mbed library sources

Dependents:   Encrypted my_mbed lklk CyaSSL_DTLS_Cellular ... more

Superseded

This library was superseded by mbed-dev - https://os.mbed.com/users/mbed_official/code/mbed-dev/.

Development branch of the mbed library sources. This library is kept in synch with the latest changes from the mbed SDK and it is not guaranteed to work.

If you are looking for a stable and tested release, please import one of the official mbed library releases:

Import librarymbed

The official Mbed 2 C/C++ SDK provides the software platform and libraries to build your applications.

targets/hal/TARGET_Freescale/TARGET_KPSDK_MCUS/TARGET_KPSDK_CODE/hal/dspi/fsl_dspi_hal.h

Committer:
mbed_official
Date:
2014-09-18
Revision:
324:406fd2029f23
Parent:
149:1fb5f62b92bd

File content as of revision 324:406fd2029f23:

/*
 * Copyright (c) 2013 - 2014, Freescale Semiconductor, Inc.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without modification,
 * are permitted provided that the following conditions are met:
 *
 * o Redistributions of source code must retain the above copyright notice, this list
 *   of conditions and the following disclaimer.
 *
 * o Redistributions in binary form must reproduce the above copyright notice, this
 *   list of conditions and the following disclaimer in the documentation and/or
 *   other materials provided with the distribution.
 *
 * o Neither the name of Freescale Semiconductor, Inc. nor the names of its
 *   contributors may be used to endorse or promote products derived from this
 *   software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */
#if !defined(__FSL_DSPI_HAL_H__)
#define __FSL_DSPI_HAL_H__

#include <stdint.h>
#include <stdbool.h>
#include "fsl_dspi_features.h"
#include "fsl_device_registers.h"

/*!
 * @addtogroup dspi_hal
 * @{
 */

/*! @file*/

/*******************************************************************************
 * Definitions
 ******************************************************************************/

/* Defines constant value arrays for the baud rate pre-scalar and scalar divider values.*/
static const uint32_t s_baudratePrescaler[] = { 2, 3, 5, 7 };
static const uint32_t s_baudrateScaler[] = { 2, 4, 6, 8, 16, 32, 64, 128, 256, 512, 1024, 2048,
                                           4096, 8192, 16384, 32768 };

static const uint32_t s_delayPrescaler[] = { 1, 3, 5, 7 };
static const uint32_t s_delayScaler[] = { 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048,
                                           4096, 8192, 16384, 32768, 65536 };


/*! @brief Error codes for the DSPI driver.*/
typedef enum _dspi_status
{
    kStatus_DSPI_Success = 0,
    kStatus_DSPI_SlaveTxUnderrun,        /*!< DSPI Slave Tx Under run error*/
    kStatus_DSPI_SlaveRxOverrun,             /*!< DSPI Slave Rx Overrun error*/
    kStatus_DSPI_Timeout,                    /*!< DSPI transfer timed out*/
    kStatus_DSPI_Busy,                       /*!< DSPI instance is already busy performing a
                                                 transfer.*/
    kStatus_DSPI_NoTransferInProgress,       /*!< Attempt to abort a transfer when no transfer
                                                  was in progress*/
    kStatus_DSPI_InvalidBitCount,         /*!< bits-per-frame value not valid*/
    kStatus_DSPI_InvalidInstanceNumber,   /*!< DSPI instance number does not match current count*/
    kStatus_DSPI_OutOfRange               /*!< DSPI out-of-range error used in slave callback */
} dspi_status_t;

/*! @brief DSPI master or slave configuration*/
typedef enum _dspi_master_slave_mode {
    kDspiMaster = 1,     /*!< DSPI peripheral operates in master mode*/
    kDspiSlave = 0       /*!< DSPI peripheral operates in slave mode*/
} dspi_master_slave_mode_t;

/*! @brief DSPI clock polarity configuration for a given CTAR*/
typedef enum _dspi_clock_polarity {
    kDspiClockPolarity_ActiveHigh = 0,   /*!< Active-high DSPI clock (idles low)*/
    kDspiClockPolarity_ActiveLow = 1     /*!< Active-low DSPI clock (idles high)*/
} dspi_clock_polarity_t;

/*! @brief DSPI clock phase configuration for a given CTAR*/
typedef enum _dspi_clock_phase {
    kDspiClockPhase_FirstEdge = 0,       /*!< Data is captured on the leading edge of the SCK and
                                              changed on the following edge.*/
    kDspiClockPhase_SecondEdge = 1       /*!< Data is changed on the leading edge of the SCK and
                                              captured on the following edge.*/
} dspi_clock_phase_t;

/*! @brief DSPI data shifter direction options for a given CTAR*/
typedef enum _dspi_shift_direction {
    kDspiMsbFirst = 0,   /*!< Data transfers start with most significant bit.*/
    kDspiLsbFirst = 1    /*!< Data transfers start with least significant bit.*/
} dspi_shift_direction_t;

/*! @brief DSPI Clock and Transfer Attributes Register (CTAR) selection*/
typedef enum _dspi_ctar_selection {
    kDspiCtar0 = 0,   /*!< CTAR0 selection option for master or slave mode*/
    kDspiCtar1 = 1    /*!< CTAR1 selection option for master mode only*/
} dspi_ctar_selection_t;

/*! @brief DSPI Peripheral Chip Select (PCS) Polarity configuration.*/
typedef enum _dspi_pcs_polarity_config {
    kDspiPcs_ActiveHigh = 0, /*!< PCS Active High (idles low)*/
    kDspiPcs_ActiveLow  = 1 /*!< PCS Active Low (idles high)*/
} dspi_pcs_polarity_config_t;

/*! @brief DSPI Peripheral Chip Select (PCS) configuration (which PCS to configure)*/
typedef enum _dspi_which_pcs_config {
    kDspiPcs0 = 1 << 0, /*!< PCS[0] */
    kDspiPcs1 = 1 << 1, /*!< PCS[1] */
    kDspiPcs2 = 1 << 2, /*!< PCS[2] */
    kDspiPcs3 = 1 << 3, /*!< PCS[3] */
    kDspiPcs4 = 1 << 4, /*!< PCS[4] */
    kDspiPcs5 = 1 << 5  /*!< PCS[5] */
} dspi_which_pcs_config_t;

/*!
 * @brief DSPI Sample Point: Controls when the DSPI master samples SIN in Modified Transfer
 *  Format. This field is valid only when CPHA bit in CTAR register is 0.
 */
typedef enum _dspi_master_sample_point {
    kDspiSckToSin_0Clock = 0,  /*!< 0 system clocks between SCK edge and SIN sample*/
    kDspiSckToSin_1Clock = 1,  /*!< 1 system clock between SCK edge and SIN sample*/
    kDspiSckToSin_2Clock = 2   /*!< 2 system clocks between SCK edge and SIN sample*/
} dspi_master_sample_point_t;

/*! @brief DSPI FIFO selects*/
typedef enum _dspi_fifo {
    kDspiTxFifo = 0,    /*!< DSPI Tx FIFO*/
    kDspiRxFifo = 1     /*!< DSPI Rx FIFO.*/
} dspi_fifo_t;

/*! @brief DSPI Tx FIFO Fill and Rx FIFO Drain DMA or Interrupt configuration */
typedef enum _dspi_dma_or_int_mode {
    kDspiGenerateIntReq = 0, /*!< Desired flag generates an Interrupt request */
    kDspiGenerateDmaReq = 1  /*!< Desired flag generates a DMA request */
} dspi_dma_or_int_mode_t;

/*! @brief DSPI status flags and interrupt request enable*/
typedef enum _dspi_status_and_interrupt_request {
    kDspiTxComplete = BP_SPI_RSER_TCF_RE,  /*!< TCF status/interrupt enable */
    kDspiTxAndRxStatus = BP_SPI_SR_TXRXS,  /*!< TXRXS status only, no interrupt*/
    kDspiEndOfQueue = BP_SPI_RSER_EOQF_RE, /*!< EOQF status/interrupt enable*/
    kDspiTxFifoUnderflow = BP_SPI_RSER_TFUF_RE, /*!< TFUF status/interrupt enable*/
    kDspiTxFifoFillRequest = BP_SPI_RSER_TFFF_RE, /*!< TFFF status/interrupt enable*/
    kDspiRxFifoOverflow = BP_SPI_RSER_RFOF_RE, /*!< RFOF status/interrupt enable*/
    kDspiRxFifoDrainRequest = BP_SPI_RSER_RFDF_RE /*!< RFDF status/interrupt enable*/
} dspi_status_and_interrupt_request_t;

/*! @brief DSPI FIFO counter or pointer defines based on bit positions*/
typedef enum _dspi_fifo_counter_pointer {
    kDspiRxFifoPointer = BP_SPI_SR_POPNXTPTR, /*!< Rx FIFO pointer*/
    kDspiRxFifoCounter = BP_SPI_SR_RXCTR,     /*!< Rx FIFO counter*/
    kDspiTxFifoPointer = BP_SPI_SR_TXNXTPTR,  /*!< Tx FIFO pointer*/
    kDspiTxFifoCounter = BP_SPI_SR_TXCTR      /*!< Tx FIFO counter*/
} dspi_fifo_counter_pointer_t;

/*! @brief DSPI delay type selection*/
typedef enum _dspi_delay_type {
    kDspiPcsToSck = 1,      /*!< PCS-to-SCK delay */
    kDspiLastSckToPcs = 2,  /*!< Last SCK edge to PCS delay */
    kDspiAfterTransfer = 3, /*!< Delay between transfers */
} dspi_delay_type_t;

/*!
 * @brief DSPI data format settings configuration structure
 *
 * This structure contains the data format settings.  These settings apply to a specific
 * CTARn register, which the user must provide in this structure.
 */
typedef struct DspiDataFormatConfig {
    uint32_t bitsPerFrame;        /*!< Bits per frame, minimum 4, maximum 16 (master), 32 (slave) */
    dspi_clock_polarity_t clkPolarity;   /*!< Active high or low clock polarity*/
    dspi_clock_phase_t clkPhase;     /*!< Clock phase setting to change and capture data*/
    dspi_shift_direction_t direction; /*!< MSB or LSB data shift direction
                                           This setting relevant only in master mode and
                                           can be ignored in slave  mode */
} dspi_data_format_config_t;

/*!
 * @brief DSPI hardware configuration settings for slave mode.
 *
 * Use an instance of this structure with the DSPI_HAL_SlaveInit() to configure the
 * most common settings of the DSPI peripheral in slave mode with a single function call.
 */
typedef struct DspiSlaveConfig {
    bool isEnabled;                         /*!< Set to true to enable the DSPI peripheral. */
    dspi_data_format_config_t dataConfig;    /*!< Data format configuration structure */
    bool isTxFifoDisabled;                    /*!< Disable(1) or Enable(0) Tx FIFO */
    bool isRxFifoDisabled;                    /*!< Disable(1) or Enable(0) Rx FIFO */
} dspi_slave_config_t;

/*!
 * @brief DSPI baud rate divisors settings configuration structure.
 *
 * Note: These settings are relevant only in master mode.
 * This structure contains the baud rate divisor settings, which provides the user with the option
 * to explicitly set these baud rate divisors. In addition, the user must also set the
 * CTARn register  with the divisor settings.
 */
typedef struct DspiBaudRateDivisors {
    bool doubleBaudRate;          /*!< Double Baud rate parameter setting */
    uint32_t prescaleDivisor;     /*!< Baud Rate Pre-scalar parameter setting*/
    uint32_t baudRateDivisor;     /*!< Baud Rate scaler parameter setting */
} dspi_baud_rate_divisors_t;

/*!
 * @brief DSPI command and data configuration structure
 *
 * Note: This structure is used  with the PUSHR register, which
 * provides the means to write to the Tx FIFO. Data written to this register is
 * transferred to the Tx FIFO. Eight or sixteen-bit write accesses to the PUSHR transfer all
 * 32 register bits to the Tx FIFO. The register structure is different in master and slave
 * modes. In master mode, the register provides 16-bit command and 16-bit data to the Tx
 * FIFO. In slave mode all 32 register bits can be used as data, supporting up to 32-bit SPI
 * frame operation.
 */
typedef struct DspiCommandDataConfig {
    bool isChipSelectContinuous;  /*!< Option to enable the continuous assertion of chip select
                                       between transfers*/
    dspi_ctar_selection_t whichCtar; /*!< The desired Clock and Transfer Attributes
                                          Register (CTAR) to use for CTAS*/
    dspi_which_pcs_config_t whichPcs;   /*!< The desired PCS signal to use for the data transfer*/
    bool isEndOfQueue;            /*!< Signals that the current transfer is the last in the queue*/
    bool clearTransferCount;      /*!< Clears SPI_TCNT field; cleared before transmission starts*/
} dspi_command_config_t;

/*******************************************************************************
 * Variables
 ******************************************************************************/

extern const uint32_t spi_base_addr[];

/*******************************************************************************
 * API
 ******************************************************************************/

#if defined(__cplusplus)
extern "C" {
#endif

/*!
 * @name Configuration
 * @{
 */

/*!
 * @brief Restores the DSPI to reset the configuration.
 *
 * This function basically resets all of the DSPI registers to their default setting including
 * disabling the module.
 *
 * @param baseAddr Module base address
 */
void DSPI_HAL_Init(uint32_t baseAddr);

/*!
 * @brief Enables the DSPI peripheral and sets the MCR MDIS to 0.
 *
 * @param baseAddr Module base address
 */
static inline void DSPI_HAL_Enable(uint32_t baseAddr)
{
    BW_SPI_MCR_MDIS(baseAddr, 0);
}

/*!
 * @brief Disables the DSPI peripheral, sets MCR MDIS to 1.
 *
 * @param baseAddr Module base address
 */
static inline void DSPI_HAL_Disable(uint32_t baseAddr)
{
    BW_SPI_MCR_MDIS(baseAddr, 1);
}

/*!
 * @brief Sets the DSPI baud rate in bits per second.
 *
 * This function  takes in the desired bitsPerSec (baud rate) and  calculates the nearest
 * possible baud rate without exceeding the desired baud rate, and  returns the calculated
 * baud rate in bits-per-second. It requires that the caller also provide the frequency of the
 * module source clock (in Hertz).
 *
 * @param baseAddr Module base address
 * @param whichCtar The desired Clock and Transfer Attributes Register (CTAR) of the type
 *                  dspi_ctar_selection_t
 * @param bitsPerSec The desired baud rate in bits per second
 * @param sourceClockInHz Module source input clock in Hertz
 * @return  The actual calculated baud rate
 */
uint32_t DSPI_HAL_SetBaudRate(uint32_t baseAddr, dspi_ctar_selection_t whichCtar,
                              uint32_t bitsPerSec, uint32_t sourceClockInHz);

/*!
 * @brief Configures the baud rate divisors manually.
 *
 * This function allows the caller to manually set the baud rate divisors in the event that
 * these dividers are known and the caller does not wish to call the DSPI_HAL_SetBaudRate function.
 *
 * @param baseAddr Module base address
 * @param whichCtar The desired Clock and Transfer Attributes Register (CTAR) of type
 *                  dspi_ctar_selection_t
 * @param divisors Pointer to a structure containing the user defined baud rate divisor settings
 */
void DSPI_HAL_SetBaudDivisors(uint32_t baseAddr,
                              dspi_ctar_selection_t whichCtar,
                              const dspi_baud_rate_divisors_t * divisors);

/*!
 * @brief Configures the DSPI for master or slave.
 *
 * @param baseAddr Module base address
 * @param mode Mode setting (master or slave) of type dspi_master_slave_mode_t
 */
static inline void DSPI_HAL_SetMasterSlaveMode(uint32_t baseAddr, dspi_master_slave_mode_t mode)
{
    BW_SPI_MCR_MSTR(baseAddr, (uint32_t)mode);
}

/*!
 * @brief Returns whether the DSPI module is in master mode.
 *
 * @param baseAddr Module base address
 * @retval true The module is in master mode.
 * @retval false The module is in slave mode.
 */
static inline bool DSPI_HAL_IsMaster(uint32_t baseAddr)
{
    return (bool)BR_SPI_MCR_MSTR(baseAddr);
}

/*!
 * @brief Configures the DSPI for the continuous SCK operation.
 *
 * @param baseAddr Module base address
 * @param enable Enables (true) or disables(false) continuous SCK operation.
 */
static inline void DSPI_HAL_SetContinuousSckCmd(uint32_t baseAddr, bool enable)
{
    BW_SPI_MCR_CONT_SCKE(baseAddr, (enable == true));
}

/*!
 * @brief Configures the DSPI to enable modified timing format.
 *
 * @param baseAddr Module base address
 * @param enable Enables (true) or disables(false) modified timing format.
 */
static inline void DSPI_HAL_SetModifiedTimingFormatCmd(uint32_t baseAddr, bool enable)
{
    BW_SPI_MCR_MTFE(baseAddr, (enable == true));
}

/*!
 * @brief Configures the DSPI peripheral chip select strobe enable. Configures the PCS[5] to be the
 *        active-low PCS Strobe output.
 *
 * PCS[5] is a special case that can be configured as an active low PCS strobe or as a Peripheral
 * Chip Select in master mode. When configured as a strobe, it provides a signal to an external
 * demultiplexer to decode PCS[0] to PCS[4] signals into as many as 128 glitch-free PCS signals.
 *
 * @param baseAddr Module base address
 * @param enable Enable (true) PCS[5] to operate as the peripheral chip select (PCS) strobe
 *               If disable (false), PCS[5] operates as a peripheral chip select
 */
static inline void DSPI_HAL_SetPcsStrobeCmd(uint32_t baseAddr, bool enable)
{
    BW_SPI_MCR_PCSSE(baseAddr, (enable == true));
}

/*!
 * @brief Configures the DSPI received FIFO overflow overwrite enable.
 *
 * When enabled, this function allows incoming receive data to overwrite the existing data in the
 * receive shift register when the Rx FIFO is full.  Otherwise when disabled, the incoming data
 * is ignored when the RX FIFO is full.
 *
 * @param baseAddr Module base address.
 * @param enable If enabled (true), allows incoming data to overwrite Rx FIFO contents when full,
 *               else incoming data is ignored.
 */
static inline void DSPI_HAL_SetRxFifoOverwriteCmd(uint32_t baseAddr, bool enable)
{
    BW_SPI_MCR_ROOE(baseAddr, (enable == true));
}

/*!
 * @brief Configures the DSPI peripheral chip select polarity.
 *
 * This function  takes in the desired peripheral chip select (PCS) and it's
 * corresponding desired polarity and  configures the PCS signal to operate with the
 * desired characteristic.
 *
 * @param baseAddr Module base address
 * @param pcs The particular peripheral chip select (parameter value is of type
 *            dspi_which_pcs_config_t) for which we wish to apply the active high or active
 *            low characteristic.
 * @param activeLowOrHigh The setting for either "active high, inactive low (0)"  or
 *                        "active low, inactive high(1)" of type dspi_pcs_polarity_config_t.
 */
void DSPI_HAL_SetPcsPolarityMode(uint32_t baseAddr, dspi_which_pcs_config_t pcs,
                                 dspi_pcs_polarity_config_t activeLowOrHigh);

/*!
 * @brief Enables (or disables) the DSPI FIFOs.
 *
 * This function  allows the caller to disable/enable the Tx and Rx FIFOs (independently).
 * Note that to disable, the caller must pass in a logic 0 (false) for the particular FIFO
 * configuration.  To enable, the caller must pass in a logic 1 (true).
 *
 * @param baseAddr Module instance number
 * @param enableTxFifo Disables (false) the TX FIFO, else enables (true) the TX FIFO
 * @param enableRxFifo Disables (false) the RX FIFO, else enables (true) the RX FIFO
 */
void DSPI_HAL_SetFifoCmd(uint32_t baseAddr, bool enableTxFifo, bool enableRxFifo);

/*!
 * @brief Flushes the DSPI FIFOs.
 *
 * @param baseAddr Module base address
 * @param enableFlushTxFifo Flushes (true) the Tx FIFO, else do not flush (false) the Tx FIFO
 * @param enableFlushRxFifo Flushes (true) the Rx FIFO, else do not flush (false) the Rx FIFO
 */
void DSPI_HAL_SetFlushFifoCmd(uint32_t baseAddr, bool enableFlushTxFifo, bool enableFlushRxFifo);


/*!
 * @brief Configures the time when the DSPI master samples SIN in the Modified Transfer Format.
 *
 * This function controls when the DSPI master samples SIN (data in) in the Modified Transfer
 * Format.  Note that this is valid only when the CPHA bit in the CTAR register is 0.
 *
 * @param baseAddr Module base address
 * @param samplePnt selects when the data in (SIN) is sampled, of type dspi_master_sample_point_t.
 *                  This value selects either 0, 1, or 2 system clocks between the SCK edge
 *                  and the SIN (data in) sample.
 */
static inline void DSPI_HAL_SetDatainSamplepointMode(uint32_t baseAddr,
                                                   dspi_master_sample_point_t samplePnt)
{
    BW_SPI_MCR_SMPL_PT(baseAddr, samplePnt);
}


/*!
 * @brief Starts the DSPI transfers, clears HALT bit in MCR.
 *
 * This function call called whenever the module is ready to begin data transfers in either master
 * or slave mode.
 *
 * @param baseAddr Module base address
 */
static inline void DSPI_HAL_StartTransfer(uint32_t baseAddr)
{
    BW_SPI_MCR_HALT(baseAddr, 0);
}

/*!
 * @brief Stops (halts) DSPI transfers, sets HALT bit in MCR.
 *
 * This function call  stops data transfers in either master or slave mode.
 *
 * @param baseAddr Module base address
 */
static inline void DSPI_HAL_StopTransfer(uint32_t baseAddr)
{
    BW_SPI_MCR_HALT(baseAddr, 1);
}

/*!
 * @brief Configures the data format for a particular CTAR.
 *
 * This function configures the bits-per-frame, polarity, phase, and shift direction for a
 * particular CTAR. An example use case is as follows:
   @code
    dspi_data_format_config_t dataFormat;
    dataFormat.bitsPerFrame = 16;
    dataFormat.clkPolarity = kDspiClockPolarity_ActiveLow;
    dataFormat.clkPhase = kDspiClockPhase_FirstEdge;
    dataFormat.direction = kDspiMsbFirst;
    DSPI_HAL_SetDataFormat(instance, kDspiCtar0, &dataFormat);
   @endcode
 *
 * @param baseAddr Module base address
 * @param whichCtar The desired Clock and Transfer Attributes Register (CTAR) of type
 *                  dspi_ctar_selection_t.
 * @param config Pointer to structure containing user defined data format configuration settings.
 * @return  An error code or kStatus_DSPI_Success
 */
dspi_status_t DSPI_HAL_SetDataFormat(uint32_t baseAddr,
                                     dspi_ctar_selection_t whichCtar,
                                     const dspi_data_format_config_t * config);

/*!
 * @brief Manually configures the delay prescaler and scaler for a particular CTAR.
 *
 * This function configures the PCS to SCK delay pre-scalar (PCSSCK) and scalar (CSSCK),
 * after SCK delay pre-scalar (PASC) and scalar (ASC), and the delay
 * after transfer pre-scalar (PDT)and scalar (DT).
 *
 * These delay names are available in type dspi_delay_type_t.
 *
 * The user passes which delay they want to configure along with the prescaler and scaler value.
 * This  allows the user to directly set the prescaler/scaler values if they have
 * pre-calculated them or if they simply wish to manually increment either value.
 *
 * @param baseAddr Module base address
 * @param whichCtar The desired Clock and Transfer Attributes Register (CTAR) of type
 *                  dspi_ctar_selection_t.
 * @param prescaler The prescaler delay value (can be an integer 0, 1, 2, or 3).
 * @param prescaler The scaler delay value (can be any integer between 0 to 15).
 * @param whichDelay The desired delay to configure, must be of type dspi_delay_type_t
 */
void DSPI_HAL_SetDelay(uint32_t baseAddr, dspi_ctar_selection_t whichCtar, uint32_t prescaler,
                       uint32_t scaler, dspi_delay_type_t whichDelay);


/*!
 * @brief Calculates the delay prescaler and scaler based on the desired delay input in nanoseconds.
 *
 * This function calculates the values for:
 * PCS to SCK delay pre-scalar (PCSSCK) and scalar (CSSCK), or
 * After SCK delay pre-scalar (PASC) and scalar (ASC), or
 * Delay after transfer pre-scalar (PDT)and scalar (DT).
 *
 * These delay names are available in type dspi_delay_type_t.
 *
 * The user passes which delay they want to configure along with the desired delay value in
 * nano-seconds.  The function calculates the values needed for the prescaler and scaler and
 * returning the actual calculated delay as an exact delay match may not be possible. In this
 * case, the closest match is calculated without going below the desired delay value input.
 * It is possible to input a very large delay value that exceeds the capability of the part, in
 * which case the maximum supported delay will be returned. It is to the higher level
 * peripheral driver to alert the user of an out of range delay input.
 *
 * @param baseAddr Module base address
 * @param whichCtar The desired Clock and Transfer Attributes Register (CTAR) of type
 *                  dspi_ctar_selection_t.
 * @param whichDelay The desired delay to configure, must be of type dspi_delay_type_t
 * @param sourceClockInHz Module source input clock in Hertz
 * @param delayInNanoSec The desired delay value in nano-seconds.
 * @return The actual calculated delay value.
 */
uint32_t DSPI_HAL_CalculateDelay(uint32_t baseAddr, dspi_ctar_selection_t whichCtar,
                                 dspi_delay_type_t whichDelay, uint32_t sourceClockInHz,
                                 uint32_t delayInNanoSec);

/*@}*/

/*!
 * @name Low power
 * @{
 */

/*!
 * @brief Configures the DSPI operation during doze mode.
 *
 * This function provides support for an externally controlled doze mode, power-saving, mechanism.
 * When disabled, the doze mode has no effect on the DSPI, and when enabled, the Doze mode
 * disables the DSPI.
 *
 * @param baseAddr Module base address
 * @param enable If disabled (false), the doze mode has no effect on the DSPI, if enabled (true),
 *               the doze mode disables the DSPI.
 */
static inline void DSPI_HAL_SetDozemodeCmd(uint32_t baseAddr, bool enable)
{
    BW_SPI_MCR_DOZE(baseAddr, (enable == true));
}

/*@}*/

/*!
 * @name Interrupts
 * @{
 */

/*!
 * @brief Configures the DSPI Tx FIFO fill request to generate DMA or interrupt requests.
 *
 * This function configures the DSPI Tx FIFO Fill flag to generate either
 * an interrupt or DMA request.  The user passes in which request they'd like to generate
 * of type dspi_dma_or_int_mode_t and whether or not they wish to enable this request.
 * Note, when disabling the request, the request type is don't care.
   @code
    DSPI_HAL_SetTxFifoFillDmaIntMode(baseAddr, kDspiGenerateDmaReq, true); <- to enable DMA
    DSPI_HAL_SetTxFifoFillDmaIntMode(baseAddr, kDspiGenerateIntReq, true); <- to enable Interrupt
    DSPI_HAL_SetTxFifoFillDmaIntMode(baseAddr, kDspiGenerateIntReq, false); <- to disable
   @endcode
 * @param baseAddr Module base address
 * @param mode Configures the DSPI Tx FIFO Fill to generate an interrupt or DMA request
 * @param enable Enable (true) or disable (false) the DSPI Tx FIFO Fill flag to generate requests
 */
void DSPI_HAL_SetTxFifoFillDmaIntMode(uint32_t baseAddr, dspi_dma_or_int_mode_t mode, bool enable);

/*!
 * @brief Configures the DSPI Rx FIFO Drain request to generate DMA or interrupt requests.
 *
 * This function configures the DSPI Rx FIFO Drain flag to generate either
 * an interrupt or a DMA request.  The user passes in which request they'd like to generate
 * of type dspi_dma_or_int_mode_t and whether or not they wish to enable this request.
 * Note, when disabling the request, the request type is don't care.
   @code
    DSPI_HAL_SetRxFifoDrainDmaIntMode(baseAddr, kDspiGenerateDmaReq, true); <- to enable DMA
    DSPI_HAL_SetRxFifoDrainDmaIntMode(baseAddr, kDspiGenerateIntReq, true); <- to enable Interrupt
    DSPI_HAL_SetRxFifoDrainDmaIntMode(baseAddr, kDspiGenerateIntReq, false); <- to disable
   @endcode
 * @param baseAddr Module base address
 * @param mode Configures the Rx FIFO Drain to generate an interrupt or DMA request
 * @param enable Enable (true) or disable (false) the Rx FIFO Drain flag to generate requests
 */
void DSPI_HAL_SetRxFifoDrainDmaIntMode(uint32_t baseAddr, dspi_dma_or_int_mode_t mode, bool enable);



/*!
 * @brief Configures the DSPI interrupts.
 *
 * This function configures the various interrupt sources of the DSPI.  The parameters are
 * baseAddr, interrupt source, and enable/disable setting.
 * The interrupt source is a typedef enumeration whose value is the bit position of the
 * interrupt source setting within the RSER register.  In the DSPI, all interrupt
 * configuration settings are in  one register.  The typedef enum  equates each
 * interrupt source to the bit position defined in the device header file.
 * The function  uses these bit positions in its algorithm to enable/disable the
 * interrupt source, where interrupt source is the dspi_status_and_interrupt_request_t type.
 * Note, for Tx FIFO Fill and Rx FIFO Drain requests, use the functions:
 * DSPI_HAL_SetTxFifoFillDmaIntMode and DSPI_HAL_SetRxFifoDrainDmaIntMode respectively as
 * these requests can generate either an interrupt or DMA request.
   @code
    DSPI_HAL_SetIntMode(baseAddr, kDspiTxComplete, true); <- example use-case
   @endcode
 *
 * @param baseAddr Module base address
 * @param interruptSrc The interrupt source, of type dspi_status_and_interrupt_request_t
 * @param enable Enable (true) or disable (false) the interrupt source to generate requests
 */
void DSPI_HAL_SetIntMode(uint32_t baseAddr,
                              dspi_status_and_interrupt_request_t interruptSrc,
                              bool enable);


/*!
 * @brief Gets DSPI interrupt configuration, returns if interrupt request is enabled or disabled.
 *
 * This function  returns the requested interrupt source setting (enabled or disabled, of
 * type bool).  The parameters to pass in are baseAddr and interrupt source.  It  utilizes the
 * same enumeration definitions for the interrupt sources as described in the "interrupt configuration"
 * function. The function  uses these bit positions in its algorithm to obtain the desired
 * interrupt source setting.
 * Note, for Tx FIFO Fill and Rx FIFO Drain requests, this returns whether or not their
 * requests are enabled.
   @code
   getInterruptSetting = DSPI_HAL_GetIntMode(baseAddr, kDspiTxComplete);
   @endcode
 *
 * @param baseAddr Module base address
 * @param interruptSrc The interrupt source, of type dspi_status_and_interrupt_request_t
 * @return Configuration of interrupt request: enable (true) or disable (false).
 */
static inline bool DSPI_HAL_GetIntMode(uint32_t baseAddr,
                                             dspi_status_and_interrupt_request_t interruptSrc)
{
    return ((HW_SPI_RSER_RD(baseAddr) >> interruptSrc) & 0x1);
}

/*@}*/

/*!
 * @name Status
 * @{
 */

/*!
 * @brief Gets the DSPI status flag state.
 *
 * The status flag  is defined in the same enumeration as the interrupt source enable because the bit
 * position of the interrupt source and corresponding status flag are the same in the RSER and
 * SR registers.  The function  uses these bit positions in its algorithm to obtain the desired
 * flag state, similar to the dspi_get_interrupt_config function.
   @code
    getStatus = DSPI_HAL_GetStatusFlag(baseAddr, kDspiTxComplete);
   @endcode
 *
 * @param baseAddr Module base address
 * @param statusFlag The status flag, of type dspi_status_and_interrupt_request_t
 * @return State of the status flag: asserted (true) or not-asserted (false)
 */
static inline bool DSPI_HAL_GetStatusFlag(uint32_t baseAddr,
                                        dspi_status_and_interrupt_request_t statusFlag)
{
    return ((HW_SPI_SR_RD(baseAddr) >> statusFlag) & 0x1);
}

/*!
 * @brief Clears the DSPI status flag.
 *
 * This function  clears the desired status bit by using a write-1-to-clear.  The user passes in
 * the baseAddr and the desired status bit to clear.  The list of status bits is defined in the
 * dspi_status_and_interrupt_request_t.  The function  uses these bit positions in its algorithm
 * to clear the desired flag state. Example usage:
   @code
    DSPI_HAL_ClearStatusFlag(baseAddr, kDspiTxComplete);
   @endcode
 *
 * @param baseAddr Module base address
 * @param statusFlag The status flag, of type dspi_status_and_interrupt_request_t
 */
static inline void DSPI_HAL_ClearStatusFlag(uint32_t baseAddr,
                                              dspi_status_and_interrupt_request_t statusFlag)
{
    HW_SPI_SR_SET(baseAddr, (0x1U << statusFlag));
}


/*!
 * @brief Gets the DSPI FIFO counter or pointer.
 *
 * This function  returns the number of entries or the next pointer in the Tx or Rx FIFO.
 * The parameters to pass in are the baseAddr and either the Tx or Rx FIFO counter or a
 * pointer.  The latter  is an enumeration type defined as the bitmask of
 * those particular bit fields found in the device header file. Example usage:
   @code
    DSPI_HAL_GetFifoCountOrPtr(baseAddr, kDspiRxFifoCounter);
   @endcode
 *
 * @param baseAddr Module base address
 * @param desiredParameter Desired parameter to obtain, of type dspi_fifo_counter_pointer_t
 */
static inline uint32_t DSPI_HAL_GetFifoCountOrPtr(uint32_t baseAddr,
                                              dspi_fifo_counter_pointer_t desiredParameter)
{
    return ((HW_SPI_SR_RD(baseAddr) >> desiredParameter) & 0xFU);
}


/*@}*/

/*!
 * @name Data transfer
 * @{
 */

/*!
 * @brief Reads data from the data buffer.
 *
 * @param baseAddr Module base address
 */
static inline uint32_t DSPI_HAL_ReadData(uint32_t baseAddr)
{
    return HW_SPI_POPR_RD(baseAddr);
}

/*!
 * @brief Writes data into the data buffer, slave mode.
 *
 * In slave mode, up to 32-bit words may be written.
 *
 * @param baseAddr Module base address
 * @param data The data to send
 */
static inline void DSPI_HAL_WriteDataSlavemode(uint32_t baseAddr, uint32_t data)
{
    HW_SPI_PUSHR_SLAVE_WR(baseAddr, data);
}

/*!
 * @brief Writes data into the data buffer, master mode.
 *
 * In master mode, the 16-bit data is appended to the 16-bit command info. The command portion
 * provides characteristics of the data such as: optional continuous chip select
 * operation between transfers, the desired Clock and Transfer Attributes register to use for the
 * associated SPI frame, the desired PCS signal to use for the data transfer, whether the current
 * transfer is the last in the queue, and whether to clear the transfer count (normally needed when
 * sending the first frame of a data packet). This is an example:
   @code
    dspi_command_config_t commandConfig;
    commandConfig.isChipSelectContinuous = true;
    commandConfig.whichCtar = kDspiCtar0;
    commandConfig.whichPcs = kDspiPcs1;
    commandConfig.clearTransferCount = false;
    commandConfig.isEndOfQueue = false;
    DSPI_HAL_WriteDataMastermode(baseAddr, &commandConfig, dataWord);
   @endcode
 *
 * @param baseAddr Module base address
 * @param command Pointer to command structure
 * @param data The data word to be sent
 */
void DSPI_HAL_WriteDataMastermode(uint32_t baseAddr,
                                  dspi_command_config_t * command,
                                  uint16_t data);

/*!
 * @brief Writes data into the data buffer, master mode and waits till complete to return.
 *
 * In master mode, the 16-bit data is appended to the 16-bit command info. The command portion
 * provides characteristics of the data such as: optional continuous chip select
 * operation between transfers, the desired Clock and Transfer Attributes register to use for the
 * associated SPI frame, the desired PCS signal to use for the data transfer, whether the current
 * transfer is the last in the queue, and whether to clear the transfer count (normally needed when
 * sending the first frame of a data packet). This is an example:
   @code
    dspi_command_config_t commandConfig;
    commandConfig.isChipSelectContinuous = true;
    commandConfig.whichCtar = kDspiCtar0;
    commandConfig.whichPcs = kDspiPcs1;
    commandConfig.clearTransferCount = false;
    commandConfig.isEndOfQueue = false;
    DSPI_HAL_WriteDataMastermode(baseAddr, &commandConfig, dataWord);
   @endcode
 *
 * Note that this function does not return until after the transmit is complete. Also note that
 * the DSPI must be enabled and running in order to transmit data (MCR[MDIS] & [HALT] = 0).
 * Since the SPI is a synchronous protocol, receive data is available when transmit completes.
 *
 * @param baseAddr Module base address
 * @param command Pointer to command structure
 * @param data The data word to be sent
 */
void DSPI_HAL_WriteDataMastermodeBlocking(uint32_t baseAddr,
                                          dspi_command_config_t * command,
                                          uint16_t data);

/*!
 * @brief Gets the transfer count.
 *
 * This function returns the current value of the DSPI Transfer Count Register.
 *
 * @param baseAddr Module base address
 * @return The current transfer count
 */
static inline uint32_t DSPI_HAL_GetTransferCount(uint32_t baseAddr)
{
    return BR_SPI_TCR_SPI_TCNT(baseAddr);
}

/*!
 * @brief Pre-sets the transfer count.
 *
 * This function allows the caller to pre-set the DSI Transfer Count Register to a desired value up
 * to 65535; Incrementing past this resets the counter back to 0.
 *
 * @param baseAddr Module base address
 * @param presetValue The desired pre-set value for the transfer counter
 */
static inline void DSPI_HAL_PresetTransferCount(uint32_t baseAddr, uint16_t presetValue)
{
    BW_SPI_TCR_SPI_TCNT(baseAddr, presetValue);
}

/*@}*/

/*!
 * @name Debug
 * @{
 */

/*!
 * @brief Reads FIFO registers for debug purposes.
 *
 * @param baseAddr Module base address
 * @param whichFifo Selects Tx or Rx FIFO, of type dspi_fifo_t.
 * @param whichFifoEntry Selects which FIFO entry to read: 0, 1, 2, or 3.
 * @return The desired FIFO register contents
 */
uint32_t DSPI_HAL_GetFifoData(uint32_t baseAddr, dspi_fifo_t whichFifo, uint32_t whichFifoEntry);

/*!
 * @brief Configures the DSPI to halt during debug mode.
 *
 * @param baseAddr Module base address
 * @param enable Enables (true) debug mode to halt transfers, else disable to not halt transfer
 *               in debug mode.
 */
static inline void DSPI_HAL_SetHaltInDebugmodeCmd(uint32_t baseAddr, bool enable)
{
    BW_SPI_MCR_FRZ(baseAddr, (enable == true));
}

/* @}*/

#if defined(__cplusplus)
}
#endif

/*! @}*/

#endif /* __FSL_DSPI_HAL_H__*/
/*******************************************************************************
 * EOF
 ******************************************************************************/