Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
MAX30001/MAX30001.cpp
- Committer:
- lucaslwl
- Date:
- 2019-08-26
- Revision:
- 22:5c07298d3383
File content as of revision 22:5c07298d3383:
///******************************************************************************* // * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. // * // * Permission is hereby granted, free of charge, to any person obtaining a // * copy of this software and associated documentation files (the "Software"), // * to deal in the Software without restriction, including without limitation // * the rights to use, copy, modify, merge, publish, distribute, sublicense, // * and/or sell copies of the Software, and to permit persons to whom the // * Software is furnished to do so, subject to the following conditions: // * // * The above copyright notice and this permission notice shall be included // * in all copies or substantial portions of the Software. // * // * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. // * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES // * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, // * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR // * OTHER DEALINGS IN THE SOFTWARE. // * // * Except as contained in this notice, the name of Maxim Integrated // * Products, Inc. shall not be used except as stated in the Maxim Integrated // * Products, Inc. Branding Policy. // * // * The mere transfer of this software does not imply any licenses // * of trade secrets, proprietary technology, copyrights, patents, // * trademarks, maskwork rights, or any other form of intellectual // * property whatsoever. Maxim Integrated Products, Inc. retains all // * ownership rights. // ******************************************************************************* // */ // //#include "mbed.h" //#include "MAX30001.h" //#include "pwrseq_regs.h" // //MAX30001 *MAX30001::instance = NULL; // ////****************************************************************************** //MAX30001::MAX30001(PinName mosi, PinName miso, PinName sclk, PinName cs) { // spi = new SPI(mosi, miso, sclk, cs); // spi->frequency(3000000); // spi_owner = true; // functionpointer.attach(&spiHandler); // onDataAvailableCallback = NULL; // xferFlag = 0; // instance = this; //} // ////****************************************************************************** //MAX30001::MAX30001(SPI *_spi) { // spi = _spi; // spi->frequency(3000000); // spi_owner = false; // functionpointer.attach(&spiHandler); // onDataAvailableCallback = NULL; // xferFlag = 0; // instance = this; //} // ////****************************************************************************** //MAX30001::~MAX30001(void) { // if (spi_owner) { // delete spi; // } //} // ////****************************************************************************** //void MAX30001::FCLK_MaximOnly(void){ // // // Use RTC crystal clock for MAX30001 FCLK ///* // mxc_pwrseq_reg0_t pwr_reg0; // mxc_pwrseq_reg4_t pwr_reg4; // // // Set the port pin connected to the MAX30001 FCLK pin as an output // GPIO_SetOutMode(MAX30001_INT_PORT_FCLK, MAX30001_INT_PIN_FCLK, MXC_E_GPIO_OUT_MODE_NORMAL); // // // Enable Real Time Clock in Run and Sleep modes // pwr_reg0 = MXC_PWRSEQ->reg0_f; // pwr_reg0.pwr_rtcen_run = 1; // pwr_reg0.pwr_rtcen_slp = 1; // MXC_PWRSEQ->reg0_f = pwr_reg0; // // // Enable the RTC clock output path on P1.7 // pwr_reg4 = MXC_PWRSEQ->reg4_f; // pwr_reg4.pwr_pseq_32k_en = 1; // MXC_PWRSEQ->reg4_f = pwr_reg4; //*/ // // #define PORT_FCLK 1 // #define PIN_FCLK 7 // // // Set the Port pin connected to the MAX30001 FCLK pin as an output // uint32_t temp = MXC_GPIO->out_mode[PORT_FCLK]; // Port 1 // // // temp = (temp & ~(0xF << (pin * 4))) | (val << (pin * 4)); // /* pin 7 */ /* NORMAL MODE */ // temp = (temp & ~(0xF << (PIN_FCLK * 4))) | (MXC_V_GPIO_OUT_MODE_NORMAL << (PIN_FCLK * 4)); // // //// temp = (temp & ~(0xF << (7 * 4))) | (5 << (7 * 4)); // // MXC_GPIO->out_mode[PORT_FCLK] = temp; // // // // Enable Real Time Clock in Run and Sleep Modes // MXC_PWRSEQ->reg0 = MXC_PWRSEQ->reg0 | MXC_F_PWRSEQ_REG0_PWR_RTCEN_RUN | MXC_F_PWRSEQ_REG0_PWR_RTCEN_SLP; // // // Enable the RTC clock output path on P1.7 // MXC_PWRSEQ->reg4 = MXC_PWRSEQ->reg4 | MXC_F_PWRSEQ_REG4_PWR_PSEQ_32K_EN; // //} // // ////****************************************************************************** //int MAX30001::Rbias_FMSTR_Init(uint8_t En_rbias, uint8_t Rbiasv, // uint8_t Rbiasp, uint8_t Rbiasn, // uint8_t Fmstr) { // // max30001_cnfg_gen_t cnfg_gen; // // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_rbias = En_rbias; // cnfg_gen.bit.rbiasv = Rbiasv; // cnfg_gen.bit.rbiasp = Rbiasp; // cnfg_gen.bit.rbiasn = Rbiasn; // cnfg_gen.bit.fmstr = Fmstr; // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // return 0; //} // ////****************************************************************************** //int MAX30001::CAL_InitStart(uint8_t En_Vcal, uint8_t Vmode, // uint8_t Vmag, uint8_t Fcal, uint16_t Thigh, // uint8_t Fifty) { // // max30001_cnfg_cal_t cnfg_cal; // // ///< CNFG_CAL // if (reg_read(CNFG_CAL, &cnfg_cal.all) == -1) { // return -1; // } // // cnfg_cal.bit.vmode = Vmode; // cnfg_cal.bit.vmag = Vmag; // cnfg_cal.bit.fcal = Fcal; // cnfg_cal.bit.thigh = Thigh; // cnfg_cal.bit.fifty = Fifty; // // if (reg_write(CNFG_CAL, cnfg_cal.all) == -1) { // return -1; // } // // /// @brief RTOS uses a 32768HZ clock. 32768ticks represents 1secs. 1sec/10 = // /// 100msecs. // wait(1.0 / 10.0); // // if (reg_read(CNFG_CAL, &cnfg_cal.all) == -1) { // return -1; // } // // cnfg_cal.bit.en_vcal = En_Vcal; // // if (reg_write(CNFG_CAL, cnfg_cal.all) == -1) { // return -1; // } // // /// @brief RTOS uses a 32768HZ clock. 32768ticks represents 1secs. 1sec/10 = // /// 100msecs. // wait(1.0 / 10.0); // // return 0; //} // ////****************************************************************************** //int MAX30001::CAL_Stop(void) { // // max30001_cnfg_cal_t cnfg_cal; // // if (reg_read(CNFG_CAL, &cnfg_cal.all) == -1) { // return -1; // } // // cnfg_cal.bit.en_vcal = 0; // Disable VCAL, all other settings are left unaffected // // if (reg_write(CNFG_CAL, cnfg_cal.all) == -1) { // return -1; // } // // return 0; //} ////****************************************************************************** //int MAX30001::INT_assignment(max30001_intrpt_Location_t en_enint_loc, max30001_intrpt_Location_t en_eovf_loc, max30001_intrpt_Location_t en_fstint_loc, // max30001_intrpt_Location_t en_dcloffint_loc, max30001_intrpt_Location_t en_bint_loc, max30001_intrpt_Location_t en_bovf_loc, // max30001_intrpt_Location_t en_bover_loc, max30001_intrpt_Location_t en_bundr_loc, max30001_intrpt_Location_t en_bcgmon_loc, // max30001_intrpt_Location_t en_pint_loc, max30001_intrpt_Location_t en_povf_loc, max30001_intrpt_Location_t en_pedge_loc, // max30001_intrpt_Location_t en_lonint_loc, max30001_intrpt_Location_t en_rrint_loc, max30001_intrpt_Location_t en_samp_loc, // max30001_intrpt_type_t intb_Type, max30001_intrpt_type_t int2b_Type) // // //{ // // max30001_en_int_t en_int; // max30001_en_int2_t en_int2; // // ///< INT1 // // if (reg_read(EN_INT, &en_int.all) == -1) { // return -1; // } // // // max30001_en_int2.bit.en_pint = 0b1; // Keep this off... // // en_int.bit.en_eint = 0b1 & en_enint_loc; // en_int.bit.en_eovf = 0b1 & en_eovf_loc; // en_int.bit.en_fstint = 0b1 & en_fstint_loc; // // en_int.bit.en_dcloffint = 0b1 & en_dcloffint_loc; // en_int.bit.en_bint = 0b1 & en_bint_loc; // en_int.bit.en_bovf = 0b1 & en_bovf_loc; // // en_int.bit.en_bover = 0b1 & en_bover_loc; // en_int.bit.en_bundr = 0b1 & en_bundr_loc; // en_int.bit.en_bcgmon = 0b1 & en_bcgmon_loc; // // en_int.bit.en_pint = 0b1 & en_pint_loc; // en_int.bit.en_povf = 0b1 & en_povf_loc; // en_int.bit.en_pedge = 0b1 & en_pedge_loc; // // en_int.bit.en_lonint = 0b1 & en_lonint_loc; // en_int.bit.en_rrint = 0b1 & en_rrint_loc; // en_int.bit.en_samp = 0b1 & en_samp_loc; // // en_int.bit.intb_type = int2b_Type; // // if (reg_write(EN_INT, en_int.all) == -1) { // return -1; // } // // ///< INT2 // // if (reg_read(EN_INT2, &en_int2.all) == -1) { // return -1; // } // // en_int2.bit.en_eint = 0b1 & (en_enint_loc >> 1); // en_int2.bit.en_eovf = 0b1 & (en_eovf_loc >> 1); // en_int2.bit.en_fstint = 0b1 & (en_fstint_loc >> 1); // // en_int2.bit.en_dcloffint = 0b1 & (en_dcloffint_loc >> 1); // en_int2.bit.en_bint = 0b1 & (en_bint_loc >> 1); // en_int2.bit.en_bovf = 0b1 & (en_bovf_loc >> 1); // // en_int2.bit.en_bover = 0b1 & (en_bover_loc >> 1); // en_int2.bit.en_bundr = 0b1 & (en_bundr_loc >> 1); // en_int2.bit.en_bcgmon = 0b1 & (en_bcgmon_loc >> 1); // // en_int2.bit.en_pint = 0b1 & (en_pint_loc >> 1); // en_int2.bit.en_povf = 0b1 & (en_povf_loc >> 1); // en_int2.bit.en_pedge = 0b1 & (en_pedge_loc >> 1); // // en_int2.bit.en_lonint = 0b1 & (en_lonint_loc >> 1); // en_int2.bit.en_rrint = 0b1 & (en_rrint_loc >> 1); // en_int2.bit.en_samp = 0b1 & (en_samp_loc >> 1); // // en_int2.bit.intb_type = intb_Type; // // if (reg_write(EN_INT2, en_int2.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::ECG_InitStart(uint8_t En_ecg, uint8_t Openp, // uint8_t Openn, uint8_t Pol, // uint8_t Calp_sel, uint8_t Caln_sel, // uint8_t E_fit, uint8_t Rate, uint8_t Gain, // uint8_t Dhpf, uint8_t Dlpf) { // // max30001_cnfg_emux_t cnfg_emux; // max30001_cnfg_gen_t cnfg_gen; // max30001_status_t status; // max30001_mngr_int_t mngr_int; // max30001_cnfg_ecg_t cnfg_ecg; // // ///< CNFG_EMUX // // if (reg_read(CNFG_EMUX, &cnfg_emux.all) == -1) { // return -1; // } // // cnfg_emux.bit.openp = Openp; // cnfg_emux.bit.openn = Openn; // cnfg_emux.bit.pol = Pol; // cnfg_emux.bit.calp_sel = Calp_sel; // cnfg_emux.bit.caln_sel = Caln_sel; // // if (reg_write(CNFG_EMUX, cnfg_emux.all) == -1) { // return -1; // } // // /**** ENABLE CHANNELS ****/ // ///< CNFG_GEN // // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_ecg = En_ecg; // 0b1 // // ///< fmstr is default // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // // ///< Wait for PLL Lock & References to settle down // // max30001_timeout = 0; // // do { // if (reg_read(STATUS, &status.all) == -1) {// Wait and spin for PLL to lock... // // return -1; // } // } while (status.bit.pllint == 1 && max30001_timeout++ <= 1000); // // ///< MNGR_INT // // if (reg_read(MNGR_INT, &mngr_int.all) == -1) { // return -1; // } // // mngr_int.bit.e_fit = E_fit; // 31 // // if (reg_write(MNGR_INT, mngr_int.all) == -1) { // return -1; // } // // ///< CNFG_ECG // // if (reg_read(CNFG_ECG, &cnfg_ecg.all) == -1) { // return -1; // } // // cnfg_ecg.bit.rate = Rate; // cnfg_ecg.bit.gain = Gain; // cnfg_ecg.bit.dhpf = Dhpf; // cnfg_ecg.bit.dlpf = Dlpf; // // if (reg_write(CNFG_ECG, cnfg_ecg.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::ECGFast_Init(uint8_t Clr_Fast, uint8_t Fast, uint8_t Fast_Th) { // // max30001_mngr_int_t mngr_int; // max30001_mngr_dyn_t mngr_dyn; // // if (reg_read(MNGR_INT, &mngr_int.all) == -1) { // return -1; // } // // mngr_int.bit.clr_fast = Clr_Fast; // // if (reg_write(MNGR_INT, mngr_int.all) == -1) { // return -1; // } // // if (reg_read(MNGR_DYN, &mngr_dyn.all) == -1) { // return -1; // } // // mngr_dyn.bit.fast = Fast; // mngr_dyn.bit.fast_th = Fast_Th; // // if (reg_write(MNGR_INT, mngr_dyn.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::Stop_ECG(void) { // // max30001_cnfg_gen_t cnfg_gen; // // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_ecg = 0; ///< Stop ECG // // ///< fmstr is default // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::PACE_InitStart(uint8_t En_pace, uint8_t Clr_pedge, // uint8_t Pol, uint8_t Gn_diff_off, // uint8_t Gain, uint8_t Aout_lbw, // uint8_t Aout, uint8_t Dacp, // uint8_t Dacn) { // // /**** SET MASTER FREQUENCY, ENABLE CHANNELS ****/ // // max30001_cnfg_gen_t cnfg_gen; // max30001_status_t status; // max30001_mngr_int_t mngr_int; // max30001_cnfg_pace_t cnfg_pace; // // ///< CNFG_GEN // // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_pace = En_pace; // 0b1; // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // // /**** Wait for PLL Lock & References to settle down ****/ // max30001_timeout = 0; // // do { // if (reg_read(STATUS, &status.all) == // -1) // Wait and spin for PLL to lock... // { // return -1; // } // // } while (status.bit.pllint == 1 && max30001_timeout++ <= 1000); // // ///< MNGR_INT // // if (reg_read(MNGR_INT, &mngr_int.all) == -1) { // return -1; // } // // mngr_int.bit.clr_pedge = Clr_pedge; // 0b0; // // if (reg_write(MNGR_INT, mngr_int.all) == -1) { // return -1; // } // // ///< CNFG_PACE // // reg_read(CNFG_PACE, &cnfg_pace.all); // // cnfg_pace.bit.pol = Pol; // cnfg_pace.bit.gn_diff_off = Gn_diff_off; // cnfg_pace.bit.gain = Gain; // cnfg_pace.bit.aout_lbw = Aout_lbw; // cnfg_pace.bit.aout = Aout; // cnfg_pace.bit.dacp = Dacp; // cnfg_pace.bit.dacn = Dacn; // // reg_write(CNFG_PACE, cnfg_pace.all); // // return 0; //} // ////****************************************************************************** //int MAX30001::Stop_PACE(void) { // // max30001_cnfg_gen_t cnfg_gen; // // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_pace = 0; ///< Stop PACE // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::BIOZ_InitStart( // uint8_t En_bioz, uint8_t Openp, uint8_t Openn, uint8_t Calp_sel, // uint8_t Caln_sel, uint8_t CG_mode, uint8_t B_fit, uint8_t Rate, // uint8_t Ahpf, uint8_t Ext_rbias, uint8_t Gain, uint8_t Dhpf, uint8_t Dlpf, // uint8_t Fcgen, uint8_t Cgmon, uint8_t Cgmag, uint8_t Phoff) { // // max30001_cnfg_bmux_t cnfg_bmux; // max30001_cnfg_gen_t cnfg_gen; // max30001_status_t status; // max30001_mngr_int_t mngr_int; // max30001_cnfg_bioz_t cnfg_bioz; // // // // CNFG_BMUX // // if (reg_read(CNFG_BMUX, &cnfg_bmux.all) == -1) { // return -1; // } // // cnfg_bmux.bit.openp = Openp; // cnfg_bmux.bit.openn = Openn; // cnfg_bmux.bit.calp_sel = Calp_sel; // cnfg_bmux.bit.caln_sel = Caln_sel; // cnfg_bmux.bit.cg_mode = CG_mode; // // if (reg_write(CNFG_BMUX, cnfg_bmux.all) == -1) { // return -1; // } // // /**** SET MASTER FREQUENCY, ENABLE CHANNELS ****/ // // ///< CNFG_GEN // // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_bioz = En_bioz; // // ///< fmstr is default // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // // /**** Wait for PLL Lock & References to settle down ****/ // // max30001_timeout = 0; // // do { // if (reg_read(STATUS, &status.all) == -1) { // Wait and spin for PLL to lock... // return -1; // } // // } while (status.bit.pllint == 1 && max30001_timeout++ <= 1000); // // /**** Start of CNFG_BIOZ ****/ // // ///< MNGR_INT // // if (reg_read(MNGR_INT, &mngr_int.all) == -1) { // return -1; // } // // mngr_int.bit.b_fit = B_fit; //; // // if (reg_write(MNGR_INT, mngr_int.all) == -1) { // return -1; // } // // ///< CNFG_BIOZ // // if (reg_read(CNFG_BIOZ, &cnfg_bioz.all) == -1) { // return -1; // } // // cnfg_bioz.bit.rate = Rate; // cnfg_bioz.bit.ahpf = Ahpf; // cnfg_bioz.bit.ext_rbias = Ext_rbias; // cnfg_bioz.bit.gain = Gain; // cnfg_bioz.bit.dhpf = Dhpf; // cnfg_bioz.bit.dlpf = Dlpf; // cnfg_bioz.bit.fcgen = Fcgen; // cnfg_bioz.bit.cgmon = Cgmon; // cnfg_bioz.bit.cgmag = Cgmag; // cnfg_bioz.bit.phoff = Phoff; // // if (reg_write(CNFG_BIOZ, cnfg_bioz.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::Stop_BIOZ(void) { // // max30001_cnfg_gen_t cnfg_gen; // // ///< CNFG_GEN // // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_bioz = 0; // Stop BIOZ // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::BIOZ_InitBist(uint8_t En_bist, uint8_t Rnom, // uint8_t Rmod, uint8_t Fbist) { // // max30001_cnfg_bmux_t cnfg_bmux; // // ///< CNFG_BMUX // // if (reg_read(CNFG_BMUX, &cnfg_bmux.all) == -1) { // return -1; // } // // cnfg_bmux.bit.en_bist = En_bist; // cnfg_bmux.bit.rnom = Rnom; // cnfg_bmux.bit.rmod = Rmod; // cnfg_bmux.bit.fbist = Fbist; // // if (reg_write(CNFG_BMUX, cnfg_bmux.all) == -1) { // return -1; // } // // return 0; //} ////****************************************************************************** //int MAX30001::RtoR_InitStart(uint8_t En_rtor, uint8_t Wndw, // uint8_t Gain, uint8_t Pavg, uint8_t Ptsf, // uint8_t Hoff, uint8_t Ravg, uint8_t Rhsf, // uint8_t Clr_rrint) { // // max30001_mngr_int_t mngr_int; // max30001_cnfg_rtor1_t cnfg_rtor1; // max30001_cnfg_rtor2_t cnfg_rtor2; // // ///< MNGR_INT // if (reg_read(MNGR_INT, &mngr_int.all) == -1) { // return -1; // } // // mngr_int.bit.clr_rrint = Clr_rrint; // ///< 0b01 & 0b00 are for interrupt mode... // ///< 0b10 is for monitoring mode... it just overwrites the data... // // if (reg_write(MNGR_INT, mngr_int.all) == -1) { // return -1; // } // // ///< RTOR1 // if (reg_read(CNFG_RTOR1, &cnfg_rtor1.all) == -1) { // return -1; // } // // cnfg_rtor1.bit.wndw = Wndw; // cnfg_rtor1.bit.gain = Gain; // cnfg_rtor1.bit.en_rtor = En_rtor; // cnfg_rtor1.bit.pavg = Pavg; // cnfg_rtor1.bit.ptsf = Ptsf; // // if (reg_write(CNFG_RTOR1, cnfg_rtor1.all) == -1) { // return -1; // } // // ///< RTOR2 // if (reg_read(CNFG_RTOR2, &cnfg_rtor2.all) == -1) { // return -1; // } // cnfg_rtor2.bit.hoff = Hoff; // cnfg_rtor2.bit.ravg = Ravg; // cnfg_rtor2.bit.rhsf = Rhsf; // // if (reg_write(CNFG_RTOR2, cnfg_rtor2.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::Stop_RtoR(void) { // // max30001_cnfg_rtor1_t cnfg_rtor1; // // if (reg_read(CNFG_RTOR1, &cnfg_rtor1.all) == -1) { // return -1; // } // // cnfg_rtor1.bit.en_rtor = 0; ///< Stop RtoR // // if (reg_write(CNFG_RTOR1, cnfg_rtor1.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::PLL_lock(void) { // ///< Spin to see PLLint become zero to indicate a lock. // // max30001_status_t status; // // max30001_timeout = 0; // // do { // if (reg_read(STATUS, &status.all) == -1) { ///< Wait and spin for PLL to lock... // // return -1; // } // // } while (status.bit.pllint == 1 && max30001_timeout++ <= 1000); // // return 0; //} // ////****************************************************************************** //int MAX30001::sw_rst(void) { // ///< SW reset for the MAX30001 chip // // if (reg_write(SW_RST, 0x000000) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::synch(void) { ///< For synchronization // if (reg_write(SYNCH, 0x000000) == -1) { // return -1; // } // return 0; //} // ////****************************************************************************** //int MAX30001::fifo_rst(void) { ///< Resets the FIFO // if (reg_write(FIFO_RST, 0x000000) == -1) { // return -1; // } // return 0; //} // ////****************************************************************************** //int MAX30001::reg_write(MAX30001_REG_map_t addr, uint32_t data) { // // uint8_t result[4]; // uint8_t data_array[4]; // int32_t success = 0; // // data_array[0] = (addr << 1) & 0xff; // // data_array[3] = data & 0xff; // data_array[2] = (data >> 8) & 0xff; // data_array[1] = (data >> 16) & 0xff; // // success = SPI_Transmit(&data_array[0], 4, &result[0], 4); // // if (success != 0) { // return -1; // } else { // return 0; // } //} // ////****************************************************************************** //int MAX30001::reg_read(MAX30001_REG_map_t addr, // uint32_t *return_data) { // uint8_t result[4]; // uint8_t data_array[1]; // int32_t success = 0; // // data_array[0] = ((addr << 1) & 0xff) | 1; // For Read, Or with 1 // success = SPI_Transmit(&data_array[0], 1, &result[0], 4); // *return_data = /*result[0] + */ (uint32_t)(result[1] << 16) + // (result[2] << 8) + result[3]; // if (success != 0) { // return -1; // } else { // return 0; // } //} // ////****************************************************************************** //int MAX30001::Enable_DcLeadOFF_Init(int8_t En_dcloff, int8_t Ipol, // int8_t Imag, int8_t Vth) { // ///< the leads are not touching the body // // max30001_cnfg_gen_t cnfg_gen; // // ///< CNFG_EMUX, Set ECGP and ECGN for external hook up... // // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_dcloff = En_dcloff; // cnfg_gen.bit.ipol = Ipol; // cnfg_gen.bit.imag = Imag; // cnfg_gen.bit.vth = Vth; // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::Disable_DcLeadOFF(void) { // // max30001_cnfg_gen_t cnfg_gen; // // ///< CNFG_GEN // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_dcloff = 0; // Turned off the dc lead off. // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::BIOZ_Enable_ACLeadOFF_Init(uint8_t En_bloff, uint8_t Bloff_hi_it, // uint8_t Bloff_lo_it) { // // max30001_cnfg_gen_t cnfg_gen; // max30001_mngr_dyn_t mngr_dyn; // // ///< CNFG_GEN // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_bloff = En_bloff; // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // // ///< MNGR_DYN // if (reg_read(MNGR_DYN, &mngr_dyn.all) == -1) { // return -1; // } // // mngr_dyn.bit.bloff_hi_it = Bloff_hi_it; // mngr_dyn.bit.bloff_lo_it = Bloff_lo_it; // // if (reg_write(MNGR_DYN, mngr_dyn.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::BIOZ_Disable_ACleadOFF(void) { // // max30001_cnfg_gen_t cnfg_gen; // // ///< CNFG_GEN // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_bloff = 0b0; // Turns of the BIOZ AC Lead OFF feature // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::BIOZ_Enable_BCGMON(void) { // // max30001_cnfg_bioz_t cnfg_bioz; // // ///< CNFG_BIOZ // if (reg_read(CNFG_BIOZ, &cnfg_bioz.all) == -1) { // return -1; // } // // cnfg_bioz.bit.cgmon = 1; // // if (reg_write(CNFG_BIOZ, cnfg_bioz.all) == -1) { // return -1; // } // // return 0; //} // // ////****************************************************************************** //int MAX30001::Enable_LeadON(int8_t Channel) // Channel: ECG = 0b01, BIOZ = 0b10, Disable = 0b00 //{ // // max30001_cnfg_gen_t cnfg_gen; // // ///< CNFG_GEN // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_ecg = 0b0; // cnfg_gen.bit.en_bioz = 0b0; // cnfg_gen.bit.en_pace = 0b0; // // cnfg_gen.bit.en_ulp_lon = Channel; ///< BIOZ ULP lead on detection... // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //int MAX30001::Disable_LeadON(void) { // // max30001_cnfg_gen_t cnfg_gen; // ///< CNFG_GEN // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // cnfg_gen.bit.en_ulp_lon = 0b0; // // if (reg_write(CNFG_GEN, cnfg_gen.all) == -1) { // return -1; // } // // return 0; //} // ////****************************************************************************** //#define LEADOFF_SERVICE_TIME 0x2000 ///< 0x1000 = 1 second //#define LEADOFF_NUMSTATES 2 //uint32_t leadoffState = 0; //uint32_t max30001_LeadOffoldTime = 0; //void MAX30001::ServiceLeadoff(uint32_t currentTime) { // // uint32_t delta_Time; // // delta_Time = currentTime - max30001_LeadOffoldTime; // // if (delta_Time > LEADOFF_SERVICE_TIME) { // switch (leadoffState) { // case 0: ///< switch to ECG DC Lead OFF // Enable_DcLeadOFF_Init(0b01, 0b0, 0b001, 0b00); // break; // // case 1: ///< switch to BIOZ DC Lead OFF // Enable_DcLeadOFF_Init(0b10, 0b0, 0b001, 0b00); // break; // } // // leadoffState++; // leadoffState %= LEADOFF_NUMSTATES; // // max30001_LeadOffoldTime = currentTime; // } //} ////****************************************************************************** //#define LEADON_SERVICE_TIME 0x2000 // 0x1000 = 1 second //#define LEADON_NUMSTATES 2 //uint32_t leadOnState = 0; //uint32_t max30001_LeadOnoldTime = 0; //void MAX30001::ServiceLeadON(uint32_t currentTime) { // // uint32_t delta_Time; // // delta_Time = currentTime - max30001_LeadOnoldTime; // // if (delta_Time > LEADON_SERVICE_TIME) { // switch (leadOnState) { // case 0: ///< switch to ECG DC Lead ON // Enable_LeadON(0b01); // break; // // case 1: ///< switch to BIOZ DC Lead ON // Enable_LeadON(0b10); // break; // } // // leadOnState++; // leadOnState %= LEADON_NUMSTATES; // // max30001_LeadOnoldTime = currentTime; // } //} // ////****************************************************************************** //int MAX30001::FIFO_LeadONOff_Read(void) { // // uint8_t result[32 * 3]; ///< 32words - 3bytes each // uint8_t data_array[4]; // int32_t success = 0; // int i, j; // // uint32_t total_databytes; // uint8_t i_index; // uint8_t data_chunk; // uint8_t loop_logic; // // uint8_t etag, ptag, btag; // // uint8_t adr; // // int8_t ReadAllPaceOnce; // // static uint8_t dcloffint_OneShot = 0; // static uint8_t acloffint_OneShot = 0; // static uint8_t bcgmon_OneShot = 0; // static uint8_t acleadon_OneShot = 0; // // max30001_mngr_int_t mngr_int; // max30001_cnfg_gen_t cnfg_gen; // // int8_t ret_val; // // etag = 0; // if (global_status.bit.eint == 1 || global_status.bit.pint == 1) { // adr = ECG_FIFO_BURST; // data_array[0] = ((adr << 1) & 0xff) | 1; // // ///< The SPI routine only sends out data of 32 bytes in size. Therefore the // ///< data is being read in // ///< smaller chunks in this routine... // // ///< READ mngr_int AND cnfg_gen; // // if (reg_read(MNGR_INT, &mngr_int.all) == -1) { // return -1; // } // // if (reg_read(CNFG_GEN, &cnfg_gen.all) == -1) { // return -1; // } // // total_databytes = (mngr_int.bit.e_fit + 1) * 3; // // i_index = 0; // loop_logic = 1; // // while (loop_logic) { // if (total_databytes > 30) { // data_chunk = 30; // total_databytes = total_databytes - 30; // } else { // data_chunk = total_databytes; // loop_logic = 0; // } // // ///< The extra 1 byte is for the extra byte that comes out of the SPI // success = SPI_Transmit(&data_array[0], 1, &result[i_index], (data_chunk + 1)); // Make a copy of the FIFO over here... // // if (success != 0) { // return -1; // } // // ///< This is important, because every transaction above creates an empty // ///< redundant data at result[0] // for (j = i_index; j < (data_chunk + i_index); j++) /* get rid of the 1 extra byte by moving the whole array up one */ // { // result[j] = result[j + 1]; // } // // i_index = i_index + 30; /* point to the next array location to put the data in */ // } // // ReadAllPaceOnce = 0; // // ///< Put the content of the FIFO based on the EFIT value, We ignore the // ///< result[0] and start concatenating indexes: 1,2,3 - 4,5,6 - 7,8,9 - // for (i = 0, j = 0; i < mngr_int.bit.e_fit + 1; i++, j = j + 3) ///< index1=23-16 bit, index2=15-8 bit, index3=7-0 bit // { // max30001_ECG_FIFO_buffer[i] = ((uint32_t)result[j] << 16) + (result[j + 1] << 8) + result[j + 2]; // // etag = (0b00111000 & result[j + 2]) >> 3; // ptag = 0b00000111 & result[j + 2]; // // if (ptag != 0b111 && ReadAllPaceOnce == 0) { // // ReadAllPaceOnce = 1; ///< This will prevent extra read of PACE, once group // ///< 0-5 is read ONCE. // // adr = PACE0_FIFO_BURST; // // data_array[0] = ((adr << 1) & 0xff) | 1; ///< For Read Or with 1 // // success = SPI_Transmit(&data_array[0], 1, &result[0], 10); // // max30001_PACE[0] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; // max30001_PACE[1] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; // max30001_PACE[2] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; // // adr = PACE1_FIFO_BURST; // // data_array[0] = ((adr << 1) & 0xff) | 1; ///< For Read Or with 1 // // success = SPI_Transmit(&data_array[0], 1, &result[0], 10); // // max30001_PACE[3] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; // max30001_PACE[4] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; // max30001_PACE[5] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; // // adr = PACE2_FIFO_BURST; // // data_array[0] = ((adr << 1) & 0xff) | 1; ///< For Read Or with 1 // // success = SPI_Transmit(&data_array[0], 1, &result[0], 10); // // max30001_PACE[6] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; // max30001_PACE[7] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; // max30001_PACE[8] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; // // adr = PACE3_FIFO_BURST; // // data_array[0] = ((adr << 1) & 0xff) | 1; ///< For Read Or with 1 // // success = SPI_Transmit(&data_array[0], 1, &result[0], 10); // // max30001_PACE[9] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; // max30001_PACE[10] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; // max30001_PACE[11] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; // // adr = PACE4_FIFO_BURST; // // data_array[0] = ((adr << 1) & 0xff) | 1; ///< For Read Or with 1 // // success = SPI_Transmit(&data_array[0], 1, &result[0], 10); // // max30001_PACE[12] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; // max30001_PACE[13] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; // max30001_PACE[14] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; // // adr = PACE5_FIFO_BURST; // // data_array[0] = ((adr << 1) & 0xff) | 1; ///< For Read Or with 1 // // success = SPI_Transmit(&data_array[0], 1, &result[0], 10); // // max30001_PACE[15] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; // max30001_PACE[16] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; // max30001_PACE[17] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; // // dataAvailable(MAX30001_DATA_PACE, max30001_PACE, 18); ///< Send out the Pace data once only // } // } // // if (etag != 0b110) { // // dataAvailable(MAX30001_DATA_ECG, max30001_ECG_FIFO_buffer, (mngr_int.bit.e_fit + 1)); // } // // } /* End of ECG init */ // // /* RtoR */ // // if (global_status.bit.rrint == 1) { // if (reg_read(RTOR, &max30001_RtoR_data) == -1) { // return -1; // } // // max30001_RtoR_data = (0x00FFFFFF & max30001_RtoR_data) >> 10; // // hspValMax30001.R2R = (uint16_t)max30001_RtoR_data; // hspValMax30001.fmstr = (uint16_t)cnfg_gen.bit.fmstr; // // dataAvailable(MAX30001_DATA_RTOR, &max30001_RtoR_data, 1); // } // // ///< Handling BIOZ data... // // if (global_status.bit.bint == 1) { // adr = 0x22; // data_array[0] = ((adr << 1) & 0xff) | 1; // // ///< [(BFIT+1)*3byte]+1extra byte due to the addr // // if (SPI_Transmit(&data_array[0], 1, &result[0],((mngr_int.bit.b_fit + 1) * 3) + 1) == -1) { ///< Make a copy of the FIFO over here... // return -1; // } // // btag = 0b00000111 & result[3]; // // ///< Put the content of the FIFO based on the BFIT value, We ignore the // ///< result[0] and start concatenating indexes: 1,2,3 - 4,5,6 - 7,8,9 - // for (i = 0, j = 0; i < mngr_int.bit.b_fit + 1; i++, j = j + 3) ///< index1=23-16 bit, index2=15-8 bit, index3=7-0 bit // { // max30001_BIOZ_FIFO_buffer[i] = ((uint32_t)result[j + 1] << 16) + (result[j + 2] << 8) + result[j + 3]; // } // // if (btag != 0b110) { // dataAvailable(MAX30001_DATA_BIOZ, max30001_BIOZ_FIFO_buffer, 8); // } // } // // ret_val = 0; // // if (global_status.bit.dcloffint == 1) { ///< ECG/BIOZ Lead Off // dcloffint_OneShot = 1; // max30001_DCLeadOff = 0; // max30001_DCLeadOff = max30001_DCLeadOff | (cnfg_gen.bit.en_dcloff << 8) | (global_status.all & 0x00000F); // dataAvailable(MAX30001_DATA_LEADOFF_DC, &max30001_DCLeadOff, 1); // ///< Do a FIFO Reset // reg_write(FIFO_RST, 0x000000); // // ret_val = 0b100; // // } else if (dcloffint_OneShot == 1 && global_status.bit.dcloffint == 0) { ///< Just send once when it comes out of dc lead off // max30001_DCLeadOff = 0; // max30001_DCLeadOff = max30001_DCLeadOff | (cnfg_gen.bit.en_dcloff << 8) | (global_status.all & 0x00000F); // dataAvailable(MAX30001_DATA_LEADOFF_DC, &max30001_DCLeadOff, 1); // dcloffint_OneShot = 0; // } // // if (global_status.bit.bover == 1 || global_status.bit.bundr == 1) { ///< BIOZ AC Lead Off // acloffint_OneShot = 1; // max30001_ACLeadOff = 0; // max30001_ACLeadOff = // max30001_ACLeadOff | ((global_status.all & 0x030000) >> 16); // dataAvailable(MAX30001_DATA_LEADOFF_AC, &max30001_ACLeadOff, 1); // ///< Do a FIFO Reset // reg_write(FIFO_RST, 0x000000); // // ret_val = 0b1000; // } else if (acloffint_OneShot == 1 && global_status.bit.bover == 0 && global_status.bit.bundr == 0) { ///< Just send once when it comes out of ac lead off // max30001_ACLeadOff = 0; // max30001_ACLeadOff = max30001_ACLeadOff | ((global_status.all & 0x030000) >> 16); // dataAvailable(MAX30001_DATA_LEADOFF_AC, &max30001_ACLeadOff, 1); // acloffint_OneShot = 0; // } // // if (global_status.bit.bcgmon == 1) {///< BIOZ BCGMON check // bcgmon_OneShot = 1; // max30001_bcgmon = 0; // max30001_bcgmon = max30001_bcgmon | ((global_status.all & 0x000030) >> 4); // dataAvailable(MAX30001_DATA_BCGMON, &max30001_bcgmon, 1); // // Do a FIFO Reset // reg_write(FIFO_RST, 0x000000); // // ret_val = 0b10000; // } else if (bcgmon_OneShot == 1 && global_status.bit.bcgmon == 0) { // max30001_bcgmon = 0; // max30001_bcgmon = max30001_bcgmon | ((global_status.all & 0x000030) >> 4); // bcgmon_OneShot = 0; // dataAvailable(MAX30001_DATA_BCGMON, &max30001_bcgmon, 1); // } // // if (global_status.bit.lonint == 1 && acleadon_OneShot == 0) {///< AC LeadON Check, when lead is on // max30001_LeadOn = 0; // reg_read(STATUS, &global_status.all); // max30001_LeadOn = // max30001_LeadOn | (cnfg_gen.bit.en_ulp_lon << 8) | // ((global_status.all & 0x000800) >> // 11); ///< 0b01 will mean ECG Lead On, 0b10 will mean BIOZ Lead On // // // LEAD ON has been detected... Now take actions // acleadon_OneShot = 1; // dataAvailable(MAX30001_DATA_ACLEADON, &max30001_LeadOn, 1); ///< One shot data will be sent... // } else if (global_status.bit.lonint == 0 && acleadon_OneShot == 1) { // max30001_LeadOn = 0; // reg_read(STATUS, &global_status.all); // max30001_LeadOn = // max30001_LeadOn | (cnfg_gen.bit.en_ulp_lon << 8) | ((global_status.all & 0x000800) >> 11); ///< 0b01 will mean ECG Lead On, 0b10 will mean BIOZ Lead On // dataAvailable(MAX30001_DATA_ACLEADON, &max30001_LeadOn, 1); ///< One shot data will be sent... // acleadon_OneShot = 0; // } // // return ret_val; //} // ////****************************************************************************** //int MAX30001::int_handler(void) { // // static uint32_t InitReset = 0; // // int8_t return_value; // // reg_read(STATUS, &global_status.all); // // ///< Inital Reset and any FIFO over flow invokes a FIFO reset // if (InitReset == 0 || global_status.bit.eovf == 1 || global_status.bit.bovf == 1 || global_status.bit.povf == 1) { // ///< Do a FIFO Reset // reg_write(FIFO_RST, 0x000000); // // InitReset++; // return 2; // } // // return_value = 0; // // ///< The four data handling goes on over here // if (global_status.bit.eint == 1 || global_status.bit.pint == 1 || global_status.bit.bint == 1 || global_status.bit.rrint == 1) { // return_value = return_value | FIFO_LeadONOff_Read(); // } // // ///< ECG/BIOZ DC Lead Off test // if (global_status.bit.dcloffint == 1) { // return_value = return_value | FIFO_LeadONOff_Read(); // } // // ///< BIOZ AC Lead Off test // if (global_status.bit.bover == 1 || global_status.bit.bundr == 1) { // return_value = return_value | FIFO_LeadONOff_Read(); // } // // ///< BIOZ DRVP/N test using BCGMON. // if (global_status.bit.bcgmon == 1) { // return_value = return_value | FIFO_LeadONOff_Read(); // } // // if (global_status.bit.lonint == 1) ///< ECG Lead ON test: i.e. the leads are touching the body... // { // // FIFO_LeadONOff_Read(); // } // // return return_value; //} // // //event_callback_t MAX30001::functionpointer; // // //volatile int MAX30001::xferFlag = 0; // // ////****************************************************************************** //int MAX30001::SPI_Transmit(const uint8_t *tx_buf, uint32_t tx_size, uint8_t *rx_buf, uint32_t rx_size) { // xferFlag = 0; // unsigned int i; // for (i = 0; i < sizeof(buffer); i++) { // if (i < tx_size) { // buffer[i] = tx_buf[i]; // } // else { // buffer[i] = 0xFF; // } // } // spi->transfer<uint8_t>(buffer, (int)rx_size, rx_buf, (int)rx_size, spiHandler); // while (xferFlag == 0); // return 0; //} // ////****************************************************************************** //void MAX30001::ReadHeartrateData(max30001_bledata_t *_hspValMax30001) { // _hspValMax30001->R2R = hspValMax30001.R2R; // _hspValMax30001->fmstr = hspValMax30001.fmstr; //} // ////****************************************************************************** //void MAX30001::onDataAvailable(PtrFunction _onDataAvailable) { // onDataAvailableCallback = _onDataAvailable; //} // ////****************************************************************************** //void MAX30001::dataAvailable(uint32_t id, uint32_t *buffer, uint32_t length) { // if (onDataAvailableCallback != NULL) { // (*onDataAvailableCallback)(id, buffer, length); // } //} // ////****************************************************************************** //void MAX30001::spiHandler(int events) { // xferFlag = 1; //} // ////****************************************************************************** //static int allowInterrupts = 0; // //void MAX30001::Mid_IntB_Handler(void) { // if (allowInterrupts == 0) { // return; // } // MAX30001::instance->int_handler(); //} // //void MAX30001::Mid_Int2B_Handler(void) { // if (allowInterrupts == 0) { // return; // } // MAX30001::instance->int_handler(); //} // //void MAX30001::AllowInterrupts(int state) { //allowInterrupts = state; //} // #include "mbed.h" #include "MAX30001.h" MAX30001 *MAX30001::instance = NULL; //****************************************************************************** MAX30001::MAX30001(PinName mosi, PinName miso, PinName sclk, PinName cs) { spi = new SPI(mosi, miso, sclk, cs); spi->frequency(3000000); spi_owner = true; functionpointer.attach(&spiHandler); onDataAvailableCallback = NULL; instance = this; } //****************************************************************************** MAX30001::MAX30001(SPI *_spi) { spi = _spi; spi->frequency(3000000); spi_owner = false; functionpointer.attach(&spiHandler); onDataAvailableCallback = NULL; instance = this; } //****************************************************************************** MAX30001::~MAX30001(void) { if (spi_owner) { delete spi; } } //****************************************************************************** int MAX30001::max30001_Rbias_FMSTR_Init(uint8_t En_rbias, uint8_t Rbiasv, uint8_t Rbiasp, uint8_t Rbiasn, uint8_t Fmstr) { if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_rbias = En_rbias; max30001_cnfg_gen.bit.rbiasv = Rbiasv; max30001_cnfg_gen.bit.rbiasp = Rbiasp; max30001_cnfg_gen.bit.rbiasn = Rbiasn; max30001_cnfg_gen.bit.fmstr = Fmstr; if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_CAL_InitStart(uint8_t En_Vcal, uint8_t Vmode, uint8_t Vmag, uint8_t Fcal, uint16_t Thigh, uint8_t Fifty) { // CNFG_CAL if (max30001_reg_read(CNFG_CAL, &max30001_cnfg_cal.all) == -1) { return -1; } max30001_cnfg_cal.bit.vmode = Vmode; max30001_cnfg_cal.bit.vmag = Vmag; max30001_cnfg_cal.bit.fcal = Fcal; max30001_cnfg_cal.bit.thigh = Thigh; max30001_cnfg_cal.bit.fifty = Fifty; if (max30001_reg_write(CNFG_CAL, max30001_cnfg_cal.all) == -1) { return -1; } // RTOS uses a 32768HZ clock. 32768ticks represents 1secs. 1sec/10 = // 100msecs. wait(1.0 / 10.0); if (max30001_reg_read(CNFG_CAL, &max30001_cnfg_cal.all) == -1) { return -1; } max30001_cnfg_cal.bit.en_vcal = En_Vcal; if (max30001_reg_write(CNFG_CAL, max30001_cnfg_cal.all) == -1) { return -1; } // RTOS uses a 32768HZ clock. 32768ticks represents 1secs. 1sec/10 = // 100msecs. wait(1.0 / 10.0); return 0; } //****************************************************************************** int MAX30001::max30001_CAL_Stop(void) { if (max30001_reg_read(CNFG_CAL, &max30001_cnfg_cal.all) == -1) { return -1; } max30001_cnfg_cal.bit.en_vcal = 0; // Disable VCAL, all other settings are left unaffected if (max30001_reg_write(CNFG_CAL, max30001_cnfg_cal.all) == -1) { return -1; } return 0; } //****************************************************************************** //****************************************************************************** int MAX30001::max30001_INT_assignment(max30001_intrpt_Location_t en_enint_loc, max30001_intrpt_Location_t en_eovf_loc, max30001_intrpt_Location_t en_fstint_loc, max30001_intrpt_Location_t en_dcloffint_loc, max30001_intrpt_Location_t en_bint_loc, max30001_intrpt_Location_t en_bovf_loc, max30001_intrpt_Location_t en_bover_loc, max30001_intrpt_Location_t en_bundr_loc, max30001_intrpt_Location_t en_bcgmon_loc, max30001_intrpt_Location_t en_pint_loc, max30001_intrpt_Location_t en_povf_loc, max30001_intrpt_Location_t en_pedge_loc, max30001_intrpt_Location_t en_lonint_loc, max30001_intrpt_Location_t en_rrint_loc, max30001_intrpt_Location_t en_samp_loc, max30001_intrpt_type_t intb_Type, max30001_intrpt_type_t int2b_Type) { // INT1 if (max30001_reg_read(EN_INT, &max30001_en_int.all) == -1) { return -1; } // max30001_en_int2.bit.en_pint = 0b1; // Keep this off... max30001_en_int.bit.en_eint = 0b1 & en_enint_loc; max30001_en_int.bit.en_eovf = 0b1 & en_eovf_loc; max30001_en_int.bit.en_fstint = 0b1 & en_fstint_loc; max30001_en_int.bit.en_dcloffint = 0b1 & en_dcloffint_loc; max30001_en_int.bit.en_bint = 0b1 & en_bint_loc; max30001_en_int.bit.en_bovf = 0b1 & en_bovf_loc; max30001_en_int.bit.en_bover = 0b1 & en_bover_loc; max30001_en_int.bit.en_bundr = 0b1 & en_bundr_loc; max30001_en_int.bit.en_bcgmon = 0b1 & en_bcgmon_loc; max30001_en_int.bit.en_pint = 0b1 & en_pint_loc; max30001_en_int.bit.en_povf = 0b1 & en_povf_loc; max30001_en_int.bit.en_pedge = 0b1 & en_pedge_loc; max30001_en_int.bit.en_lonint = 0b1 & en_lonint_loc; max30001_en_int.bit.en_rrint = 0b1 & en_rrint_loc; max30001_en_int.bit.en_samp = 0b1 & en_samp_loc; max30001_en_int.bit.intb_type = int2b_Type; if (max30001_reg_write(EN_INT, max30001_en_int.all) == -1) { return -1; } // INT2 if (max30001_reg_read(EN_INT2, &max30001_en_int2.all) == -1) { return -1; } max30001_en_int2.bit.en_eint = 0b1 & (en_enint_loc >> 1); max30001_en_int2.bit.en_eovf = 0b1 & (en_eovf_loc >> 1); max30001_en_int2.bit.en_fstint = 0b1 & (en_fstint_loc >> 1); max30001_en_int2.bit.en_dcloffint = 0b1 & (en_dcloffint_loc >> 1); max30001_en_int2.bit.en_bint = 0b1 & (en_bint_loc >> 1); max30001_en_int2.bit.en_bovf = 0b1 & (en_bovf_loc >> 1); max30001_en_int2.bit.en_bover = 0b1 & (en_bover_loc >> 1); max30001_en_int2.bit.en_bundr = 0b1 & (en_bundr_loc >> 1); max30001_en_int2.bit.en_bcgmon = 0b1 & (en_bcgmon_loc >> 1); max30001_en_int2.bit.en_pint = 0b1 & (en_pint_loc >> 1); max30001_en_int2.bit.en_povf = 0b1 & (en_povf_loc >> 1); max30001_en_int2.bit.en_pedge = 0b1 & (en_pedge_loc >> 1); max30001_en_int2.bit.en_lonint = 0b1 & (en_lonint_loc >> 1); max30001_en_int2.bit.en_rrint = 0b1 & (en_rrint_loc >> 1); max30001_en_int2.bit.en_samp = 0b1 & (en_samp_loc >> 1); max30001_en_int2.bit.intb_type = intb_Type; if (max30001_reg_write(EN_INT2, max30001_en_int2.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_ECG_InitStart(uint8_t En_ecg, uint8_t Openp, uint8_t Openn, uint8_t Pol, uint8_t Calp_sel, uint8_t Caln_sel, uint8_t E_fit, uint8_t Rate, uint8_t Gain, uint8_t Dhpf, uint8_t Dlpf) { // CNFG_EMUX if (max30001_reg_read(CNFG_EMUX, &max30001_cnfg_emux.all) == -1) { return -1; } max30001_cnfg_emux.bit.openp = Openp; max30001_cnfg_emux.bit.openn = Openn; max30001_cnfg_emux.bit.pol = Pol; max30001_cnfg_emux.bit.calp_sel = Calp_sel; max30001_cnfg_emux.bit.caln_sel = Caln_sel; if (max30001_reg_write(CNFG_EMUX, max30001_cnfg_emux.all) == -1) { return -1; } /**** ENABLE CHANNELS ****/ // CNFG_GEN if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_ecg = En_ecg; // 0b1 // fmstr is default if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } /**** Wait for PLL Lock & References to settle down ****/ max30001_timeout = 0; do { if (max30001_reg_read(STATUS, &max30001_status.all) == -1) // Wait and spin for PLL to lock... { return -1; } } while (max30001_status.bit.pllint == 1 && max30001_timeout++ <= 1000); // MNGR_INT if (max30001_reg_read(MNGR_INT, &max30001_mngr_int.all) == -1) { return -1; } max30001_mngr_int.bit.e_fit = E_fit; // 31 if (max30001_reg_write(MNGR_INT, max30001_mngr_int.all) == -1) { return -1; } // CNFG_ECG if (max30001_reg_read(CNFG_ECG, &max30001_cnfg_ecg.all) == -1) { return -1; } max30001_cnfg_ecg.bit.rate = Rate; max30001_cnfg_ecg.bit.gain = Gain; max30001_cnfg_ecg.bit.dhpf = Dhpf; max30001_cnfg_ecg.bit.dlpf = Dlpf; if (max30001_reg_write(CNFG_ECG, max30001_cnfg_ecg.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_ECGFast_Init(uint8_t Clr_Fast, uint8_t Fast, uint8_t Fast_Th) { if (max30001_reg_read(MNGR_INT, &max30001_mngr_int.all) == -1) { return -1; } max30001_mngr_int.bit.clr_fast = Clr_Fast; if (max30001_reg_write(MNGR_INT, max30001_mngr_int.all) == -1) { return -1; } if (max30001_reg_read(MNGR_DYN, &max30001_mngr_dyn.all) == -1) { return -1; } max30001_mngr_dyn.bit.fast = Fast; max30001_mngr_dyn.bit.fast_th = Fast_Th; if (max30001_reg_write(MNGR_INT, max30001_mngr_int.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_Stop_ECG(void) { if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_ecg = 0; // Stop ECG // fmstr is default if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_PACE_InitStart(uint8_t En_pace, uint8_t Clr_pedge, uint8_t Pol, uint8_t Gn_diff_off, uint8_t Gain, uint8_t Aout_lbw, uint8_t Aout, uint8_t Dacp, uint8_t Dacn) { /**** SET MASTER FREQUENCY, ENABLE CHANNELS ****/ // CNFG_GEN if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_pace = En_pace; // 0b1; if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } /**** Wait for PLL Lock & References to settle down ****/ max30001_timeout = 0; do { if (max30001_reg_read(STATUS, &max30001_status.all) == -1) // Wait and spin for PLL to lock... { return -1; } } while (max30001_status.bit.pllint == 1 && max30001_timeout++ <= 1000); // MNGR_INT if (max30001_reg_read(MNGR_INT, &max30001_mngr_int.all) == -1) { return -1; } max30001_mngr_int.bit.clr_pedge = Clr_pedge; // 0b0; if (max30001_reg_write(MNGR_INT, max30001_mngr_int.all) == -1) { return -1; } /* Put: CNFG_PACE */ max30001_reg_read(CNFG_PACE, &max30001_cnfg_pace.all); max30001_cnfg_pace.bit.pol = Pol; max30001_cnfg_pace.bit.gn_diff_off = Gn_diff_off; max30001_cnfg_pace.bit.gain = Gain; max30001_cnfg_pace.bit.aout_lbw = Aout_lbw; max30001_cnfg_pace.bit.aout = Aout; max30001_cnfg_pace.bit.dacp = Dacp; max30001_cnfg_pace.bit.dacn = Dacn; max30001_reg_write(CNFG_PACE, max30001_cnfg_pace.all); return 0; } //****************************************************************************** int MAX30001::max30001_Stop_PACE(void) { if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_pace = 0; // Stop PACE if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_BIOZ_InitStart( uint8_t En_bioz, uint8_t Openp, uint8_t Openn, uint8_t Calp_sel, uint8_t Caln_sel, uint8_t CG_mode, uint8_t B_fit, uint8_t Rate, uint8_t Ahpf, uint8_t Ext_rbias, uint8_t Gain, uint8_t Dhpf, uint8_t Dlpf, uint8_t Fcgen, uint8_t Cgmon, uint8_t Cgmag, uint8_t Phoff) { // CNFG_BMUX if (max30001_reg_read(CNFG_BMUX, &max30001_cnfg_bmux.all) == -1) { return -1; } max30001_cnfg_bmux.bit.openp = Openp; // 0b1; max30001_cnfg_bmux.bit.openn = Openn; // 0b1; max30001_cnfg_bmux.bit.calp_sel = Calp_sel; // 0b10; max30001_cnfg_bmux.bit.caln_sel = Caln_sel; // 0b11; max30001_cnfg_bmux.bit.cg_mode = CG_mode; // 0b00; if (max30001_reg_write(CNFG_BMUX, max30001_cnfg_bmux.all) == -1) { return -1; } /**** SET MASTER FREQUENCY, ENABLE CHANNELS ****/ // CNFG_GEN if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_bioz = En_bioz; // fmstr is default if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } /**** Wait for PLL Lock & References to settle down ****/ max30001_timeout = 0; do { if (max30001_reg_read(STATUS, &max30001_status.all) == -1) // Wait and spin for PLL to lock... { return -1; } } while (max30001_status.bit.pllint == 1 && max30001_timeout++ <= 1000); /**** Start of CNFG_BIOZ ****/ // MNGR_INT if (max30001_reg_read(MNGR_INT, &max30001_mngr_int.all) == -1) { return -1; } max30001_mngr_int.bit.b_fit = B_fit; //; if (max30001_reg_write(MNGR_INT, max30001_mngr_int.all) == -1) { return -1; } // CNFG_BIOZ if (max30001_reg_read(CNFG_BIOZ, &max30001_cnfg_bioz.all) == -1) { return -1; } max30001_cnfg_bioz.bit.rate = Rate; max30001_cnfg_bioz.bit.ahpf = Ahpf; max30001_cnfg_bioz.bit.ext_rbias = Ext_rbias; max30001_cnfg_bioz.bit.gain = Gain; max30001_cnfg_bioz.bit.dhpf = Dhpf; max30001_cnfg_bioz.bit.dlpf = Dlpf; max30001_cnfg_bioz.bit.fcgen = Fcgen; max30001_cnfg_bioz.bit.cgmon = Cgmon; max30001_cnfg_bioz.bit.cgmag = Cgmag; max30001_cnfg_bioz.bit.phoff = Phoff; if (max30001_reg_write(CNFG_BIOZ, max30001_cnfg_bioz.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_Stop_BIOZ(void) { if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_bioz = 0; // Stop BIOZ if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_BIOZ_InitBist(uint8_t En_bist, uint8_t Rnom, uint8_t Rmod, uint8_t Fbist) { // CNFG_BMUX if (max30001_reg_read(CNFG_BMUX, &max30001_cnfg_bmux.all) == -1) { return -1; } max30001_cnfg_bmux.bit.en_bist = En_bist; max30001_cnfg_bmux.bit.rnom = Rnom; max30001_cnfg_bmux.bit.rmod = Rmod; max30001_cnfg_bmux.bit.fbist = Fbist; if (max30001_reg_write(CNFG_BMUX, max30001_cnfg_bmux.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_RtoR_InitStart(uint8_t En_rtor, uint8_t Wndw, uint8_t Gain, uint8_t Pavg, uint8_t Ptsf, uint8_t Hoff, uint8_t Ravg, uint8_t Rhsf, uint8_t Clr_rrint) { // MNGR_INT if (max30001_reg_read(MNGR_INT, &max30001_mngr_int.all) == -1) { return -1; } max30001_mngr_int.bit.clr_rrint = Clr_rrint; // 0b01 & 0b00 are for interrupt mode... // 0b10 is for monitoring mode... it just overwrites the data... if (max30001_reg_write(MNGR_INT, max30001_mngr_int.all) == -1) { return -1; } // RTOR1 if (max30001_reg_read(CNFG_RTOR1, &max30001_cnfg_rtor1.all) == -1) { return -1; } max30001_cnfg_rtor1.bit.wndw = Wndw; max30001_cnfg_rtor1.bit.gain = Gain; max30001_cnfg_rtor1.bit.en_rtor = En_rtor; max30001_cnfg_rtor1.bit.pavg = Pavg; max30001_cnfg_rtor1.bit.ptsf = Ptsf; if (max30001_reg_write(CNFG_RTOR1, max30001_cnfg_rtor1.all) == -1) { return -1; } // RTOR2 if (max30001_reg_read(CNFG_RTOR2, &max30001_cnfg_rtor2.all) == -1) { return -1; } max30001_cnfg_rtor2.bit.hoff = Hoff; max30001_cnfg_rtor2.bit.ravg = Ravg; max30001_cnfg_rtor2.bit.rhsf = Rhsf; if (max30001_reg_write(CNFG_RTOR2, max30001_cnfg_rtor2.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_Stop_RtoR(void) { if (max30001_reg_read(CNFG_RTOR1, &max30001_cnfg_rtor1.all) == -1) { return -1; } max30001_cnfg_rtor1.bit.en_rtor = 0; // Stop RtoR if (max30001_reg_write(CNFG_RTOR1, max30001_cnfg_rtor1.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_PLL_lock(void) { // Spin to see PLLint become zero to indicate a lock. max30001_timeout = 0; do { if (max30001_reg_read(STATUS, &max30001_status.all) == -1) // Wait and spin for PLL to lock... { return -1; } } while (max30001_status.bit.pllint == 1 && max30001_timeout++ <= 1000); return 0; } //****************************************************************************** int MAX30001::max30001_sw_rst(void) { // SW reset for the MAX30001 chip if (max30001_reg_write(SW_RST, 0x000000) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_synch(void) { // For synchronization if (max30001_reg_write(SYNCH, 0x000000) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max300001_fifo_rst(void) { // Resets the FIFO if (max30001_reg_write(FIFO_RST, 0x000000) == -1) { return -1; } return 0; } //****************************************************************************** // int MAX30001::max30001_reg_write(uint8_t addr, uint32_t data) int MAX30001::max30001_reg_write(MAX30001_REG_map_t addr, uint32_t data) { uint8_t result[4]; uint8_t data_array[4]; int32_t success = 0; data_array[0] = (addr << 1) & 0xff; data_array[3] = data & 0xff; data_array[2] = (data >> 8) & 0xff; data_array[1] = (data >> 16) & 0xff; success = SPI_Transmit(&data_array[0], 4, &result[0], 4); if (success != 0) { return -1; } else { return 0; } } //****************************************************************************** // int MAX30001::max30001_reg_read(uint8_t addr, uint32_t *return_data) int MAX30001::max30001_reg_read(MAX30001_REG_map_t addr, uint32_t *return_data) { uint8_t result[4]; uint8_t data_array[1]; int32_t success = 0; data_array[0] = ((addr << 1) & 0xff) | 1; // For Read, Or with 1 success = SPI_Transmit(&data_array[0], 1, &result[0], 4); *return_data = /*result[0] + */ (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; if (success != 0) { return -1; } else { return 0; } } //****************************************************************************** int MAX30001::max30001_Enable_DcLeadOFF_Init(int8_t En_dcloff, int8_t Ipol, int8_t Imag, int8_t Vth) { // the leads are not touching the body // CNFG_EMUX, Set ECGP and ECGN for external hook up... if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_dcloff = En_dcloff; max30001_cnfg_gen.bit.ipol = Ipol; max30001_cnfg_gen.bit.imag = Imag; max30001_cnfg_gen.bit.vth = Vth; if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_Disable_DcLeadOFF(void) { if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_dcloff = 0; // Turned off the dc lead off. if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_BIOZ_Enable_ACLeadOFF_Init(uint8_t En_bloff, uint8_t Bloff_hi_it, uint8_t Bloff_lo_it) { // CNFG_GEN if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_bloff = En_bloff; if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } // MNGR_DYN if (max30001_reg_read(MNGR_DYN, &max30001_mngr_dyn.all) == -1) { return -1; } max30001_mngr_dyn.bit.bloff_hi_it = Bloff_hi_it; max30001_mngr_dyn.bit.bloff_lo_it = Bloff_lo_it; if (max30001_reg_write(MNGR_DYN, max30001_mngr_dyn.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_BIOZ_Disable_ACleadOFF(void) { // CNFG_GEN if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_bloff = 0b0; // Turns of the BIOZ AC Lead OFF feature if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } return 0; } //****************************************************************************** int MAX30001::max30001_BIOZ_Enable_BCGMON(void) { // CNFG_BIOZ if (max30001_reg_read(CNFG_BIOZ, &max30001_cnfg_bioz.all) == -1) { return -1; } max30001_cnfg_bioz.bit.cgmon = 1; if (max30001_reg_write(CNFG_BIOZ, max30001_cnfg_bioz.all) == -1) { return -1; } max30001_reg_read(CNFG_BIOZ, &max30001_cnfg_bioz.all); return 0; } #if 1 //****************************************************************************** int MAX30001::max30001_Enable_LeadON(int8_t Channel) // Channel: ECG = 0b01, BIOZ = 0b10, Disable = 0b00 { if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_ecg = 0b0; max30001_cnfg_gen.bit.en_bioz = 0b0; max30001_cnfg_gen.bit.en_pace = 0b0; max30001_cnfg_gen.bit.en_ulp_lon = Channel; // BIOZ ULP lead on detection... if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all); max30001_reg_read(STATUS, &max30001_status.all); return 0; } //****************************************************************************** int MAX30001::max30001_Disable_LeadON(void) { if (max30001_reg_read(CNFG_GEN, &max30001_cnfg_gen.all) == -1) { return -1; } max30001_cnfg_gen.bit.en_ulp_lon = 0b0; if (max30001_reg_write(CNFG_GEN, max30001_cnfg_gen.all) == -1) { return -1; } return 0; } #endif //****************************************************************************** #define LEADOFF_SERVICE_TIME 0x2000 // 0x1000 = 1 second #define LEADOFF_NUMSTATES 2 uint32_t leadoffState = 0; uint32_t max30001_LeadOffoldTime = 0; void MAX30001::max30001_ServiceLeadoff(uint32_t currentTime) { uint32_t delta_Time; delta_Time = currentTime - max30001_LeadOffoldTime; if (delta_Time > LEADOFF_SERVICE_TIME) { switch (leadoffState) { case 0: /* switch to ECG DC Lead OFF */ max30001_Enable_DcLeadOFF_Init(0b01, 0b0, 0b001, 0b00); break; case 1: /* switch to BIOZ DC Lead OFF */ max30001_Enable_DcLeadOFF_Init(0b10, 0b0, 0b001, 0b00); break; } leadoffState++; leadoffState %= LEADOFF_NUMSTATES; max30001_LeadOffoldTime = currentTime; } } //****************************************************************************** #define LEADON_SERVICE_TIME 0x2000 // 0x1000 = 1 second #define LEADON_NUMSTATES 2 uint32_t leadOnState = 0; uint32_t max30001_LeadOnoldTime = 0; void MAX30001::max30001_ServiceLeadON(uint32_t currentTime) { uint32_t delta_Time; delta_Time = currentTime - max30001_LeadOnoldTime; if (delta_Time > LEADON_SERVICE_TIME) { switch (leadOnState) { case 0: /* switch to ECG DC Lead ON */ max30001_Enable_LeadON(0b01); break; case 1: /* switch to BIOZ DC Lead ON */ max30001_Enable_LeadON(0b10); break; } leadOnState++; leadOnState %= LEADON_NUMSTATES; max30001_LeadOnoldTime = currentTime; } } //****************************************************************************** int MAX30001::max30001_FIFO_LeadONOff_Read(void) { uint8_t result[32 * 3]; // 32words - 3bytes each uint8_t data_array[4]; int32_t success = 0; int i, j; uint32_t total_databytes; uint8_t i_index; uint8_t data_chunk; uint8_t loop_logic; uint8_t etag, ptag, btag; uint8_t adr; int8_t ReadAllPaceOnce; static uint8_t dcloffint_OneShot = 0; static uint8_t acloffint_OneShot = 0; static uint8_t bcgmon_OneShot = 0; static uint8_t acleadon_OneShot = 0; int8_t ret_val; if (max30001_status.bit.eint == 1 || max30001_status.bit.pint == 1) { adr = ECG_FIFO_BURST; data_array[0] = ((adr << 1) & 0xff) | 1; // The SPI routine only sends out data of 32 bytes in size. Therefore the // data is being read in // smaller chunks in this routine... total_databytes = (max30001_mngr_int.bit.e_fit + 1) * 3; i_index = 0; loop_logic = 1; while (loop_logic) { if (total_databytes > 30) { data_chunk = 30; total_databytes = total_databytes - 30; } else { data_chunk = total_databytes; loop_logic = 0; } /* The extra 1 byte is for the extra byte that comes out of the SPI */ success = SPI_Transmit(&data_array[0], 1, &result[i_index], (data_chunk + 1)); // Make a copy of the FIFO over here... if (success != 0) { return -1; } /* This is important, because every transaction above creates an empty * redundant data at result[0] */ for (j = i_index; j < (data_chunk + i_index); j++) /* get rid of the 1 extra byte by moving the whole array up one */ { result[j] = result[j + 1]; } i_index = i_index + 30; /* point to the next array location to put the data in */ } ReadAllPaceOnce = 0; /* Put the content of the FIFO based on the EFIT value, We ignore the * result[0] and start concatenating indexes: 1,2,3 - 4,5,6 - 7,8,9 - */ for (i = 0, j = 0; i < max30001_mngr_int.bit.e_fit + 1; i++, j = j + 3) // index1=23-16 bit, index2=15-8 bit, index3=7-0 bit { max30001_ECG_FIFO_buffer[i] = ((uint32_t)result[j] << 16) + (result[j + 1] << 8) + result[j + 2]; etag = (0b00111000 & result[j + 2]) >> 3; ptag = 0b00000111 & result[j + 2]; if (ptag != 0b111 && ReadAllPaceOnce == 0) { ReadAllPaceOnce = 1; // This will prevent extra read of PACE, once group // 0-5 is read ONCE. adr = PACE0_FIFO_BURST; data_array[0] = ((adr << 1) & 0xff) | 1; // For Read Or with 1 success = SPI_Transmit(&data_array[0], 1, &result[0], 10); max30001_PACE[0] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; max30001_PACE[1] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; max30001_PACE[2] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; adr = PACE1_FIFO_BURST; data_array[0] = ((adr << 1) & 0xff) | 1; // For Read Or with 1 success = SPI_Transmit(&data_array[0], 1, &result[0], 10); max30001_PACE[3] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; max30001_PACE[4] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; max30001_PACE[5] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; adr = PACE2_FIFO_BURST; data_array[0] = ((adr << 1) & 0xff) | 1; // For Read Or with 1 success = SPI_Transmit(&data_array[0], 1, &result[0], 10); max30001_PACE[6] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; max30001_PACE[7] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; max30001_PACE[8] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; adr = PACE3_FIFO_BURST; data_array[0] = ((adr << 1) & 0xff) | 1; // For Read Or with 1 success = SPI_Transmit(&data_array[0], 1, &result[0], 10); max30001_PACE[9] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; max30001_PACE[10] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; max30001_PACE[11] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; adr = PACE4_FIFO_BURST; data_array[0] = ((adr << 1) & 0xff) | 1; // For Read Or with 1 success = SPI_Transmit(&data_array[0], 1, &result[0], 10); max30001_PACE[12] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; max30001_PACE[13] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; max30001_PACE[14] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; adr = PACE5_FIFO_BURST; data_array[0] = ((adr << 1) & 0xff) | 1; // For Read Or with 1 success = SPI_Transmit(&data_array[0], 1, &result[0], 10); max30001_PACE[15] = (uint32_t)(result[1] << 16) + (result[2] << 8) + result[3]; max30001_PACE[16] = (uint32_t)(result[4] << 16) + (result[5] << 8) + result[6]; max30001_PACE[17] = (uint32_t)(result[7] << 16) + (result[8] << 8) + result[9]; dataAvailable(MAX30001_DATA_PACE, max30001_PACE, 18); // Send out the Pace data once only } } if (etag != 0b110) { dataAvailable(MAX30001_DATA_ECG, max30001_ECG_FIFO_buffer, (max30001_mngr_int.bit.e_fit + 1)); } } /* End of ECG init */ /* RtoR */ if (max30001_status.bit.rrint == 1) { if (max30001_reg_read(RTOR, &max30001_RtoR_data) == -1) { return -1; } max30001_RtoR_data = (0x00FFFFFF & max30001_RtoR_data) >> 10; hspValMax30001.R2R = (uint16_t)max30001_RtoR_data; hspValMax30001.fmstr = (uint16_t)max30001_cnfg_gen.bit.fmstr; dataAvailable(MAX30001_DATA_RTOR, &max30001_RtoR_data, 1); } // Handling BIOZ data... if (max30001_status.bit.bint == 1) { adr = 0x22; data_array[0] = ((adr << 1) & 0xff) | 1; /* [(BFIT+1)*3byte]+1extra byte due to the addr */ if (SPI_Transmit(&data_array[0], 1, &result[0],((max30001_mngr_int.bit.b_fit + 1) * 3) + 1) == -1) // Make a copy of the FIFO over here... { return -1; } btag = 0b00000111 & result[3]; /* Put the content of the FIFO based on the BFIT value, We ignore the * result[0] and start concatenating indexes: 1,2,3 - 4,5,6 - 7,8,9 - */ for (i = 0, j = 0; i < max30001_mngr_int.bit.b_fit + 1; i++, j = j + 3) // index1=23-16 bit, index2=15-8 bit, index3=7-0 bit { max30001_BIOZ_FIFO_buffer[i] = ((uint32_t)result[j + 1] << 16) + (result[j + 2] << 8) + result[j + 3]; } if (btag != 0b110) { dataAvailable(MAX30001_DATA_BIOZ, max30001_BIOZ_FIFO_buffer, 8); } } ret_val = 0; if (max30001_status.bit.dcloffint == 1) // ECG/BIOZ Lead Off { dcloffint_OneShot = 1; max30001_DCLeadOff = 0; max30001_DCLeadOff = max30001_DCLeadOff | (max30001_cnfg_gen.bit.en_dcloff << 8) | (max30001_status.all & 0x00000F); dataAvailable(MAX30001_DATA_LEADOFF_DC, &max30001_DCLeadOff, 1); // Do a FIFO Reset max30001_reg_write(FIFO_RST, 0x000000); ret_val = 0b100; } else if (dcloffint_OneShot == 1 && max30001_status.bit.dcloffint == 0) // Just send once when it comes out of dc lead off { max30001_DCLeadOff = 0; max30001_DCLeadOff = max30001_DCLeadOff | (max30001_cnfg_gen.bit.en_dcloff << 8) | (max30001_status.all & 0x00000F); dataAvailable(MAX30001_DATA_LEADOFF_DC, &max30001_DCLeadOff, 1); dcloffint_OneShot = 0; } if (max30001_status.bit.bover == 1 || max30001_status.bit.bundr == 1) // BIOZ AC Lead Off { acloffint_OneShot = 1; max30001_ACLeadOff = 0; max30001_ACLeadOff = max30001_ACLeadOff | ((max30001_status.all & 0x030000) >> 16); dataAvailable(MAX30001_DATA_LEADOFF_AC, &max30001_ACLeadOff, 1); // Do a FIFO Reset max30001_reg_write(FIFO_RST, 0x000000); ret_val = 0b1000; } else if (acloffint_OneShot == 1 && max30001_status.bit.bover == 0 && max30001_status.bit.bundr == 0) // Just send once when it comes out of ac lead off { max30001_ACLeadOff = 0; max30001_ACLeadOff = max30001_ACLeadOff | ((max30001_status.all & 0x030000) >> 16); dataAvailable(MAX30001_DATA_LEADOFF_AC, &max30001_ACLeadOff, 1); acloffint_OneShot = 0; } if (max30001_status.bit.bcgmon == 1) // BIOZ BCGMON check { bcgmon_OneShot = 1; max30001_bcgmon = 0; max30001_bcgmon = max30001_bcgmon | ((max30001_status.all & 0x000030) >> 4); dataAvailable(MAX30001_DATA_BCGMON, &max30001_bcgmon, 1); // Do a FIFO Reset max30001_reg_write(FIFO_RST, 0x000000); ret_val = 0b10000; } else if (bcgmon_OneShot == 1 && max30001_status.bit.bcgmon == 0) { max30001_bcgmon = 0; max30001_bcgmon = max30001_bcgmon | ((max30001_status.all & 0x000030) >> 4); bcgmon_OneShot = 0; dataAvailable(MAX30001_DATA_BCGMON, &max30001_bcgmon, 1); } #if 0 if(max30001_status.bit.lonint == 1) // AC LeadON Check { max30001_LeadOn = 0; max30001_reg_read(STATUS,&max30001_status.all); // Reading is important max30001_LeadOn = max30001_LeadOn | (max30001_cnfg_gen.bit.en_ulp_lon << 8) | ((max30001_status.all & 0x000800) >> 11); // 0b01 will mean ECG Lead On, 0b10 will mean BIOZ Lead On // LEAD ON has been detected... Now take actions } #endif if (max30001_status.bit.lonint == 1 && acleadon_OneShot == 0) // AC LeadON Check, when lead is on { max30001_LeadOn = 0; max30001_reg_read(STATUS, &max30001_status.all); // Reading is important max30001_LeadOn = max30001_LeadOn | (max30001_cnfg_gen.bit.en_ulp_lon << 8) | ((max30001_status.all & 0x000800) >> 11); // 0b01 will mean ECG Lead On, 0b10 will mean BIOZ Lead On // LEAD ON has been detected... Now take actions acleadon_OneShot = 1; dataAvailable(MAX30001_DATA_ACLEADON, &max30001_LeadOn, 1); // One shot data will be sent... } else if (max30001_status.bit.lonint == 0 && acleadon_OneShot == 1) { max30001_LeadOn = 0; max30001_reg_read(STATUS, &max30001_status.all); max30001_LeadOn = max30001_LeadOn | (max30001_cnfg_gen.bit.en_ulp_lon << 8) | ((max30001_status.all & 0x000800) >> 11); // 0b01 will mean ECG Lead On, 0b10 will mean BIOZ Lead On dataAvailable(MAX30001_DATA_ACLEADON, &max30001_LeadOn, 1); // One shot data will be sent... acleadon_OneShot = 0; } return ret_val; } //****************************************************************************** int MAX30001::max30001_int_handler(void) { static uint32_t InitReset = 0; int8_t return_value; max30001_reg_read(STATUS, &max30001_status.all); // Inital Reset and any FIFO over flow invokes a FIFO reset if (InitReset == 0 || max30001_status.bit.eovf == 1 || max30001_status.bit.bovf == 1 || max30001_status.bit.povf == 1) { // Do a FIFO Reset max30001_reg_write(FIFO_RST, 0x000000); InitReset++; return 2; } return_value = 0; // The four data handling goes on over here if (max30001_status.bit.eint == 1 || max30001_status.bit.pint == 1 || max30001_status.bit.bint == 1 || max30001_status.bit.rrint == 1) { return_value = return_value | max30001_FIFO_LeadONOff_Read(); } // ECG/BIOZ DC Lead Off test if (max30001_status.bit.dcloffint == 1) { return_value = return_value | max30001_FIFO_LeadONOff_Read(); } // BIOZ AC Lead Off test if (max30001_status.bit.bover == 1 || max30001_status.bit.bundr == 1) { return_value = return_value | max30001_FIFO_LeadONOff_Read(); } // BIOZ DRVP/N test using BCGMON. if (max30001_status.bit.bcgmon == 1) { return_value = return_value | max30001_FIFO_LeadONOff_Read(); } if (max30001_status.bit.lonint == 1) // ECG Lead ON test: i.e. the leads are touching the body... { max30001_FIFO_LeadONOff_Read(); } return return_value; } /// function pointer to the async callback static event_callback_t functionpointer; /// flag used to indicate an async xfer has taken place static volatile int xferFlag = 0; /** * @brief Callback handler for SPI async events * @param events description of event that occurred */ static void spiHandler(int events) { xferFlag = 1; } /** * @brief Transmit and recieve QUAD SPI data * @param tx_buf pointer to transmit byte buffer * @param tx_size number of bytes to transmit * @param rx_buf pointer to the recieve buffer * @param rx_size number of bytes to recieve */ int MAX30001::SPI_Transmit(const uint8_t *tx_buf, uint32_t tx_size, uint8_t *rx_buf, uint32_t rx_size) { xferFlag = 0; int i; for (i = 0; i < sizeof(buffer); i++) { if (i < tx_size) buffer[i] = tx_buf[i]; else buffer[i] = 0xFF; } spi->transfer<uint8_t>(buffer, (int)rx_size, rx_buf, (int)rx_size, spiHandler /* functionpointer */); while (xferFlag == 0); return 0; } //****************************************************************************** void MAX30001::max30001_ReadHeartrateData(max30001_t *_hspValMax30001) { _hspValMax30001->R2R = hspValMax30001.R2R; _hspValMax30001->fmstr = hspValMax30001.fmstr; } //****************************************************************************** void MAX30001::onDataAvailable(PtrFunction _onDataAvailable) { onDataAvailableCallback = _onDataAvailable; } /** * @brief Used to notify an external function that interrupt data is available * @param id type of data available * @param buffer 32-bit buffer that points to the data * @param length length of 32-bit elements available */ void MAX30001::dataAvailable(uint32_t id, uint32_t *buffer, uint32_t length) { if (onDataAvailableCallback != NULL) { (*onDataAvailableCallback)(id, buffer, length); } } /** * @brief Callback handler for SPI async events * @param events description of event that occurred */ void MAX30001::spiHandler(int events) { xferFlag = 1; } //****************************************************************************** static int allowInterrupts = 0; void MAX30001Mid_IntB_Handler(void) { if (allowInterrupts == 0) return; MAX30001::instance->max30001_int_handler(); } void MAX30001Mid_Int2B_Handler(void) { if (allowInterrupts == 0) return; MAX30001::instance->max30001_int_handler(); } void MAX30001_AllowInterrupts(int state) { allowInterrupts = state; }