I2C not yet integrated

Dependencies:   mbed

Tested working with single and differential voltages.

Connect SCL (pin 11) to D15 Connect SDA (pin 10) to D14 Connect pin 16 to +5v Connect pin 9 to gnd

LT_I2C.cpp

Committer:
lrdawg99
Date:
2016-11-16
Revision:
0:1473318f27b6
Child:
1:4e4194db7cd6

File content as of revision 0:1473318f27b6:


/*!
LT_I2C: Routines to communicate with ATmega328P's hardware I2C port.

@verbatim

LT_I2C contains the low level routines to communicate with devices using the
ATMega328's onboard hardware I2C port. Each routine checks the Two Wire Status
Register (TWSR) at the end of the transaction and returns 0 if successful and 1
if not successful.

I2C Frequency = (CPU Clock frequency)/(16+2(TWBR)*Prescaler)

TWBR-Two Wire Bit Rate Register
TWCR=Two Wire Control Register (TWINT TWEA TWSTA TWSTO TWWC TWEN - TWIE)
TWSR=Two Wire Status Register

Prescaler Values:
TWSR1  TWSR0  Prescaler
   0      0      1
   0      1      4
   1      0      16
   1      1      64

Examples:
CPU Frequency = 16Mhz on Arduino Uno
I2C Frequency  Prescaler  TWSR1  TWSR0  TWBR
  1khz         64         1      1      125
  10khz        64         1      1      12
  50khz        16         1      0      10
  100khz        4         0      1      18
  400khz        1         0      0      12

@endverbatim

REVISION HISTORY
$Revision: 5469 $
$Date: 2016-07-22 17:01:32 -0700 (Fri, 22 Jul 2016) $

Copyright (c) 2013, Linear Technology Corp.(LTC)
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this
   list of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice,
   this list of conditions and the following disclaimer in the documentation
   and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of Linear Technology Corp.

The Linear Technology Linduino is not affiliated with the official Arduino team.
However, the Linduino is only possible because of the Arduino team's commitment
to the open-source community.  Please, visit http://www.arduino.cc and
http://store.arduino.cc , and consider a purchase that will help fund their
ongoing work.
*/

//! @defgroup LT_I2C LT_I2C: Routines to Communicate With ATmega328P's hardware I2C port.

/*! @file
    @ingroup LT_I2C
    Library for LT_I2C: Routines to Communicate With ATmega328P's hardware I2C port.
*/

//#include <Arduino.h>
#include <stdint.h>
//#include <util/delay.h>
#include "Linduino.h"
#include "LT_I2C.h"

//! CPU master clock frequency
#ifndef F_CPU
#define F_CPU 16000000UL
#endif

// Read a byte, store in "value".
int8_t i2c_read_byte(uint8_t address, uint8_t *value)
{
  //uint8_t ret=0;
//  if (i2c_start()!=0)                                //I2C START
//    return(1);                                  //Stop and return 0 if START fail
//  ret |= i2c_write((address<<1)|I2C_READ_BIT);                // Write the I2C 7-bit address with R bit
//  if (ret != 0)                                   // Returns 1 if failed
//    return(1);
//
//  *value = i2c_read(WITH_NACK);                           // Read byte from I2C Bus with NAK
//  i2c_stop();                                     //I2C STOP
//  return(0);                                      // Return success
    return 0;

}

// Write "value" byte to device at "address"
int8_t i2c_write_byte(uint8_t address, uint8_t value)
{
  //int8_t ret= 0 ;
//
//  if (i2c_start()!=0)                                //I2C START
//    return(1);                                  //Stop and return 0 if START fail
//  ret |= i2c_write((address<<1)|I2C_WRITE_BIT);        //Write the I2C 7 bit address with W bit
//  ret |= i2c_write(value);            //Write value
//  i2c_stop();                         //I2C STOP
//  if (ret!=0)                            // Returns 1 if failed
//    return(1);
//  return(0);                          // Returns 0 if success
    return 0;
}

// Read a byte of data at register specified by "command", store in "value"
int8_t i2c_read_byte_data(uint8_t address, uint8_t command, uint8_t *value)
{
  //int8_t ret = 0;
//  if (i2c_start()!=0)                                //I2C START
//    return(1);                                  //Stop and return 0 if START fail
//  ret |= i2c_write((address<<1)|I2C_WRITE_BIT);        // Write 7 bit address with W bit
//  ret|= i2c_write(command);                 // Set register to be read to command
//  if (i2c_start()!=0)                                 //I2C repeated START
//  {
//    i2c_stop();                                 //Attempt to issue I2C STOP
//    return(1);                                  //Stop and return 0 if START fail
//  }
//  ret |= i2c_write((address<<1)|I2C_READ_BIT);     // Write 7 bit address with R bit
//  *value = i2c_read(WITH_NACK);               // Read byte from buffer with NAK
//  i2c_stop();                         // I2C STOP
//  if (ret!=0)                         //If there was a NAK return 1
//    return(1);
//  return(0);                     // Return success
    return 0;
}

// Write a byte of data to register specified by "command"
int8_t i2c_write_byte_data(uint8_t address, uint8_t command, uint8_t value)
{
  //int8_t ret = 0;
//
//  if (i2c_start()!=0)                                //I2C START
//    return(1);                                  //Stop and return 0 if START fail
//  ret |= i2c_write((address<<1)|I2C_WRITE_BIT);        // Write 7 bit address with W bit
//  ret|= i2c_write(command);                 // Set register to be read to command
//  ret|= i2c_write(value);
//  i2c_stop();                        // I2C STOP
//
//  if (ret!=0)                         //If there was a NAK return 1
//    return(1);
//  return(0);                     // Return success
    return 0;
}

// Read a 16-bit word of data from register specified by "command"
int8_t i2c_read_word_data(uint8_t address, uint8_t command, uint16_t *value)
{
  //int8_t ret = 0;
//
//  union
//  {
//    uint8_t b[2];
//    uint16_t w;
//  } data;
//
//
//  if (i2c_start()!=0)                                //I2C START
//    return(1);                                  //Stop and return 0 if START fail
//  ret |= i2c_write((address<<1)|I2C_WRITE_BIT);        // Write 7 bit address with W bit
//  ret |= i2c_write(command);                 // Set register to be read to command
//  if (i2c_start()!=0)                                 //I2C START
//  {
//    i2c_stop();                                 //Attempt to issue I2C STOP
//    return(1);                                  //Stop and return 0 if START fail
//  }
//  ret |= i2c_write((address<<1)|I2C_READ_BIT);     // Write 7 bit address with R bit
//
//  data.b[1] = i2c_read(WITH_ACK);                        // Read MSB from buffer
//  data.b[0] = i2c_read(WITH_NACK);                        // Read LSB from buffer
//  i2c_stop();                         //I2C STOP
//
//  *value = data.w;
//
//  if (ret!=0)                         //If NAK
//    return (1);                     //return 1
//  return(0);                                      // Return success
    return 0;
}

// Write a 16-bit word of data to register specified by "command"
int8_t i2c_write_word_data(uint8_t address, uint8_t command, uint16_t value)
{
  //int8_t ret=0;
//
//  union
//  {
//    uint8_t b[2];
//    uint16_t w;
//  } data;
//  data.w = value;
//
//  if (i2c_start()!=0)                                //I2C START
//    return(1);                                  //Stop and return 0 if START fail
//  ret |= i2c_write((address<<1)|I2C_WRITE_BIT);       // Write 7 bit address with W bit
//  ret|= i2c_write(command);                 // Set register to be read to command
//  ret|= i2c_write(data.b[1]);         //Write MSB
//  ret|= i2c_write(data.b[0]);         //Write LSB;
//
//  i2c_stop();                        // I2C STOP
//
//  if (ret!=0)                         //If there was a NAK return 1
//    return(1);
//  return(0);

    return 0;
}

// Read a block of data, starting at register specified by "command" and ending at (command + length - 1)
int8_t i2c_read_block_data(uint8_t address, uint8_t command, uint8_t length, uint8_t *values)
{
  //uint8_t i = (length-1);
//  int8_t ret = 0;
//
//  if (i2c_start()!=0)                                //I2C START
//    return(1);                                  //Stop and return 0 if START fail
//  ret |= i2c_write((address<<1)|I2C_WRITE_BIT);       //Write 7-bit address with W bit
//  if (ret!=0)   //If NACK return 1
//  {
//    i2c_stop();                         //I2C STOP
//    return(1);
//  }
//  ret|= i2c_write(command);                           //Write 8 bit command word
//  if (ret!=0)   //If NACK return 1
//  {
//    i2c_stop();                         //I2C STOP
//    return(1);
//  }
//  if (i2c_start()!=0)                                 //I2C repeated START
//  {
//    i2c_stop();                                 //Attempt to issue I2C STOP
//    return(1);                                  //Stop and return 0 if START fail
//  }
//  ret |= i2c_write((address<<1)|I2C_READ_BIT);        //Write 7-bit address with R bit
//
//  if (ret!=0)   //If NACK return 1
//  {
//    i2c_stop();                         //I2C STOP
//    return(1);
//  }
//  while (i>0)                         //Begin read loop
//  {
//    values[i] = i2c_read(WITH_ACK); //Read from bus with ACK
//    i--;
//  }
//
//  values[0] = i2c_read(WITH_NACK);    //Read from bus with NACK for the last one;
//
//  i2c_stop();                         //I2C STOP
//
//
//  return(0);                           // Success!
    return 0;
}


// Read a block of data, no command byte, reads length number of bytes and stores it in values.
int8_t i2c_read_block_data(uint8_t address, uint8_t length, uint8_t *values)
{
  //uint8_t i = (length-1);
//  int8_t ret = 0;
//
//  if (i2c_start()!=0)                                //I2C START
//    return(1);                                  //Stop and return 0 if START fail
//  ret |= i2c_write((address<<1)|I2C_READ_BIT);        //Write 7-bit address with R bit
//
//  if (ret!=0)   //If NACK return 1
//  {
//    i2c_stop();                         //I2C STOP
//    return(1);
//  }
//  while (i>0)                         //Begin read loop
//  {
//    values[i] = i2c_read(WITH_ACK); //Read from bus with ACK
//    i--;
//  }
//
//  values[0] = i2c_read(WITH_NACK);    //Read from bus with NACK for the last one;
//
//  i2c_stop();                         //I2C STOP
//
//
//  return(0);                           // Success!
    return 0;
}


// Write a block of data, starting at register specified by "command" and ending at (command + length - 1)
int8_t i2c_write_block_data(uint8_t address, uint8_t command, uint8_t length, uint8_t *values)
{
 // int8_t i = length-1;
//  int8_t ret = 0;
//
//  if (i2c_start()!=0)                                //I2C START
//    return(1);                                  //Stop and return 0 if START fail
//  ret |= i2c_write((address<<1)|I2C_WRITE_BIT);        // Write 7 bit address with W bit
//  ret|= i2c_write(command);           // Set register to be read to command
//
//  while (i>=0)
//  {
//    ret|= i2c_write(values[i]);     //Write Value
//    i--;
//  }
//  i2c_stop();                        // I2C STOP
//
//  if (ret!=0)
//    return(1);
//  else
//    return(0);                      // Success!
    return 0;
}

// Write two command bytes, then receive a block of data
int8_t i2c_two_byte_command_read_block(uint8_t address, uint16_t command, uint8_t length, uint8_t *values)
{
//
//  int8_t ret = 0;
//
//  union
//  {
//    uint8_t b[2];
//    uint16_t w;
//  } comm;
//  comm.w = command;
//
//  uint8_t i = (length-1);
//
//
//  if (i2c_start()!=0)                                //I2C START
//    return(1);                                  //Stop and return 0 if START fail
//  ret |= i2c_write((address<<1)|I2C_WRITE_BIT);           //Write 7-bit address with W bit
//  ret |= i2c_write(comm.b[1]);                             //Write MSB command word
//  ret |= i2c_write(comm.b[0]);                             // Write LSB of command
//  if (i2c_start()!=0)                                 //I2C repeated START
//  {
//    i2c_stop();                                 //Attempt to issue I2C STOP
//    return(1);                                  //Stop and return 0 if START fail
//  }
//  ret |= i2c_write((address<<1)|I2C_READ_BIT);            //Write 7-bit address with R bit
//  if (ret!=0)                                              //If NACK return 1
//  {
//    i2c_stop();
//    return(1);
//  }
//  while (i> 0)                         //Begin read loop
//  {
//    values[i] = i2c_read(WITH_ACK); //Read from bus with ACK
//    i--;
//  }
//
//  values[0] = i2c_read(WITH_NACK);    //Read from bus with NACK for the last one;
//  i2c_stop();                         //I2C STOP
//
//
//  return(0);                           // Success!
    return 0;
}

// Initializes Linduino I2C port.
// Before communicating to the I2C port throught the QuikEval connector, you must also run
// quikeval_I2C_connect to connect the I2C port to the QuikEval connector throught the
// QuikEval MUX (and disconnect SPI).
void quikeval_I2C_init(void)
{
//  i2c_enable();  //! 1) Enable the I2C port;
}

// Switch MUX to connect I2C pins to QuikEval connector.
// This will disconnect SPI pins.
void quikeval_I2C_connect(void)
{
  //// Enable I2C
//  pinMode(QUIKEVAL_MUX_MODE_PIN, OUTPUT);       //! 1) Set Mux pin as an output
//  if (digitalRead(QUIKEVAL_MUX_MODE_PIN) == LOW) //! 2) If pin is already high, do nothing
//  {
//    digitalWrite(QUIKEVAL_MUX_MODE_PIN, HIGH);  //! 3) Set the Mux pin to high
//    delay(55);                                  //! 4) And wait for LTC4315 to connect (required for rev B)
//  }
}

// Setup the hardware I2C interface.
// i2c_enable or quikeval_I2C_init must be called before using any of the other I2C routines.
void i2c_enable()
{
 // // set these for 100KHz to match the DC590
//  TWSR = (HARDWARE_I2C_PRESCALER_4 & 0x03);  //! 1) set the prescaler bits
//  TWBR = 18;                                 //! 2) set the bit rate

}


// Write start bit to the hardware I2C port
// return 0 if successful, 1 if not successful
int8_t i2c_start()
{
  //uint8_t result;
//  uint16_t timeout;
//  TWCR=(1<<TWINT) | (1<<TWSTA) | (1<<TWEN);                 //! 1) I2C start
//  for (timeout = 0; timeout < HW_I2C_TIMEOUT; timeout++)    //! 2) START the timeout loop
//  {
//    _delay_us(1);
//    if (TWCR & (1 << TWINT)) break;                         //! 3) Check the TWINT bit in TWCR
//  }
//  result=(TWSR & 0xF8);                                     //! 4) Mask the status
//  if ((result == STATUS_START) || (result == STATUS_REPEATED_START))
//    return(0);                                              //! 5) Return status
//  else
//    return(1);
    return 0;
}

// Write a repeat start bit to the hardware I2C port
// return 0 if successful, 1 if not successful
int8_t i2c_repeated_start()
{
  //uint8_t result;
//  uint16_t timeout;
//  TWCR=(1<<TWINT) | (1<<TWSTA) | (1<<TWEN);                 //! 1) I2C repeated start
//  for (timeout = 0; timeout < HW_I2C_TIMEOUT; timeout++)    //! 2) START the timeout loop
//  {
//    _delay_us(1);
//    if (TWCR & (1 << TWINT)) break;                         //! 3) Check the TWINT bit in TWCR
//  }
//  result=(TWSR & 0xF8);                                     //! 4) Mask the status
//  if (result == STATUS_REPEATED_START)
//    return(0);                                              //! 5) Return status
//  else
//    return(1);
    return 0;
}

// Write stop bit to the hardware I2C port
void i2c_stop()
{
  //TWCR=(1<<TWINT) | (1<<TWEN) | (1<<TWSTO);  //! 1) I2C stop
//  while (TWCR & (1<<TWSTO));                 //! 2) Wait for stop to complete
}

// Send a data byte to hardware I2C port
// return 0 if successful, 1 if not successful
int8_t i2c_write(uint8_t data)
{
 // uint8_t result;
//  uint16_t timeout;
//  TWDR = data;                                              //! 1) Load data register
//  TWCR =(1<<TWINT) | (1<<TWEN);                             //! 2) START transaction
//  for (timeout = 0; timeout < HW_I2C_TIMEOUT; timeout++)    //! 3) START the timeout loop
//  {
//    _delay_us(1);
//    if (TWCR & (1 << TWINT)) break;                         //! 4) Check the TWINT bit in TWCR
//  }
//  result=(TWSR & 0xF8);                                     //! 5) Update status
//  // For a generic write, need to consider all three of these cases (processor specific, some may not be this detailed.)
//  if ((result == STATUS_WRITE_ACK) || (result == STATUS_ADDRESS_WRITE_ACK) || (result == STATUS_ADDRESS_READ_ACK))
//    return(0);                                              //! 6) Return status
//  else
//    return(1);
    return 0;
}

// Read a data byte from the hardware I2C port.
// Returns the data byte read.
uint8_t i2c_read(int8_t ack)
{
  //uint8_t result;
//  uint8_t return_value = 1;
//  uint16_t timeout;
//  uint8_t data;
//  if (ack == 0)
//  {
//    TWCR=(1<<TWINT) | (1<<TWEN) | (1<<TWEA);                //! 1) START transaction with ack
//    for (timeout = 0; timeout < HW_I2C_TIMEOUT; timeout++)  //! 2) START timeout loop
//    {
//      _delay_us(1);
//      if (TWCR & (1 << TWINT)) break;                       //! 3) Check the TWINT bit in TWCR
//    }
//    data = TWDR;                                            //! 4) Get data
//    result = TWSR & 0xF8;                                   //! 5) Update status
//    if (result == STATUS_READ_ACK) return_value = 0;
//  }
//  else
//  {
//    TWCR=(1<<TWINT) | (1<<TWEN);                            //! 6) START transaction with NACK
//    for (timeout = 0; timeout < HW_I2C_TIMEOUT; timeout++)
//    {
//      _delay_us(1);
//      if (TWCR & (1 << TWINT)) break;                       //! 7) Check the TWINT bit in TWCR
//    }
//    data = TWDR;                                            //! 8) Get data
//    result = TWSR & 0xF8;                                   //! 9) Update status
//    if (result == STATUS_READ_NACK) return_value = 0;
//  }
//  return(data);
    return 0;
}

// Poll the I2C port and look for an acknowledge
// Returns 0 if successful, 1 if not successful
int8_t i2c_poll(uint8_t i2c_address)

{
  //int8_t ack=0;
//  ack |= i2c_start();                                  //! 1) I2C start
//  ack |= i2c_write((i2c_address<<1) | I2C_WRITE_BIT); //! 2) I2C address + !write
//  i2c_stop();                                   //! 3) I2C stop
//  return(ack);                                  //! 4) Return ack status
    return 0;
}