
          
          return HAL_TIMEOUT;
        }
      }
    }
    /* Clear CCF Flag */
    __HAL_CRYP_CLEAR_FLAG(hcryp, CRYP_CLEARFLAG_CCF);
    
    /* Read the Output block from the Data Output Register */
    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
    outputaddr+=4;
    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
    outputaddr+=4;
    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
    outputaddr+=4;
    *(uint32_t*)(outputaddr) = hcryp->Instance->DOUTR;
    outputaddr+=4;
  }
  /* Return function status */
  return HAL_OK;
}

/**
  * @brief  Set the DMA configuration and start the DMA transfer
  * @param  hcryp: pointer to a CRYP_HandleTypeDef structure that contains
  *         the configuration information for CRYP module
  * @param  inputaddr: address of the Input buffer
  * @param  Size: Size of the Input buffer, must be a multiple of 16.
  * @param  outputaddr: address of the Output buffer
  * @retval None
  */
static void CRYP_SetDMAConfig(CRYP_HandleTypeDef *hcryp, uint32_t inputaddr, uint16_t Size, uint32_t outputaddr)
{
  /* Set the CRYP DMA transfer complete callback */
  hcryp->hdmain->XferCpltCallback = CRYP_DMAInCplt;
  /* Set the DMA error callback */
  hcryp->hdmain->XferErrorCallback = CRYP_DMAError;
  
  /* Set the CRYP DMA transfer complete callback */
  hcryp->hdmaout->XferCpltCallback = CRYP_DMAOutCplt;
  /* Set the DMA error callback */
  hcryp->hdmaout->XferErrorCallback = CRYP_DMAError;

  /* Enable the DMA In DMA Stream */
  HAL_DMA_Start_IT(hcryp->hdmain, inputaddr, (uint32_t)&hcryp->Instance->DINR, Size/4);

  /* Enable the DMA Out DMA Stream */
  HAL_DMA_Start_IT(hcryp->hdmaout, (uint32_t)&hcryp->Instance->DOUTR, outputaddr, Size/4);

  /* Enable In and Out DMA requests */
  SET_BIT(hcryp->Instance->CR, (AES_CR_DMAINEN | AES_CR_DMAOUTEN));

  /* Enable CRYP */
  __HAL_CRYP_ENABLE(hcryp);
}

/**
  * @}
  */

/**
  * @}
  */

/**
  * @}
  */

#endif /* HAL_CRYP_MODULE_ENABLED */
#endif /* STM32L041xx || STM32L061xx || STM32L062xx || STM32L063xx || STM32L081xx || STM32L082xx || STM32L083xx */
/************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/