Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Fork of BSP_DISCO_F746NG by
stm32746g_discovery_audio.c
- Committer:
- maanenson
- Date:
- 2016-09-30
- Revision:
- 3:4e3ffffb40a1
- Parent:
- 2:458ab1edf6b2
File content as of revision 3:4e3ffffb40a1:
/** ****************************************************************************** * @file stm32746g_discovery_audio.c * @author MCD Application Team * @version V1.0.0 * @date 25-June-2015 * @brief This file provides the Audio driver for the STM32746G-Discovery board. @verbatim How To use this driver: ----------------------- + This driver supports STM32F7xx devices on STM32746G-Discovery (MB1191) board. + Call the function BSP_AUDIO_OUT_Init( OutputDevice: physical output mode (OUTPUT_DEVICE_SPEAKER, OUTPUT_DEVICE_HEADPHONE or OUTPUT_DEVICE_BOTH) Volume : Initial volume to be set (0 is min (mute), 100 is max (100%) AudioFreq : Audio frequency in Hz (8000, 16000, 22500, 32000...) this parameter is relative to the audio file/stream type. ) This function configures all the hardware required for the audio application (codec, I2C, SAI, GPIOs, DMA and interrupt if needed). This function returns AUDIO_OK if configuration is OK. If the returned value is different from AUDIO_OK or the function is stuck then the communication with the codec or the MFX has failed (try to un-plug the power or reset device in this case). - OUTPUT_DEVICE_SPEAKER : only speaker will be set as output for the audio stream. - OUTPUT_DEVICE_HEADPHONE: only headphones will be set as output for the audio stream. - OUTPUT_DEVICE_BOTH : both Speaker and Headphone are used as outputs for the audio stream at the same time. Note. On STM32746G-Discovery SAI_DMA is configured in CIRCULAR mode. Due to this the application does NOT need to call BSP_AUDIO_OUT_ChangeBuffer() to assure streaming. + Call the function BSP_DISCOVERY_AUDIO_OUT_Play( pBuffer: pointer to the audio data file address Size : size of the buffer to be sent in Bytes ) to start playing (for the first time) from the audio file/stream. + Call the function BSP_AUDIO_OUT_Pause() to pause playing + Call the function BSP_AUDIO_OUT_Resume() to resume playing. Note. After calling BSP_AUDIO_OUT_Pause() function for pause, only BSP_AUDIO_OUT_Resume() should be called for resume (it is not allowed to call BSP_AUDIO_OUT_Play() in this case). Note. This function should be called only when the audio file is played or paused (not stopped). + For each mode, you may need to implement the relative callback functions into your code. The Callback functions are named AUDIO_OUT_XXX_CallBack() and only their prototypes are declared in the stm32746g_discovery_audio.h file. (refer to the example for more details on the callbacks implementations) + To Stop playing, to modify the volume level, the frequency, the audio frame slot, the device output mode the mute or the stop, use the functions: BSP_AUDIO_OUT_SetVolume(), AUDIO_OUT_SetFrequency(), BSP_AUDIO_OUT_SetAudioFrameSlot(), BSP_AUDIO_OUT_SetOutputMode(), BSP_AUDIO_OUT_SetMute() and BSP_AUDIO_OUT_Stop(). + The driver API and the callback functions are at the end of the stm32746g_discovery_audio.h file. Driver architecture: -------------------- + This driver provides the High Audio Layer: consists of the function API exported in the stm32746g_discovery_audio.h file (BSP_AUDIO_OUT_Init(), BSP_AUDIO_OUT_Play() ...) + This driver provide also the Media Access Layer (MAL): which consists of functions allowing to access the media containing/ providing the audio file/stream. These functions are also included as local functions into the stm32746g_discovery_audio_codec.c file (SAIx_Out_Init() and SAIx_Out_DeInit(), SAIx_In_Init() and SAIx_In_DeInit()) Known Limitations: ------------------ 1- If the TDM Format used to play in parallel 2 audio Stream (the first Stream is configured in codec SLOT0 and second Stream in SLOT1) the Pause/Resume, volume and mute feature will control the both streams. 2- Parsing of audio file is not implemented (in order to determine audio file properties: Mono/Stereo, Data size, File size, Audio Frequency, Audio Data header size ...). The configuration is fixed for the given audio file. 3- Supports only Stereo audio streaming. 4- Supports only 16-bits audio data size. @endverbatim ****************************************************************************** * @attention * * <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2> * * Redistribution and use in source and binary forms, with or without modification, * are permitted provided that the following conditions are met: * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ****************************************************************************** */ /* Includes ------------------------------------------------------------------*/ #include "stm32746g_discovery_audio.h" /** @addtogroup BSP * @{ */ /** @addtogroup STM32746G_DISCOVERY * @{ */ /** @defgroup STM32746G_DISCOVERY_AUDIO STM32746G_DISCOVERY AUDIO * @brief This file includes the low layer driver for wm8994 Audio Codec * available on STM32746G-Discovery board(MB1191). * @{ */ /** @defgroup STM32746G_DISCOVERY_AUDIO_Private_Types STM32746G_DISCOVERY AUDIO Private Types * @{ */ /** * @} */ /** @defgroup STM32746G_DISCOVERY_AUDIO_Private_Defines STM32746G_DISCOVERY AUDIO Private Defines * @{ */ /** * @} */ /** @defgroup STM32746G_DISCOVERY_AUDIO_Private_Macros STM32746G_DISCOVERY AUDIO Private Macros * @{ */ /** * @} */ /** @defgroup STM32746G_DISCOVERY_AUDIO_Private_Variables STM32746G_DISCOVERY AUDIO Private Variables * @{ */ AUDIO_DrvTypeDef *audio_drv; SAI_HandleTypeDef haudio_out_sai={0}; SAI_HandleTypeDef haudio_in_sai={0}; TIM_HandleTypeDef haudio_tim; uint16_t __IO AudioInVolume = DEFAULT_AUDIO_IN_VOLUME; /** * @} */ /** @defgroup STM32746G_DISCOVERY_AUDIO_Private_Function_Prototypes STM32746G_DISCOVERY AUDIO Private Function Prototypes * @{ */ static void AUDIO_IN_INT_IRQHandler(void); static void AUDIO_IN_SAIx_DMAx_IRQHandler(void); static void AUDIO_OUT_SAIx_DMAx_IRQHandler(void); static void SAIx_Out_Init(uint32_t AudioFreq); static void SAIx_Out_DeInit(void); static void SAIx_In_Init(uint32_t SaiOutMode, uint32_t SlotActive, uint32_t AudioFreq); static void SAIx_In_DeInit(void); /** * @} */ /** @defgroup STM32746G_DISCOVERY_AUDIO_OUT_Exported_Functions STM32746G_DISCOVERY AUDIO Out Exported Functions * @{ */ /** * @brief Configures the audio peripherals. * @param OutputDevice: OUTPUT_DEVICE_SPEAKER, OUTPUT_DEVICE_HEADPHONE, * or OUTPUT_DEVICE_BOTH. * @param Volume: Initial volume level (from 0 (Mute) to 100 (Max)) * @param AudioFreq: Audio frequency used to play the audio stream. * @note The I2S PLL input clock must be done in the user application. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_Init(uint16_t OutputDevice, uint8_t Volume, uint32_t AudioFreq) { uint8_t ret = AUDIO_ERROR; uint32_t deviceid = 0x00; /* Disable SAI */ SAIx_Out_DeInit(); /* PLL clock is set depending on the AudioFreq (44.1khz vs 48khz groups) */ BSP_AUDIO_OUT_ClockConfig(&haudio_out_sai, AudioFreq, NULL); /* SAI data transfer preparation: Prepare the Media to be used for the audio transfer from memory to SAI peripheral */ haudio_out_sai.Instance = AUDIO_OUT_SAIx; if(HAL_SAI_GetState(&haudio_out_sai) == HAL_SAI_STATE_RESET) { /* Init the SAI MSP: this __weak function can be redefined by the application*/ BSP_AUDIO_OUT_MspInit(&haudio_out_sai, NULL); } SAIx_Out_Init(AudioFreq); /* wm8994 codec initialization */ deviceid = wm8994_drv.ReadID(AUDIO_I2C_ADDRESS); if((deviceid) == WM8994_ID) { /* Reset the Codec Registers */ wm8994_drv.Reset(AUDIO_I2C_ADDRESS); /* Initialize the audio driver structure */ audio_drv = &wm8994_drv; ret = AUDIO_OK; } else { ret = AUDIO_ERROR; } if(ret == AUDIO_OK) { /* Initialize the codec internal registers */ audio_drv->Init(AUDIO_I2C_ADDRESS, OutputDevice, Volume, AudioFreq); } return ret; } /** * @brief Starts playing audio stream from a data buffer for a determined size. * @param pBuffer: Pointer to the buffer * @param Size: Number of audio data in BYTES unit. * In memory, first element is for left channel, second element is for right channel * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_Play(uint16_t* pBuffer, uint32_t Size) { /* Call the audio Codec Play function */ if(audio_drv->Play(AUDIO_I2C_ADDRESS, pBuffer, Size) != 0) { return AUDIO_ERROR; } else { /* Update the Media layer and enable it for play */ HAL_SAI_Transmit_DMA(&haudio_out_sai, (uint8_t*) pBuffer, DMA_MAX(Size / AUDIODATA_SIZE)); return AUDIO_OK; } } /** * @brief Sends n-Bytes on the SAI interface. * @param pData: pointer on data address * @param Size: number of data to be written * @retval None */ void BSP_AUDIO_OUT_ChangeBuffer(uint16_t *pData, uint16_t Size) { HAL_SAI_Transmit_DMA(&haudio_out_sai, (uint8_t*) pData, Size); } /** * @brief This function Pauses the audio file stream. In case * of using DMA, the DMA Pause feature is used. * @note When calling BSP_AUDIO_OUT_Pause() function for pause, only * BSP_AUDIO_OUT_Resume() function should be called for resume (use of BSP_AUDIO_OUT_Play() * function for resume could lead to unexpected behaviour). * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_Pause(void) { /* Call the Audio Codec Pause/Resume function */ if(audio_drv->Pause(AUDIO_I2C_ADDRESS) != 0) { return AUDIO_ERROR; } else { /* Call the Media layer pause function */ HAL_SAI_DMAPause(&haudio_out_sai); /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief This function Resumes the audio file stream. * @note When calling BSP_AUDIO_OUT_Pause() function for pause, only * BSP_AUDIO_OUT_Resume() function should be called for resume (use of BSP_AUDIO_OUT_Play() * function for resume could lead to unexpected behaviour). * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_Resume(void) { /* Call the Audio Codec Pause/Resume function */ if(audio_drv->Resume(AUDIO_I2C_ADDRESS) != 0) { return AUDIO_ERROR; } else { /* Call the Media layer pause/resume function */ HAL_SAI_DMAResume(&haudio_out_sai); /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Stops audio playing and Power down the Audio Codec. * @param Option: could be one of the following parameters * - CODEC_PDWN_SW: for software power off (by writing registers). * Then no need to reconfigure the Codec after power on. * - CODEC_PDWN_HW: completely shut down the codec (physically). * Then need to reconfigure the Codec after power on. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_Stop(uint32_t Option) { /* Call the Media layer stop function */ HAL_SAI_DMAStop(&haudio_out_sai); /* Call Audio Codec Stop function */ if(audio_drv->Stop(AUDIO_I2C_ADDRESS, Option) != 0) { return AUDIO_ERROR; } else { if(Option == CODEC_PDWN_HW) { /* Wait at least 100us */ HAL_Delay(1); } /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Controls the current audio volume level. * @param Volume: Volume level to be set in percentage from 0% to 100% (0 for * Mute and 100 for Max volume level). * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_SetVolume(uint8_t Volume) { /* Call the codec volume control function with converted volume value */ if(audio_drv->SetVolume(AUDIO_I2C_ADDRESS, Volume) != 0) { return AUDIO_ERROR; } else { /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Enables or disables the MUTE mode by software * @param Cmd: Could be AUDIO_MUTE_ON to mute sound or AUDIO_MUTE_OFF to * unmute the codec and restore previous volume level. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_SetMute(uint32_t Cmd) { /* Call the Codec Mute function */ if(audio_drv->SetMute(AUDIO_I2C_ADDRESS, Cmd) != 0) { return AUDIO_ERROR; } else { /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Switch dynamically (while audio file is played) the output target * (speaker or headphone). * @param Output: The audio output target: OUTPUT_DEVICE_SPEAKER, * OUTPUT_DEVICE_HEADPHONE or OUTPUT_DEVICE_BOTH * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_OUT_SetOutputMode(uint8_t Output) { /* Call the Codec output device function */ if(audio_drv->SetOutputMode(AUDIO_I2C_ADDRESS, Output) != 0) { return AUDIO_ERROR; } else { /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Updates the audio frequency. * @param AudioFreq: Audio frequency used to play the audio stream. * @note This API should be called after the BSP_AUDIO_OUT_Init() to adjust the * audio frequency. * @retval None */ void BSP_AUDIO_OUT_SetFrequency(uint32_t AudioFreq) { /* PLL clock is set depending by the AudioFreq (44.1khz vs 48khz groups) */ BSP_AUDIO_OUT_ClockConfig(&haudio_out_sai, AudioFreq, NULL); /* Disable SAI peripheral to allow access to SAI internal registers */ __HAL_SAI_DISABLE(&haudio_out_sai); /* Update the SAI audio frequency configuration */ haudio_out_sai.Init.AudioFrequency = AudioFreq; HAL_SAI_Init(&haudio_out_sai); /* Enable SAI peripheral to generate MCLK */ __HAL_SAI_ENABLE(&haudio_out_sai); } /** * @brief Updates the Audio frame slot configuration. * @param AudioFrameSlot: specifies the audio Frame slot * This parameter can be one of the following values * @arg CODEC_AUDIOFRAME_SLOT_0123 * @arg CODEC_AUDIOFRAME_SLOT_02 * @arg CODEC_AUDIOFRAME_SLOT_13 * @note This API should be called after the BSP_AUDIO_OUT_Init() to adjust the * audio frame slot. * @retval None */ void BSP_AUDIO_OUT_SetAudioFrameSlot(uint32_t AudioFrameSlot) { /* Disable SAI peripheral to allow access to SAI internal registers */ __HAL_SAI_DISABLE(&haudio_out_sai); /* Update the SAI audio frame slot configuration */ haudio_out_sai.SlotInit.SlotActive = AudioFrameSlot; HAL_SAI_Init(&haudio_out_sai); /* Enable SAI peripheral to generate MCLK */ __HAL_SAI_ENABLE(&haudio_out_sai); } /** * @brief Deinit the audio peripherals. * @retval None */ void BSP_AUDIO_OUT_DeInit(void) { SAIx_Out_DeInit(); /* DeInit the SAI MSP : this __weak function can be rewritten by the application */ BSP_AUDIO_OUT_MspDeInit(&haudio_out_sai, NULL); } /** * @brief Tx Transfer completed callbacks. * @param hsai: SAI handle * @retval None */ void HAL_SAI_TxCpltCallback(SAI_HandleTypeDef *hsai) { /* Manage the remaining file size and new address offset: This function should be coded by user (its prototype is already declared in stm32746g_discovery_audio.h) */ BSP_AUDIO_OUT_TransferComplete_CallBack(); } /** * @brief Tx Half Transfer completed callbacks. * @param hsai: SAI handle * @retval None */ void HAL_SAI_TxHalfCpltCallback(SAI_HandleTypeDef *hsai) { /* Manage the remaining file size and new address offset: This function should be coded by user (its prototype is already declared in stm32746g_discovery_audio.h) */ BSP_AUDIO_OUT_HalfTransfer_CallBack(); } /** * @brief SAI error callbacks. * @param hsai: SAI handle * @retval None */ void HAL_SAI_ErrorCallback(SAI_HandleTypeDef *hsai) { HAL_SAI_StateTypeDef audio_out_state; HAL_SAI_StateTypeDef audio_in_state; audio_out_state = HAL_SAI_GetState(&haudio_out_sai); audio_in_state = HAL_SAI_GetState(&haudio_in_sai); /* Determines if it is an audio out or audio in error */ if ((audio_out_state == HAL_SAI_STATE_BUSY) || (audio_out_state == HAL_SAI_STATE_BUSY_TX) /*|| (audio_out_state == HAL_SAI_STATE_TIMEOUT) || (audio_out_state == HAL_SAI_STATE_ERROR) */ ) { BSP_AUDIO_OUT_Error_CallBack(); } if ((audio_in_state == HAL_SAI_STATE_BUSY) || (audio_in_state == HAL_SAI_STATE_BUSY_RX) /*|| (audio_in_state == HAL_SAI_STATE_TIMEOUT) || (audio_in_state == HAL_SAI_STATE_ERROR)*/ ) { BSP_AUDIO_IN_Error_CallBack(); } } /** * @brief Manages the DMA full Transfer complete event. * @retval None */ __weak void BSP_AUDIO_OUT_TransferComplete_CallBack(void) { } /** * @brief Manages the DMA Half Transfer complete event. * @retval None */ __weak void BSP_AUDIO_OUT_HalfTransfer_CallBack(void) { } /** * @brief Manages the DMA FIFO error event. * @retval None */ __weak void BSP_AUDIO_OUT_Error_CallBack(void) { } /** * @brief Initializes BSP_AUDIO_OUT MSP. * @param hsai: SAI handle * @param Params * @retval None */ __weak void BSP_AUDIO_OUT_MspInit(SAI_HandleTypeDef *hsai, void *Params) { static DMA_HandleTypeDef hdma_sai_tx; GPIO_InitTypeDef gpio_init_structure; /* Enable SAI clock */ AUDIO_OUT_SAIx_CLK_ENABLE(); /* Enable GPIO clock */ AUDIO_OUT_SAIx_MCLK_ENABLE(); AUDIO_OUT_SAIx_SCK_SD_ENABLE(); AUDIO_OUT_SAIx_FS_ENABLE(); /* CODEC_SAI pins configuration: FS, SCK, MCK and SD pins ------------------*/ gpio_init_structure.Pin = AUDIO_OUT_SAIx_FS_PIN; gpio_init_structure.Mode = GPIO_MODE_AF_PP; gpio_init_structure.Pull = GPIO_NOPULL; gpio_init_structure.Speed = GPIO_SPEED_HIGH; gpio_init_structure.Alternate = AUDIO_OUT_SAIx_FS_SD_MCLK_AF; HAL_GPIO_Init(AUDIO_OUT_SAIx_FS_GPIO_PORT, &gpio_init_structure); gpio_init_structure.Pin = AUDIO_OUT_SAIx_SCK_PIN; gpio_init_structure.Mode = GPIO_MODE_AF_PP; gpio_init_structure.Pull = GPIO_NOPULL; gpio_init_structure.Speed = GPIO_SPEED_HIGH; gpio_init_structure.Alternate = AUDIO_OUT_SAIx_SCK_AF; HAL_GPIO_Init(AUDIO_OUT_SAIx_SCK_SD_GPIO_PORT, &gpio_init_structure); gpio_init_structure.Pin = AUDIO_OUT_SAIx_SD_PIN; gpio_init_structure.Mode = GPIO_MODE_AF_PP; gpio_init_structure.Pull = GPIO_NOPULL; gpio_init_structure.Speed = GPIO_SPEED_HIGH; gpio_init_structure.Alternate = AUDIO_OUT_SAIx_FS_SD_MCLK_AF; HAL_GPIO_Init(AUDIO_OUT_SAIx_SCK_SD_GPIO_PORT, &gpio_init_structure); gpio_init_structure.Pin = AUDIO_OUT_SAIx_MCLK_PIN; gpio_init_structure.Mode = GPIO_MODE_AF_PP; gpio_init_structure.Pull = GPIO_NOPULL; gpio_init_structure.Speed = GPIO_SPEED_HIGH; gpio_init_structure.Alternate = AUDIO_OUT_SAIx_FS_SD_MCLK_AF; HAL_GPIO_Init(AUDIO_OUT_SAIx_MCLK_GPIO_PORT, &gpio_init_structure); /* Enable the DMA clock */ AUDIO_OUT_SAIx_DMAx_CLK_ENABLE(); if(hsai->Instance == AUDIO_OUT_SAIx) { /* Configure the hdma_saiTx handle parameters */ hdma_sai_tx.Init.Channel = AUDIO_OUT_SAIx_DMAx_CHANNEL; hdma_sai_tx.Init.Direction = DMA_MEMORY_TO_PERIPH; hdma_sai_tx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_sai_tx.Init.MemInc = DMA_MINC_ENABLE; hdma_sai_tx.Init.PeriphDataAlignment = AUDIO_OUT_SAIx_DMAx_PERIPH_DATA_SIZE; hdma_sai_tx.Init.MemDataAlignment = AUDIO_OUT_SAIx_DMAx_MEM_DATA_SIZE; hdma_sai_tx.Init.Mode = DMA_CIRCULAR; hdma_sai_tx.Init.Priority = DMA_PRIORITY_HIGH; hdma_sai_tx.Init.FIFOMode = DMA_FIFOMODE_ENABLE; hdma_sai_tx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; hdma_sai_tx.Init.MemBurst = DMA_MBURST_SINGLE; hdma_sai_tx.Init.PeriphBurst = DMA_PBURST_SINGLE; hdma_sai_tx.Instance = AUDIO_OUT_SAIx_DMAx_STREAM; /* Associate the DMA handle */ __HAL_LINKDMA(hsai, hdmatx, hdma_sai_tx); /* Deinitialize the Stream for new transfer */ HAL_DMA_DeInit(&hdma_sai_tx); /* Configure the DMA Stream */ HAL_DMA_Init(&hdma_sai_tx); } #if ( __MBED__ == 1) // Enable interrupt IRQn_Type irqn = (IRQn_Type)(AUDIO_OUT_SAIx_DMAx_IRQ); NVIC_ClearPendingIRQ(irqn); NVIC_DisableIRQ(irqn); NVIC_SetPriority(irqn, AUDIO_OUT_IRQ_PREPRIO); NVIC_SetVector(irqn, (uint32_t)AUDIO_OUT_SAIx_DMAx_IRQHandler); NVIC_EnableIRQ(irqn); #else /* SAI DMA IRQ Channel configuration */ HAL_NVIC_SetPriority(AUDIO_OUT_SAIx_DMAx_IRQ, AUDIO_OUT_IRQ_PREPRIO, 0); HAL_NVIC_EnableIRQ(AUDIO_OUT_SAIx_DMAx_IRQ); #endif } /** * @brief Deinitializes SAI MSP. * @param hsai: SAI handle * @param Params * @retval None */ __weak void BSP_AUDIO_OUT_MspDeInit(SAI_HandleTypeDef *hsai, void *Params) { GPIO_InitTypeDef gpio_init_structure; /* SAI DMA IRQ Channel deactivation */ HAL_NVIC_DisableIRQ(AUDIO_OUT_SAIx_DMAx_IRQ); if(hsai->Instance == AUDIO_OUT_SAIx) { /* Deinitialize the DMA stream */ HAL_DMA_DeInit(hsai->hdmatx); } /* Disable SAI peripheral */ __HAL_SAI_DISABLE(hsai); /* Deactives CODEC_SAI pins FS, SCK, MCK and SD by putting them in input mode */ gpio_init_structure.Pin = AUDIO_OUT_SAIx_FS_PIN; HAL_GPIO_DeInit(AUDIO_OUT_SAIx_FS_GPIO_PORT, gpio_init_structure.Pin); gpio_init_structure.Pin = AUDIO_OUT_SAIx_SCK_PIN; HAL_GPIO_DeInit(AUDIO_OUT_SAIx_SCK_SD_GPIO_PORT, gpio_init_structure.Pin); gpio_init_structure.Pin = AUDIO_OUT_SAIx_SD_PIN; HAL_GPIO_DeInit(AUDIO_OUT_SAIx_SCK_SD_GPIO_PORT, gpio_init_structure.Pin); gpio_init_structure.Pin = AUDIO_OUT_SAIx_MCLK_PIN; HAL_GPIO_DeInit(AUDIO_OUT_SAIx_MCLK_GPIO_PORT, gpio_init_structure.Pin); /* Disable SAI clock */ AUDIO_OUT_SAIx_CLK_DISABLE(); /* GPIO pins clock and DMA clock can be shut down in the application by surcharging this __weak function */ } /** * @brief Clock Config. * @param hsai: might be required to set audio peripheral predivider if any. * @param AudioFreq: Audio frequency used to play the audio stream. * @param Params * @note This API is called by BSP_AUDIO_OUT_Init() and BSP_AUDIO_OUT_SetFrequency() * Being __weak it can be overwritten by the application * @retval None */ __weak void BSP_AUDIO_OUT_ClockConfig(SAI_HandleTypeDef *hsai, uint32_t AudioFreq, void *Params) { RCC_PeriphCLKInitTypeDef rcc_ex_clk_init_struct; HAL_RCCEx_GetPeriphCLKConfig(&rcc_ex_clk_init_struct); /* Set the PLL configuration according to the audio frequency */ if((AudioFreq == AUDIO_FREQUENCY_11K) || (AudioFreq == AUDIO_FREQUENCY_22K) || (AudioFreq == AUDIO_FREQUENCY_44K)) { /* Configure PLLI2S prescalers */ /* PLLI2S_VCO: VCO_429M I2S_CLK(first level) = PLLI2S_VCO/PLLI2SQ = 429/2 = 214.5 Mhz I2S_CLK_x = I2S_CLK(first level)/PLLI2SDIVQ = 214.5/19 = 11.289 Mhz */ rcc_ex_clk_init_struct.PeriphClockSelection = RCC_PERIPHCLK_SAI2; rcc_ex_clk_init_struct.Sai2ClockSelection = RCC_SAI2CLKSOURCE_PLLI2S; rcc_ex_clk_init_struct.PLLI2S.PLLI2SN = 429; rcc_ex_clk_init_struct.PLLI2S.PLLI2SQ = 2; rcc_ex_clk_init_struct.PLLI2SDivQ = 19; HAL_RCCEx_PeriphCLKConfig(&rcc_ex_clk_init_struct); } else /* AUDIO_FREQUENCY_8K, AUDIO_FREQUENCY_16K, AUDIO_FREQUENCY_48K), AUDIO_FREQUENCY_96K */ { /* I2S clock config PLLI2S_VCO: VCO_344M I2S_CLK(first level) = PLLI2S_VCO/PLLI2SQ = 344/7 = 49.142 Mhz I2S_CLK_x = I2S_CLK(first level)/PLLI2SDIVQ = 49.142/1 = 49.142 Mhz */ rcc_ex_clk_init_struct.PeriphClockSelection = RCC_PERIPHCLK_SAI2; rcc_ex_clk_init_struct.Sai2ClockSelection = RCC_SAI2CLKSOURCE_PLLI2S; rcc_ex_clk_init_struct.PLLI2S.PLLI2SN = 344; rcc_ex_clk_init_struct.PLLI2S.PLLI2SQ = 7; rcc_ex_clk_init_struct.PLLI2SDivQ = 1; HAL_RCCEx_PeriphCLKConfig(&rcc_ex_clk_init_struct); } } /******************************************************************************* Static Functions *******************************************************************************/ /** * @brief Initializes the output Audio Codec audio interface (SAI). * @param AudioFreq: Audio frequency to be configured for the SAI peripheral. * @note The default SlotActive configuration is set to CODEC_AUDIOFRAME_SLOT_0123 * and user can update this configuration using * @retval None */ static void SAIx_Out_Init(uint32_t AudioFreq) { /* Initialize the haudio_out_sai Instance parameter */ haudio_out_sai.Instance = AUDIO_OUT_SAIx; /* Disable SAI peripheral to allow access to SAI internal registers */ __HAL_SAI_DISABLE(&haudio_out_sai); /* Configure SAI_Block_x LSBFirst: Disabled DataSize: 16 */ haudio_out_sai.Init.AudioFrequency = AudioFreq; haudio_out_sai.Init.AudioMode = SAI_MODEMASTER_TX; haudio_out_sai.Init.NoDivider = SAI_MASTERDIVIDER_ENABLED; haudio_out_sai.Init.Protocol = SAI_FREE_PROTOCOL; haudio_out_sai.Init.DataSize = SAI_DATASIZE_16; haudio_out_sai.Init.FirstBit = SAI_FIRSTBIT_MSB; haudio_out_sai.Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE; haudio_out_sai.Init.Synchro = SAI_ASYNCHRONOUS; haudio_out_sai.Init.OutputDrive = SAI_OUTPUTDRIVE_ENABLED; haudio_out_sai.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_1QF; /* Configure SAI_Block_x Frame Frame Length: 64 Frame active Length: 32 FS Definition: Start frame + Channel Side identification FS Polarity: FS active Low FS Offset: FS asserted one bit before the first bit of slot 0 */ haudio_out_sai.FrameInit.FrameLength = 64; haudio_out_sai.FrameInit.ActiveFrameLength = 32; haudio_out_sai.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION; haudio_out_sai.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW; haudio_out_sai.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT; /* Configure SAI Block_x Slot Slot First Bit Offset: 0 Slot Size : 16 Slot Number: 4 Slot Active: All slot actives */ haudio_out_sai.SlotInit.FirstBitOffset = 0; haudio_out_sai.SlotInit.SlotSize = SAI_SLOTSIZE_DATASIZE; haudio_out_sai.SlotInit.SlotNumber = 4; haudio_out_sai.SlotInit.SlotActive = CODEC_AUDIOFRAME_SLOT_0123; HAL_SAI_Init(&haudio_out_sai); /* Enable SAI peripheral to generate MCLK */ __HAL_SAI_ENABLE(&haudio_out_sai); } /** * @brief Deinitializes the output Audio Codec audio interface (SAI). * @retval None */ static void SAIx_Out_DeInit(void) { /* Initialize the haudio_out_sai Instance parameter */ haudio_out_sai.Instance = AUDIO_OUT_SAIx; /* Disable SAI peripheral */ __HAL_SAI_DISABLE(&haudio_out_sai); HAL_SAI_DeInit(&haudio_out_sai); } /** * @} */ /** @defgroup STM32746G_DISCOVERY_AUDIO_Out_Private_Functions STM32746G_DISCOVERY_AUDIO Out Private Functions * @{ */ /** * @brief Initializes wave recording. * @param InputDevice: INPUT_DEVICE_DIGITAL_MICROPHONE_2 or INPUT_DEVICE_INPUT_LINE_1 * @param Volume: Initial volume level (in range 0(Mute)..80(+0dB)..100(+17.625dB)) * @param AudioFreq: Audio frequency to be configured for the SAI peripheral. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_Init(uint16_t InputDevice, uint8_t Volume, uint32_t AudioFreq) { uint8_t ret = AUDIO_ERROR; uint32_t deviceid = 0x00; uint32_t slot_active; if ((InputDevice != INPUT_DEVICE_INPUT_LINE_1) && /* Only INPUT_LINE_1 and MICROPHONE_2 inputs supported */ (InputDevice != INPUT_DEVICE_DIGITAL_MICROPHONE_2)) { ret = AUDIO_ERROR; } else { /* Disable SAI */ SAIx_In_DeInit(); /* PLL clock is set depending on the AudioFreq (44.1khz vs 48khz groups) */ BSP_AUDIO_OUT_ClockConfig(&haudio_in_sai, AudioFreq, NULL); /* Clock config is shared between AUDIO IN and OUT */ /* SAI data transfer preparation: Prepare the Media to be used for the audio transfer from SAI peripheral to memory */ haudio_in_sai.Instance = AUDIO_IN_SAIx; if(HAL_SAI_GetState(&haudio_in_sai) == HAL_SAI_STATE_RESET) { /* Init the SAI MSP: this __weak function can be redefined by the application*/ BSP_AUDIO_OUT_MspInit(&haudio_in_sai, NULL); /* Initialize GPIOs for SAI2 block A Master signals */ BSP_AUDIO_IN_MspInit(&haudio_in_sai, NULL); } /* Configure SAI in master RX mode : * - SAI2_block_A in master RX mode * - SAI2_block_B in slave RX mode synchronous from SAI2_block_A */ if (InputDevice == INPUT_DEVICE_DIGITAL_MICROPHONE_2) { slot_active = CODEC_AUDIOFRAME_SLOT_13; } else { slot_active = CODEC_AUDIOFRAME_SLOT_02; } SAIx_In_Init(SAI_MODEMASTER_RX, slot_active, AudioFreq); /* wm8994 codec initialization */ deviceid = wm8994_drv.ReadID(AUDIO_I2C_ADDRESS); if((deviceid) == WM8994_ID) { /* Reset the Codec Registers */ wm8994_drv.Reset(AUDIO_I2C_ADDRESS); /* Initialize the audio driver structure */ audio_drv = &wm8994_drv; ret = AUDIO_OK; } else { ret = AUDIO_ERROR; } if(ret == AUDIO_OK) { /* Initialize the codec internal registers */ audio_drv->Init(AUDIO_I2C_ADDRESS, InputDevice, Volume, AudioFreq); } } return ret; } /** * @brief Initializes wave recording and playback in parallel. * @param InputDevice: INPUT_DEVICE_DIGITAL_MICROPHONE_2 * @param OutputDevice: OUTPUT_DEVICE_SPEAKER, OUTPUT_DEVICE_HEADPHONE, * or OUTPUT_DEVICE_BOTH. * @param Volume: Initial volume level (in range 0(Mute)..80(+0dB)..100(+17.625dB)) * @param AudioFreq: Audio frequency to be configured for the SAI peripheral. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_OUT_Init(uint16_t InputDevice, uint16_t OutputDevice, uint8_t Volume, uint32_t AudioFreq) { uint8_t ret = AUDIO_ERROR; uint32_t deviceid = 0x00; uint32_t slot_active; if (InputDevice != INPUT_DEVICE_DIGITAL_MICROPHONE_2) /* Only MICROPHONE_2 input supported */ { ret = AUDIO_ERROR; } else { /* Disable SAI */ SAIx_In_DeInit(); SAIx_Out_DeInit(); /* PLL clock is set depending on the AudioFreq (44.1khz vs 48khz groups) */ BSP_AUDIO_OUT_ClockConfig(&haudio_in_sai, AudioFreq, NULL); /* Clock config is shared between AUDIO IN and OUT */ /* SAI data transfer preparation: Prepare the Media to be used for the audio transfer from SAI peripheral to memory */ haudio_in_sai.Instance = AUDIO_IN_SAIx; if(HAL_SAI_GetState(&haudio_in_sai) == HAL_SAI_STATE_RESET) { /* Init the SAI MSP: this __weak function can be redefined by the application*/ BSP_AUDIO_IN_MspInit(&haudio_in_sai, NULL); } /* SAI data transfer preparation: Prepare the Media to be used for the audio transfer from memory to SAI peripheral */ haudio_out_sai.Instance = AUDIO_OUT_SAIx; if(HAL_SAI_GetState(&haudio_out_sai) == HAL_SAI_STATE_RESET) { /* Init the SAI MSP: this __weak function can be redefined by the application*/ BSP_AUDIO_OUT_MspInit(&haudio_out_sai, NULL); } /* Configure SAI in master mode : * - SAI2_block_A in master TX mode * - SAI2_block_B in slave RX mode synchronous from SAI2_block_A */ if (InputDevice == INPUT_DEVICE_DIGITAL_MICROPHONE_2) { slot_active = CODEC_AUDIOFRAME_SLOT_13; } else { slot_active = CODEC_AUDIOFRAME_SLOT_02; } SAIx_In_Init(SAI_MODEMASTER_TX, slot_active, AudioFreq); /* wm8994 codec initialization */ deviceid = wm8994_drv.ReadID(AUDIO_I2C_ADDRESS); if((deviceid) == WM8994_ID) { /* Reset the Codec Registers */ wm8994_drv.Reset(AUDIO_I2C_ADDRESS); /* Initialize the audio driver structure */ audio_drv = &wm8994_drv; ret = AUDIO_OK; } else { ret = AUDIO_ERROR; } if(ret == AUDIO_OK) { /* Initialize the codec internal registers */ audio_drv->Init(AUDIO_I2C_ADDRESS, InputDevice | OutputDevice, Volume, AudioFreq); } } return ret; } /** * @brief Starts audio recording. * @param pbuf: Main buffer pointer for the recorded data storing * @param size: size of the recorded buffer in number of elements (typically number of half-words) * Be careful that it is not the same unit than BSP_AUDIO_OUT_Play function * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_Record(uint16_t* pbuf, uint32_t size) { uint32_t ret = AUDIO_ERROR; /* Start the process receive DMA */ HAL_SAI_Receive_DMA(&haudio_in_sai, (uint8_t*)pbuf, size); /* Return AUDIO_OK when all operations are correctly done */ ret = AUDIO_OK; return ret; } /** * @brief Stops audio recording. * @param Option: could be one of the following parameters * - CODEC_PDWN_SW: for software power off (by writing registers). * Then no need to reconfigure the Codec after power on. * - CODEC_PDWN_HW: completely shut down the codec (physically). * Then need to reconfigure the Codec after power on. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_Stop(uint32_t Option) { /* Call the Media layer stop function */ HAL_SAI_DMAStop(&haudio_in_sai); /* Call Audio Codec Stop function */ if(audio_drv->Stop(AUDIO_I2C_ADDRESS, Option) != 0) { return AUDIO_ERROR; } else { if(Option == CODEC_PDWN_HW) { /* Wait at least 100us */ HAL_Delay(1); } /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Pauses the audio file stream. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_Pause(void) { /* Call the Media layer pause function */ HAL_SAI_DMAPause(&haudio_in_sai); /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } /** * @brief Resumes the audio file stream. * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_Resume(void) { /* Call the Media layer pause/resume function */ HAL_SAI_DMAResume(&haudio_in_sai); /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } /** * @brief Controls the audio in volume level. * @param Volume: Volume level in range 0(Mute)..80(+0dB)..100(+17.625dB) * @retval AUDIO_OK if correct communication, else wrong communication */ uint8_t BSP_AUDIO_IN_SetVolume(uint8_t Volume) { /* Call the codec volume control function with converted volume value */ if(audio_drv->SetVolume(AUDIO_I2C_ADDRESS, Volume) != 0) { return AUDIO_ERROR; } else { /* Set the Global variable AudioInVolume */ AudioInVolume = Volume; /* Return AUDIO_OK when all operations are correctly done */ return AUDIO_OK; } } /** * @brief Deinit the audio IN peripherals. * @retval None */ void BSP_AUDIO_IN_DeInit(void) { SAIx_In_DeInit(); /* DeInit the SAI MSP : this __weak function can be rewritten by the application */ BSP_AUDIO_IN_MspDeInit(&haudio_in_sai, NULL); } /** * @brief Rx Transfer completed callbacks. * @param hsai: SAI handle * @retval None */ void HAL_SAI_RxCpltCallback(SAI_HandleTypeDef *hsai) { /* Call the record update function to get the next buffer to fill and its size (size is ignored) */ BSP_AUDIO_IN_TransferComplete_CallBack(); } /** * @brief Rx Half Transfer completed callbacks. * @param hsai: SAI handle * @retval None */ void HAL_SAI_RxHalfCpltCallback(SAI_HandleTypeDef *hsai) { /* Manage the remaining file size and new address offset: This function should be coded by user (its prototype is already declared in stm32746g_discovery_audio.h) */ BSP_AUDIO_IN_HalfTransfer_CallBack(); } /** * @brief User callback when record buffer is filled. * @retval None */ __weak void BSP_AUDIO_IN_TransferComplete_CallBack(void) { /* This function should be implemented by the user application. It is called into this driver when the current buffer is filled to prepare the next buffer pointer and its size. */ } /** * @brief Manages the DMA Half Transfer complete event. * @retval None */ __weak void BSP_AUDIO_IN_HalfTransfer_CallBack(void) { /* This function should be implemented by the user application. It is called into this driver when the current buffer is filled to prepare the next buffer pointer and its size. */ } /** * @brief Audio IN Error callback function. * @retval None */ __weak void BSP_AUDIO_IN_Error_CallBack(void) { /* This function is called when an Interrupt due to transfer error on or peripheral error occurs. */ } /** * @brief Initializes BSP_AUDIO_IN MSP. * @param hsai: SAI handle * @param Params * @retval None */ __weak void BSP_AUDIO_IN_MspInit(SAI_HandleTypeDef *hsai, void *Params) { static DMA_HandleTypeDef hdma_sai_rx; GPIO_InitTypeDef gpio_init_structure; /* Enable SAI clock */ AUDIO_IN_SAIx_CLK_ENABLE(); /* Enable SD GPIO clock */ AUDIO_IN_SAIx_SD_ENABLE(); /* CODEC_SAI pin configuration: SD pin */ gpio_init_structure.Pin = AUDIO_IN_SAIx_SD_PIN; gpio_init_structure.Mode = GPIO_MODE_AF_PP; gpio_init_structure.Pull = GPIO_NOPULL; gpio_init_structure.Speed = GPIO_SPEED_FAST; gpio_init_structure.Alternate = AUDIO_IN_SAIx_SD_AF; HAL_GPIO_Init(AUDIO_IN_SAIx_SD_GPIO_PORT, &gpio_init_structure); /* Enable Audio INT GPIO clock */ AUDIO_IN_INT_GPIO_ENABLE(); /* Audio INT pin configuration: input */ gpio_init_structure.Pin = AUDIO_IN_INT_GPIO_PIN; gpio_init_structure.Mode = GPIO_MODE_INPUT; gpio_init_structure.Pull = GPIO_NOPULL; gpio_init_structure.Speed = GPIO_SPEED_FAST; HAL_GPIO_Init(AUDIO_IN_INT_GPIO_PORT, &gpio_init_structure); /* Enable the DMA clock */ AUDIO_IN_SAIx_DMAx_CLK_ENABLE(); if(hsai->Instance == AUDIO_IN_SAIx) { /* Configure the hdma_sai_rx handle parameters */ hdma_sai_rx.Init.Channel = AUDIO_IN_SAIx_DMAx_CHANNEL; hdma_sai_rx.Init.Direction = DMA_PERIPH_TO_MEMORY; hdma_sai_rx.Init.PeriphInc = DMA_PINC_DISABLE; hdma_sai_rx.Init.MemInc = DMA_MINC_ENABLE; hdma_sai_rx.Init.PeriphDataAlignment = AUDIO_IN_SAIx_DMAx_PERIPH_DATA_SIZE; hdma_sai_rx.Init.MemDataAlignment = AUDIO_IN_SAIx_DMAx_MEM_DATA_SIZE; hdma_sai_rx.Init.Mode = DMA_CIRCULAR; hdma_sai_rx.Init.Priority = DMA_PRIORITY_HIGH; hdma_sai_rx.Init.FIFOMode = DMA_FIFOMODE_DISABLE; hdma_sai_rx.Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL; hdma_sai_rx.Init.MemBurst = DMA_MBURST_SINGLE; hdma_sai_rx.Init.PeriphBurst = DMA_MBURST_SINGLE; hdma_sai_rx.Instance = AUDIO_IN_SAIx_DMAx_STREAM; /* Associate the DMA handle */ __HAL_LINKDMA(hsai, hdmarx, hdma_sai_rx); /* Deinitialize the Stream for new transfer */ HAL_DMA_DeInit(&hdma_sai_rx); /* Configure the DMA Stream */ HAL_DMA_Init(&hdma_sai_rx); } /* SAI DMA IRQ Channel configuration */ #if ( __MBED__ == 1) IRQn_Type irqn = (IRQn_Type)(AUDIO_IN_SAIx_DMAx_IRQ); NVIC_ClearPendingIRQ(irqn); NVIC_DisableIRQ(irqn); NVIC_SetPriority(irqn, AUDIO_IN_IRQ_PREPRIO); NVIC_SetVector(irqn, (uint32_t)AUDIO_IN_SAIx_DMAx_IRQHandler); NVIC_EnableIRQ(irqn); #else HAL_NVIC_SetPriority(AUDIO_IN_SAIx_DMAx_IRQ, AUDIO_IN_IRQ_PREPRIO, 0); HAL_NVIC_EnableIRQ(AUDIO_IN_SAIx_DMAx_IRQ); #endif /* Audio INT IRQ Channel configuration */ #if ( __MBED__ == 1) irqn = (IRQn_Type)(AUDIO_IN_INT_IRQ); NVIC_ClearPendingIRQ(irqn); NVIC_DisableIRQ(irqn); NVIC_SetPriority(irqn, AUDIO_IN_IRQ_PREPRIO); NVIC_SetVector(irqn, (uint32_t)AUDIO_IN_INT_IRQHandler); NVIC_EnableIRQ(irqn); #else HAL_NVIC_SetPriority(AUDIO_IN_INT_IRQ, AUDIO_IN_IRQ_PREPRIO, 0); HAL_NVIC_EnableIRQ(AUDIO_IN_INT_IRQ); #endif } /** * @brief DeInitializes BSP_AUDIO_IN MSP. * @param hsai: SAI handle * @param Params * @retval None */ __weak void BSP_AUDIO_IN_MspDeInit(SAI_HandleTypeDef *hsai, void *Params) { GPIO_InitTypeDef gpio_init_structure; static DMA_HandleTypeDef hdma_sai_rx; /* SAI IN DMA IRQ Channel deactivation */ HAL_NVIC_DisableIRQ(AUDIO_IN_SAIx_DMAx_IRQ); if(hsai->Instance == AUDIO_IN_SAIx) { /* Deinitialize the Stream for new transfer */ HAL_DMA_DeInit(&hdma_sai_rx); } /* Disable SAI block */ __HAL_SAI_DISABLE(hsai); /* Disable pin: SD pin */ gpio_init_structure.Pin = AUDIO_IN_SAIx_SD_PIN; HAL_GPIO_DeInit(AUDIO_IN_SAIx_SD_GPIO_PORT, gpio_init_structure.Pin); /* Disable SAI clock */ AUDIO_IN_SAIx_CLK_DISABLE(); /* GPIO pins clock and DMA clock can be shut down in the application by surcharging this __weak function */ } /******************************************************************************* Static Functions *******************************************************************************/ /** * @brief Initializes the input Audio Codec audio interface (SAI). * @param SaiOutMode: SAI_MODEMASTER_TX (for record and playback in parallel) * or SAI_MODEMASTER_RX (for record only). * @param SlotActive: CODEC_AUDIOFRAME_SLOT_02 or CODEC_AUDIOFRAME_SLOT_13 * @param AudioFreq: Audio frequency to be configured for the SAI peripheral. * @retval None */ static void SAIx_In_Init(uint32_t SaiOutMode, uint32_t SlotActive, uint32_t AudioFreq) { /* Initialize SAI2 block A in MASTER RX */ /* Initialize the haudio_out_sai Instance parameter */ haudio_out_sai.Instance = AUDIO_OUT_SAIx; /* Disable SAI peripheral to allow access to SAI internal registers */ __HAL_SAI_DISABLE(&haudio_out_sai); /* Configure SAI_Block_x LSBFirst: Disabled DataSize: 16 */ haudio_out_sai.Init.AudioFrequency = AudioFreq; haudio_out_sai.Init.AudioMode = SaiOutMode; haudio_out_sai.Init.NoDivider = SAI_MASTERDIVIDER_ENABLED; haudio_out_sai.Init.Protocol = SAI_FREE_PROTOCOL; haudio_out_sai.Init.DataSize = SAI_DATASIZE_16; haudio_out_sai.Init.FirstBit = SAI_FIRSTBIT_MSB; haudio_out_sai.Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE; haudio_out_sai.Init.Synchro = SAI_ASYNCHRONOUS; haudio_out_sai.Init.OutputDrive = SAI_OUTPUTDRIVE_ENABLED; haudio_out_sai.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_1QF; /* Configure SAI_Block_x Frame Frame Length: 64 Frame active Length: 32 FS Definition: Start frame + Channel Side identification FS Polarity: FS active Low FS Offset: FS asserted one bit before the first bit of slot 0 */ haudio_out_sai.FrameInit.FrameLength = 64; haudio_out_sai.FrameInit.ActiveFrameLength = 32; haudio_out_sai.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION; haudio_out_sai.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW; haudio_out_sai.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT; /* Configure SAI Block_x Slot Slot First Bit Offset: 0 Slot Size : 16 Slot Number: 4 Slot Active: All slot actives */ haudio_out_sai.SlotInit.FirstBitOffset = 0; haudio_out_sai.SlotInit.SlotSize = SAI_SLOTSIZE_DATASIZE; haudio_out_sai.SlotInit.SlotNumber = 4; haudio_out_sai.SlotInit.SlotActive = SlotActive; HAL_SAI_Init(&haudio_out_sai); /* Initialize SAI2 block B in SLAVE RX synchronous from SAI2 block A */ /* Initialize the haudio_in_sai Instance parameter */ haudio_in_sai.Instance = AUDIO_IN_SAIx; /* Disable SAI peripheral to allow access to SAI internal registers */ __HAL_SAI_DISABLE(&haudio_in_sai); /* Configure SAI_Block_x LSBFirst: Disabled DataSize: 16 */ haudio_in_sai.Init.AudioFrequency = AudioFreq; haudio_in_sai.Init.AudioMode = SAI_MODESLAVE_RX; haudio_in_sai.Init.NoDivider = SAI_MASTERDIVIDER_ENABLED; haudio_in_sai.Init.Protocol = SAI_FREE_PROTOCOL; haudio_in_sai.Init.DataSize = SAI_DATASIZE_16; haudio_in_sai.Init.FirstBit = SAI_FIRSTBIT_MSB; haudio_in_sai.Init.ClockStrobing = SAI_CLOCKSTROBING_RISINGEDGE; haudio_in_sai.Init.Synchro = SAI_SYNCHRONOUS; haudio_in_sai.Init.OutputDrive = SAI_OUTPUTDRIVE_DISABLED; haudio_in_sai.Init.FIFOThreshold = SAI_FIFOTHRESHOLD_1QF; /* Configure SAI_Block_x Frame Frame Length: 64 Frame active Length: 32 FS Definition: Start frame + Channel Side identification FS Polarity: FS active Low FS Offset: FS asserted one bit before the first bit of slot 0 */ haudio_in_sai.FrameInit.FrameLength = 64; haudio_in_sai.FrameInit.ActiveFrameLength = 32; haudio_in_sai.FrameInit.FSDefinition = SAI_FS_CHANNEL_IDENTIFICATION; haudio_in_sai.FrameInit.FSPolarity = SAI_FS_ACTIVE_LOW; haudio_in_sai.FrameInit.FSOffset = SAI_FS_BEFOREFIRSTBIT; /* Configure SAI Block_x Slot Slot First Bit Offset: 0 Slot Size : 16 Slot Number: 4 Slot Active: All slot active */ haudio_in_sai.SlotInit.FirstBitOffset = 0; haudio_in_sai.SlotInit.SlotSize = SAI_SLOTSIZE_DATASIZE; haudio_in_sai.SlotInit.SlotNumber = 4; haudio_in_sai.SlotInit.SlotActive = SlotActive; HAL_SAI_Init(&haudio_in_sai); /* Enable SAI peripheral to generate MCLK */ __HAL_SAI_ENABLE(&haudio_out_sai); /* Enable SAI peripheral */ __HAL_SAI_ENABLE(&haudio_in_sai); } /** * @brief Deinitializes the output Audio Codec audio interface (SAI). * @retval None */ static void SAIx_In_DeInit(void) { /* Initialize the haudio_in_sai Instance parameter */ haudio_in_sai.Instance = AUDIO_IN_SAIx; /* Disable SAI peripheral */ __HAL_SAI_DISABLE(&haudio_in_sai); HAL_SAI_DeInit(&haudio_in_sai); } /** * @brief This function handles External line 15_10 interrupt request. * @param None * @retval None */ static void AUDIO_IN_INT_IRQHandler(void) { /* Interrupt handler shared between SD_DETECT pin, USER_KEY button and touch screen interrupt */ if (__HAL_GPIO_EXTI_GET_IT(AUDIO_IN_INT_GPIO_PIN) != RESET) { HAL_GPIO_EXTI_IRQHandler(AUDIO_IN_INT_GPIO_PIN); /* Audio Interrupt */ } } /** * @brief This function handles DMA2 Stream 7 interrupt request. * @param None * @retval None */ static void AUDIO_IN_SAIx_DMAx_IRQHandler(void) { HAL_DMA_IRQHandler(haudio_in_sai.hdmarx); } /** * @brief This function handles DMA2 Stream 6 interrupt request. * @param None * @retval None */ static void AUDIO_OUT_SAIx_DMAx_IRQHandler(void) { HAL_DMA_IRQHandler(haudio_out_sai.hdmatx); } /** * @} */ /** * @} */ /** * @} */ /** * @} */ /************************ (C) COPYRIGHT STMicroelectronics *****END OF FILE****/