test publish

Dependencies:   BLE_API nRF51822 mbed

Fork of KS7 by masaaki makabe

io.cpp

Committer:
masaaki_makabe
Date:
2016-07-28
Branch:
KS3
Revision:
31:b5e19d153db4
Parent:
30:f67850cc3cfe

File content as of revision 31:b5e19d153db4:

#include "io.h"
#include "mbed.h"
#include "common.h"

// COL[2:0]: P0_27 P0_26 P0_21
// ROW[7:0]: P0_19 P0_16 P0_15 P0_13 P0_12 P0_11 P0_09 P0_08
// PowA    : P0_00
// Vin     : P0_01
// SWx/y   : P0_02 P0_03
// PWM     : P0_05
//
//  0a 0b 0c  1f 1g 1h  3c 3d 3e  4h 5a 5b
//  0d    0e  2a    2b  3f    3g  5c    5d  6e 6f 6g
//  0f 0g 0h  2c 2d 2e  3h 4a 4b  5e 5f 5g  6h
//  1a    1b  2f    2g  4c    4d  5h    6a  7a    7b
//  1c 1d 1e  2h 3a 3b  4e 4f 4g  6b 6c 6d  7c 7d 7e
// [hgfe:dcba]
//
//  1  2  3   14 15 16  27 28 29  40 41 42
//  4     5   17    18  30    31  43    44  53 54 55
//  6  7  8   19 20 21  32 33 34  45 46 47  56
//  9    10   22    23  35    36  48    49  57    58
// 11 12 13   24 25 26  37 38 39  50 51 52  59 60 61
//  seg[3]     seg[2]    seg[1]    seg[0]
//
// COL 0   1    2     3     4     5     6     7
//     1-8 9-16 17-24 25-31 32-40 41-48 49-56 57-(64)
//
//     seg0
// seg5     seg1
//     seg6
// seg4     seg2
//     seg3
//
// Joystick connection
//
//  o o o
//o
//o   +->x
//o   |
//    y


Ticker _tk;

// multiple condition in #ifdef
// http://qiita.com/D-3/items/b98b63c2629496856654
#if defined(PCB_VER1) || defined(PCB_VER2)
I2C i2c(P0_13, P0_15);
#define I2C_FREQ    100000
#endif

#ifdef PCB_VER2
#define ADC_ADS1115 // use 16bit ADC

#ifdef ADC_ADS1115
#define I2C_ADDR 0x90 // for ADS1115
#else
#define I2C_ADDR 0x68 // for MAX11613
#endif
#endif

#ifdef PCB_VER4
io::io(PinName CLK, PinName DAT) : _hx711(P0_14, DAT, CLK)
#else
io::io()
#endif
{
    _col = 0;
    for (uint8_t i = 0; i < 4; i++) _seg[i] = 0x00;
// COL[2:0]: P0_27 P0_26 P0_21
// ROW[7:0]: P0_19 P0_16 P0_15 P0_13 P0_12 P0_11 P0_09 P0_08
#if defined(UART_DEBUG)
 #if defined(PCB_VER1) || defined(PCB_VER2) // UART: P0_8 & P0_9 (sg0&sg1)
    _sg2 = new DigitalOut(P0_11, 0);
 #endif
 #if defined(PCB_VER3) // UART: P0_8 & P0_11(sg0&sg2)
    _sg1 = new DigitalOut(P0_9, 0);
 #endif
 #if defined(PCB_VER4) // UART: P0_9 & P0_11(sg1&sg2)
    _sg0 = new DigitalOut(P0_8, 0);
 #endif
#else
    // UART cannot use
    _sg0 = new DigitalOut(P0_8, 0);
    _sg1 = new DigitalOut(P0_9, 0);
    _sg2 = new DigitalOut(P0_11, 0);
#endif
    _sg3 = new DigitalOut(P0_12, 0);

#ifdef PCB_VER1
    _sg4 = new DigitalOut(P0_13, 0);
    _sg5 = new DigitalOut(P0_15, 0);
#else
    _sg4 = new DigitalOut(P0_2, 0);
    _sg5 = new DigitalOut(P0_3, 0);
#endif
    _sg6 = new DigitalOut(P0_16, 0);
    _sg7 = new DigitalOut(P0_19, 0);
    _sa0 = new DigitalOut(P0_21, 0);
#ifdef PCB_VER1
    _sa1 = new DigitalOut(P0_26, 0);
    _sa2 = new DigitalOut(P0_27, 0);
    _jx = new AnalogIn(P0_2);
    _jy = new AnalogIn(P0_3);
    _weight = new AnalogIn(P0_1);
#endif
#if defined(PCB_VER2) || defined(PCB_VER3) || defined(PCB_VER4)
    _sa1 = new DigitalOut(P0_24, 0);
    _sa2 = new DigitalOut(P0_25, 0);
#endif
    _pow = new DigitalOut(P0_0, 1); // initial: analog power off
    _pwm = new PwmOut(P0_5);
//    _pwm = new PwmOut(P0_15); // for BLEnano debug
    _adc0 = 0;
    _pwm->period_us(100);
    _pwm->write(0.0);
#if defined(PCB_VER1) || defined(PCB_VER2)
    i2c.frequency(I2C_FREQ);
#endif

#ifdef PCB_VER3
    _sw = new DigitalIn(P0_4, PullDown);
    _adc_ck = new DigitalOut(P0_15, 0);
    _adc_di = new DigitalIn(P0_13);
    _adc_ck->write(0);
    for (uint8_t i = 0; i < 24; i++) {
        _adc_ck->write(1);
        wait_us(10);
        _adc_ck->write(0);
        wait_us(10);
    }
#endif
#ifdef PCB_VER4
    _hx711.format(8, 1); // 8bit mode1
    _hx711.frequency(500000); // 500kHz
    _sw = new DigitalIn(P0_4, PullDown);
//    _sw = new DigitalIn(P0_13, PullDown); // for BLEnano debug
//    _adc_ck = new DigitalOut(P0_15, 0); // for software SPI
//    _adc_di = new DigitalIn(P0_13); // for software SPI
    _PselSCK  = NRF_SPI1->PSELSCK; // for hardware SPI
    _PselMISO = NRF_SPI1->PSELMISO; // for hardware SPI
    _reg_ps = new DigitalOut(P0_1, 1); // 1=normal, 0=power_save
//    _adc_rate = new DigitalOut(P0_6, 0); // 0=10Hz, 1=80Hz (HX711's RATE pin)
    _adc_rate = new DigitalOut(P0_6, 1); // 0=10Hz, 1=80Hz (HX711's RATE pin)
#endif
    _fDisplaying = 0;
}

io::~io()
{
}

void io::_set_col()
{
    if ((_col & 0x01) == 0) _sa0->write(0);
    else _sa0->write(1);
    if ((_col & 0x02) == 0) _sa1->write(0);
    else _sa1->write(1);
    if ((_col & 0x04) == 0) _sa2->write(0);
    else _sa2->write(1);
}

void io::_set_row(uint8_t d)
{
#if defined(UART_DEBUG)
 #if defined(PCB_VER1) || defined(PCB_VER2) // UART: P0_8 & P0_9 (sg0&sg1)
    if ((d & 0x04) == 0) _sg2->write(0); else _sg2->write(1);
 #endif
 #if defined(PCB_VER3) // UART: P0_8 & P0_11 (sg0&sg2)
    if ((d & 0x02) == 0) _sg1->write(0); else _sg1->write(1);
 #endif
 #if defined(PCB_VER4) // UART: P0_9 & P0_11(sg1&sg2)
    if ((d & 0x01) == 0) _sg0->write(0); else _sg0->write(1);
 #endif
#else
    if ((d & 0x01) == 0) _sg0->write(0); else _sg0->write(1);
    if ((d & 0x02) == 0) _sg1->write(0); else _sg1->write(1);
    if ((d & 0x04) == 0) _sg2->write(0); else _sg2->write(1);
#endif
    if ((d & 0x08) == 0) _sg3->write(0);
    else _sg3->write(1);
    if ((d & 0x10) == 0) _sg4->write(0);
    else _sg4->write(1);
    if ((d & 0x20) == 0) _sg5->write(0);
    else _sg5->write(1);
    if ((d & 0x40) == 0) _sg6->write(0);
    else _sg6->write(1);
    if ((d & 0x80) == 0) _sg7->write(0);
    else _sg7->write(1);
    
}

uint8_t io::_set_segment(uint8_t d)
{
//     seg0
// seg5     seg1
//     seg6
// seg4     seg2
//     seg3
    uint8_t v;
    switch(d) {
        case 0:
            v = 0x3f;
            break;
        case 1:
            v = 0x06;
            break;
        case 2:
            v = 0x5b;
            break;
        case 3:
            v = 0x4f;
            break;
        case 4:
            v = 0x66;
            break;
        case 5:
            v = 0x6d;
            break;
        case 6:
            v = 0x7d;
            break;
        case 7:
            v = 0x27;
            break;
        case 8:
            v = 0x7f;
            break;
        case 9:
            v = 0x6f;
            break;
        default :
            v = 0x00;
            break;
    }
    return(v);
}

void io::_timer_ticker()
{
    _set_row(0);
    _set_col();
    _set_row(_row_out[_col]);
    _col++;
    if (_col == 8) {
        _col = 0;
        if (display_value < 0) _display_value = 0;
        else if (display_value > 9999) _display_value = 9999;
        else _display_value = display_value;

#ifdef DISPLAY_ZERO_SUPPRESS
        if (_display_value < 1000) _seg[3] = 0;
        else
#endif
            _seg[3] = _set_segment(_display_value / 1000);
#ifdef DISPLAY_ZERO_SUPPRESS
        if (_display_value < 100) _seg[2] = 0;
        else
#endif
            _seg[2] = _set_segment((_display_value / 100) % 10);
#ifdef DISPLAY_ZERO_SUPPRESS
        if (_display_value < 10) _seg[1] = 0;
        else
#endif
            _seg[1] = _set_segment((_display_value / 10) % 10);
        _seg[0] = _set_segment(_display_value % 10);
        for (uint8_t i = 0; i < 8; i++) _row_out[i] = 0;

        if ((_seg[3] & 0x40) != 0) _row_out[0] |= 0xe0; // seg6/0f-0g-0h
        if ((_seg[3] & 0x20) != 0) _row_out[0] |= 0x29; // seg5/0a-0d-0f
        if ((_seg[3] & 0x10) != 0) {
            _row_out[0] |= 0x20;    // seg4/0f-1a-1c
            _row_out[1] |= 0x05;
        }
        if ((_seg[3] & 0x08) != 0) _row_out[1] |= 0x1c; // seg3/1c-1d-1e
        if ((_seg[3] & 0x04) != 0) {
            _row_out[0] |= 0x80;    // seg2/0h-1b-1e
            _row_out[1] |= 0x12;
        }
        if ((_seg[3] & 0x02) != 0) _row_out[0] |= 0x94; // seg1/0c-0e-0h
        if ((_seg[3] & 0x01) != 0) _row_out[0] |= 0x07; // seg0/0a-0b-0c

        if ((_seg[2] & 0x40) != 0) _row_out[2] |= 0x1c; // seg6/2c-2d-2e
        if ((_seg[2] & 0x20) != 0) {
            _row_out[2] |= 0x05;    // seg5/1f-2a-2c
            _row_out[1] |= 0x20;
        }
        if ((_seg[2] & 0x10) != 0) _row_out[2] |= 0xa4; // seg4/2c-2f-2h
        if ((_seg[2] & 0x08) != 0) {
            _row_out[3] |= 0x03;    // seg3/2h-3a-3b
            _row_out[2] |= 0x80;
        }
        if ((_seg[2] & 0x04) != 0) {
            _row_out[3] |= 0x02;    // seg2/2e-2g-3b
            _row_out[2] |= 0x50;
        }
        if ((_seg[2] & 0x02) != 0) {
            _row_out[2] |= 0x12;    // seg1/1h-2b-2e
            _row_out[1] |= 0x80;
        }
        if ((_seg[2] & 0x01) != 0) _row_out[1] |= 0xe0; // seg0/1f-1g-1h

        if ((_seg[1] & 0x40) != 0) {
            _row_out[4] |= 0x03;    // seg6/3h-4a-4b
            _row_out[3] |= 0x80;
        }
        if ((_seg[1] & 0x20) != 0) _row_out[3] |= 0xa4; // seg5/3c-3f-3h
        if ((_seg[1] & 0x10) != 0) {
            _row_out[4] |= 0x14;    // seg4/3h-4c-4e
            _row_out[3] |= 0x80;
        }
        if ((_seg[1] & 0x08) != 0) _row_out[4] |= 0x70; // seg3/4e-4f-4g
        if ((_seg[1] & 0x04) != 0) _row_out[4] |= 0x4a; // seg2/4b-4d-4g
        if ((_seg[1] & 0x02) != 0) {
            _row_out[4] |= 0x02;    // seg1/3e-3g-4b
            _row_out[3] |= 0x50;
        }
        if ((_seg[1] & 0x01) != 0) _row_out[3] |= 0x1c; // seg0/3c-3d-3e

        if ((_seg[0] & 0x40) != 0) _row_out[5] |= 0x70; // seg6/5e-5f-5g
        if ((_seg[0] & 0x20) != 0) {
            _row_out[5] |= 0x14;    // seg5/4h-5c-5e
            _row_out[4] |= 0x80;
        }
        if ((_seg[0] & 0x10) != 0) {
            _row_out[6] |= 0x02;    // seg4/5e-5h-6b
            _row_out[5] |= 0x90;
        }
        if ((_seg[0] & 0x08) != 0) _row_out[6] |= 0x0e; // seg3/6b-6c-6d
        if ((_seg[0] & 0x04) != 0) {
            _row_out[6] |= 0x09;    // seg2/5g-6a-6d
            _row_out[5] |= 0x40;
        }
        if ((_seg[0] & 0x02) != 0) _row_out[5] |= 0x4a; // seg1/5b-5d-5g
        if ((_seg[0] & 0x01) != 0) {
            _row_out[5] |= 0x03;    // seg0/4h-5a-5b
            _row_out[4] |= 0x80;
        }
//        _row_out[6] |= 0xf0; _row_out[7] |= 0x1f; // 6e-6f-6g-6h 7a-7b-7c-7d-7e

    // display unit ('G')
/*S-------------------------------------------------------------------*/
    display_unit();
//#ifdef PCB_VER1
//        _row_out[6] |= 0xf0;
//        _row_out[7] |= 0x1f; // 6e-6f-6g-6h 7a-7b-7c-7d-7e
//#else
//        _row_out[6] |= 0xf0;
//        _row_out[7] |= 0xf4; // 6e-6f-6g-6h 7c-7e-7f-7g-7h
//#endif
#if 0 /*debug*/
        /*全灯*/
        _row_out[0] = 0xff;
        _row_out[1] = 0xff;
        _row_out[2] = 0xff;
        _row_out[3] = 0xff;
        _row_out[4] = 0xff;
        _row_out[5] = 0xff;
        _row_out[6] = 0xff;
        _row_out[7] = 0xff;
#endif
/*E-------------------------------------------------------------------*/
    }
}

void io::display(float f)
{
    _pwm->write(f);
    if (f > 0.0 && _fDisplaying == 0) {
        // ref: https://developer.mbed.org/cookbook/Compiler-Error-304
        _tk.attach(this, &io::_timer_ticker, 0.002);
        _fDisplaying = 1;
    } else if (f == 0.0 && _fDisplaying == 1) {
        _tk.detach();
        _fDisplaying = 0;
    }
}

float io::get_weight()
{
    float w;
    w = (float)get_weight_raw() / WEIGHT_COEFFICIENT; // ToDo: coefficient calibration
    return(w);
}

#ifdef PCB_VER4
uint32_t io::get_weight_raw()
#else
uint16_t io::get_weight_raw()
#endif
{
#ifdef PCB_VER4
    long w;
#else
    int w;
#endif
    w = _get_adc_raw(0) - _adc0;
    if (w < 0) w = 0;
    return(w);
}

#ifdef PCB_VER1
float io::_get_x()
{
    float v;
    v = _get_adc(1);
    return(v);
}
#endif

#ifdef PCB_VER1
float io::_get_y()
{
    float v;
    v = _get_adc(2);
    return(v);
}
#endif

uint8_t io::get_switch()
{
    uint8_t f;
#if defined(PCB_VER1) || defined(PCB_VER2)
#ifdef USE_JOYSTICK
    if (_get_x() > 0.8 || _get_y() > 0.8) f = 1;
    else f = 0;
#else
    if(_get_adc(1) > 0.5) f = 1;
    else f = 0;
#endif
#else
    if (_sw->read() == 1) f = 1;
    else f = 0;
#endif
    return(f);
}

void io::analog_pow(uint8_t f)
{
    if (f == 1){
        _pow->write(0);
#ifdef PCB_VER4
        _set_adc_ck(0);
#endif
    }
    else{
         _pow->write(1);
#ifdef PCB_VER4
        _enableSPI(0);
        _set_adc_ck(1);
        wait(0.01); // keep HX711's SCK=1 to enter HX711 into sleep mode
#endif
    }
}

void io::_set_adc_ck(uint8_t f)
{
 //   if (f == 0) NRF_GPIO->OUTCLR |= (1 << _PselSCK);
 //   else NRF_GPIO->OUTSET |= (1 << _PselSCK);
   if (f == 0) NRF_GPIO->OUTCLR = (1 << _PselSCK);
   else NRF_GPIO->OUTSET = (1 << _PselSCK);
}

void io::_enableSPI(uint8_t f)
{
    if (f == 0){
        NRF_SPI1->ENABLE = 0;
        NRF_SPI1->PSELSCK  = 0xffffffff;
        NRF_SPI1->PSELMISO = 0xffffffff;
    }
    else{
        NRF_SPI1->ENABLE = 0;
        NRF_SPI1->PSELSCK  = _PselSCK;
        NRF_SPI1->PSELMISO = _PselMISO;
        NRF_SPI1->ENABLE = 1;
    }
}

uint8_t io::_spi_transfer()
{
    return(_hx711.write(0x00));
}

void io::calibrate_weight()
{
    // (2016/3/28: take average in weight calibration)
    int Navg = 10;
    uint32_t _adc0_s = 0;
    for (int i = 0; i < Navg; i++){
        _adc0_s += _get_adc_raw(0);
    }
    _adc0 = (uint32_t)((float)_adc0_s / (float)Navg);
}

float io::_get_adc(uint8_t ch)
{
#ifdef PCB_VER4
    return(_get_adc_raw(ch) / (float)0xffffff);
#else
    return(_get_adc_raw(ch) / (float)0xffff);
#endif
}

#ifdef PCB_VER4
uint32_t io::_get_adc_raw(uint8_t ch)
#else
uint16_t io::_get_adc_raw(uint8_t ch)
#endif
{
#ifdef PCB_VER1
    if (ch == 0) return(_weight->read());
    else if (ch == 1) return(_jx->read());
    else return(_jy->read());
#endif

#ifdef PCB_VER2
    uint16_t adc = 0;
    uint8_t dh, dl;
#ifdef ADC_ADS1115
    // for ADS1115
    // Input Voltage Range
    // VIN3 = VDD/2 = 1.65
    // VIN0 = 1.8Vpp --> 0.75V - 2.55V
    // VIN0 - VIN3 = -0.9 - +0.9V (+-1.024V)
    _adc_dat[0] = 0x01; // config reg.
    if (ch == 0) _adc_dat[1] = 0x17; // single conv. & FS=+-1.0.24V, AIN0/1/2-AIN3
    else if (ch == 1) _adc_dat[1] = 0x27;
    else _adc_dat[1] = 0x37;
    _adc_dat[1] |= 0x80;

    _adc_dat[2] = 0x83; // 128SPS & disable comp.

    i2c.write(I2C_ADDR, _adc_dat, 3);
    uint8_t f = 0;
    uint16_t count = 10;
    while (f == 0) {
        _adc_dat[0] = 0x01;
        i2c.write(I2C_ADDR, _adc_dat, 1);
        i2c.read(I2C_ADDR, _adc_dat, 2);
        if ((_adc_dat[0] & 0x80) != 0) f = 1;

        if(--count == 0) {
            break;
        }
    }
    _adc_dat[0] = 0x00;
    i2c.write(I2C_ADDR, _adc_dat, 1);
    i2c.read(I2C_ADDR, _adc_dat, 2);
    dh = _adc_dat[0];
    dl = _adc_dat[1];
    adc = dh << 8 | dl;
#else
    // for MAX11613
    _adc_dat[0] = 0xda; // setup / int.reference, ext.clock unipolar
    _adc_dat[1] = 0x61 | (ch << 1); // config / single-ended
    i2cwrite(I2C_ADDR, _adc_dat, 2);

    i2cread(I2C_ADDR, _adc_dat, 2);
    dh = _adc_dat[0] & 0x0f;
    dl = _adc_dat[1];
    adc = (dh << 8 | dl) << 4; // align to 16 bit
#endif
    // convert 2's complementary -> straight binary
    // 0x8000 -> 0x0000
    // 0x0000 -> 0x8000
    // 0x7fff -> 0xffff
    adc = (adc + 0x8000) & 0xffff;
    return(adc);
#endif

#ifdef PCB_VER3
    uint16_t adc = 0;
    // MAX11205, parameter ch is ignored
    _adc_ck->write(0);
    while(_adc_di->read() == 1); // wait until conversion is finished
    // ToDo: data ready timeout
    for (uint8_t i = 0; i < 16; i++) {
        _adc_ck->write(1);
        wait_us(10);
        adc = adc << 1;
        if (_adc_di->read() == 1) adc |= 0x01;
        else adc &= ~0x01;
        _adc_ck->write(0);
        wait_us(10);
    }
    for (uint8_t i = 0; i < 10; i++) { // additional clock for self calibration
        _adc_ck->write(1);
        wait_us(10);
        _adc_ck->write(0);
        wait_us(10);
    }
    // 0x8000 -> 0x0000
    // 0xffff -> 0x7fff
    // 0x0000 -> 0x8000
    // 0x7fff -> 0xffff
    adc = (adc + 0x8000) & 0xffff;
    return(adc);
#endif

#ifdef PCB_VER4
    // using HX711
    uint32_t adc = 0;
    // hardware SPI
    uint8_t d2, d1, d0;
    _set_adc_ck(0);
    // note: comment out the while() below for debugging without ADC, HX711
    while((NRF_GPIO->IN & (1 << _PselMISO)));
    _enableSPI(1);
    d2 = _spi_transfer();
    d1 = _spi_transfer();
    d0 = _spi_transfer();
    _enableSPI(0);
    _set_adc_ck(1); wait_us(1);
    _set_adc_ck(0);
    adc = (d2 << 16) | (d1 << 8) | d0;
/*
    // software SPI
    while(_adc_di->read() == 1); // wait until conversion is finished
//    _tk.detach(); // disable timer to keep _adc_ck's H timeb
    for (uint8_t i = 0; i < 24; i++) {
        _adc_ck->write(1);
        wait_us(10);
        _adc_ck->write(0);
        wait_us(10);
        adc = adc << 1;
        if (_adc_di->read() == 1) adc |= 0x01;
        else adc &= ~0x01;
    }
    for (uint8_t i = 0; i < 1; i++) {
        _adc_ck->write(1);
        wait_us(10);
        _adc_ck->write(0);
        wait_us(10);
    }
*/
//    _tk.attach(this, &io::_timer_ticker, 0.002);
    adc = (adc + 0x800000) & 0xffffff;
    return(adc);
#endif
}

#ifdef PCB_VER4
// f=1 for power-save mode during sleep
void io::power_save_mode(uint8_t f)
{
    if (f == 1) _reg_ps->write(0); // power save mode for sleep
    else _reg_ps->write(1); // non-power save (high power) mode for normal operation
}
#endif