fork of what I have been writing

Dependencies:   Crypto

ES_CW2_Starter_STARFISH/main.cpp

Committer:
kubitz
Date:
2020-03-01
Revision:
7:aef5b29d7a7c
Parent:
6:5f4a954cb8bc
Child:
8:c30a4106d08c

File content as of revision 7:aef5b29d7a7c:


#include "mbed.h"
#include "SHA256.h"
#include "rtos.h"
#include<string.h>

typedef struct {
  uint8_t hash[32]; /* hash of successful nonce             */
} mail_t;
Timer timer_nonce;
Mail<mail_t, 16> crypto_mail;
Mail<uint8_t, 8> inCharQ;
RawSerial pc;
Thread thread_crypto;
Thread thread_processor; 


uint8_t sequence[] = {0x45,0x6D,0x62,0x65,0x64,0x64,0x65,0x64,
0x20,0x53,0x79,0x73,0x74,0x65,0x6D,0x73,
0x20,0x61,0x72,0x65,0x20,0x66,0x75,0x6E,
0x20,0x61,0x6E,0x64,0x20,0x64,0x6F,0x20,
0x61,0x77,0x65,0x73,0x6F,0x6D,0x65,0x20,
0x74,0x68,0x69,0x6E,0x67,0x73,0x21,0x20,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
uint64_t* key = (uint64_t*)&sequence[48];
uint64_t* nonce = (uint64_t*)&sequence[56];
uint32_t successful_nonce = 0;
uint32_t last_nonce_number = 0;

uint8_t hash[32];
uint32_t previous_time;
//Photointerrupter input pins
#define I1pin D3
#define I2pin D6
#define I3pin D5

//Incremental encoder input pins
#define CHApin   D12
#define CHBpin   D11

//Motor Drive output pins   //Mask in output byte
#define L1Lpin D1           //0x01
#define L1Hpin A3           //0x02
#define L2Lpin D0           //0x04
#define L2Hpin A6          //0x08
#define L3Lpin D10           //0x10
#define L3Hpin D2          //0x20

#define PWMpin D9

//Motor current sense
#define MCSPpin   A1
#define MCSNpin   A0

//Test outputs
#define TP0pin D4
#define TP1pin D13
#define TP2pin A2

//Mapping from sequential drive states to motor phase outputs
/*
State   L1  L2  L3
0       H   -   L
1       -   H   L
2       L   H   -
3       L   -   H
4       -   L   H
5       H   L   -
6       -   -   -
7       -   -   -
*/
//Drive state to output table
const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00};

//Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07};  
//const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed

//Phase lead to make motor spin
const int8_t lead = 2;  //2 for forwards, -2 for backwards

//Status LED
DigitalOut led1(LED1);

//Photointerrupter inputs
InterruptIn I1(I1pin);
InterruptIn I2(I2pin);
InterruptIn I3(I3pin);

//Motor Drive outputs
DigitalOut L1L(L1Lpin);
DigitalOut L1H(L1Hpin);
DigitalOut L2L(L2Lpin);
DigitalOut L2H(L2Hpin);
DigitalOut L3L(L3Lpin);
DigitalOut L3H(L3Hpin);

DigitalOut TP1(TP1pin);
PwmOut MotorPWM(PWMpin);

int8_t orState = 0;    //Rotot offset at motor state 0
int8_t intState = 0;
int8_t intStateOld = 0;
    

//Set a given drive state
void motorOut(int8_t driveState){
    
    //Lookup the output byte from the drive state.
    int8_t driveOut = driveTable[driveState & 0x07];
      
    //Turn off first
    if (~driveOut & 0x01) L1L = 0;
    if (~driveOut & 0x02) L1H = 1;
    if (~driveOut & 0x04) L2L = 0;
    if (~driveOut & 0x08) L2H = 1;
    if (~driveOut & 0x10) L3L = 0;
    if (~driveOut & 0x20) L3H = 1;
    
    //Then turn on
    if (driveOut & 0x01) L1L = 1;
    if (driveOut & 0x02) L1H = 0;
    if (driveOut & 0x04) L2L = 1;
    if (driveOut & 0x08) L2H = 0;
    if (driveOut & 0x10) L3L = 1;
    if (driveOut & 0x20) L3H = 0;
    }
    
    //Convert photointerrupter inputs to a rotor state
inline int8_t readRotorState(){
    return stateMap[I1 + 2*I2 + 4*I3];
    }

//Basic synchronisation routine    
int8_t motorHome() {
    //Put the motor in drive state 0 and wait for it to stabilise
    motorOut(0);
    wait(2.0);
    
    //Get the rotor state
    return readRotorState();
}

void move() {
    intState = readRotorState();
    motorOut((intState-orState+lead+6)%6); //+6 to make sure the remainder is positive
    intStateOld = intState;
}

// Thread to print successful Hashes
void thread_crypto_print() {
    while (true) {
        osEvent evt = crypto_mail.get();
        if (evt.status == osEventMail) {
            mail_t *mail = (mail_t*)evt.value.p;
            for (int i = 0; i < 32; i++)
                printf("%02x", mail->hash[i]);
            printf("\n");
            crypto_mail.free(mail);
        }
    }
}

// Thread processor raw serial inputs: 
void thread_processor(){
    while(true) {
        osEvent newEvent = inCharQ.get();
        if (evt.status == osEventMail){
            uint8_t* newChar = (uint8_t*)newEvent.value.p;
            //Store the new character
            
            inCharQ.free(newChar);
        }
        //Decode the command if it is complete
        
        }
    }

// Put message in Mail box 
void putMessage(uint8_t* hash){
    mail_t *mail = crypto_mail.alloc();
    
    for(int loop = 0; loop < 32; loop++) {
      mail->hash[loop] = hash[loop];
    }
    crypto_mail.put(mail);
    }
// ISR routine to get charachter from Serial command
void serialISR(){
 uint8_t* newChar = inCharQ.alloc();
 *newChar = pc.getc();
 inCharQ.put(newChar);
 }
// Attach interrupt routine on received character
pc.attach(&serialISR);

//Main
int main() {

    const int32_t PWM_PRD = 2500;
    MotorPWM.period_us(PWM_PRD);
    MotorPWM.pulsewidth_us(PWM_PRD);
    
    //Initialise the serial port
    RawSerial pc(SERIAL_TX, SERIAL_RX);
    pc.printf("Hello\n\r");
    
    //Run the motor synchronisation
    orState = motorHome();
    pc.printf("Rotor origin: %x\n\r",orState);
    
    I1.rise(&move);
    I1.fall(&move);
    I2.rise(&move);
    I2.fall(&move);
    I3.rise(&move);
    I3.fall(&move);
    timer_nonce.start();
    pc.printf("time is %d\n\r", timer_nonce.read_ms()); 
    pc.printf("time is %d\n\r", (timer_nonce.read_ms()-previous_time)); 
    uint8_t hash[32];
    thread_crypto.start(thread_crypto_print);
    thread_processor.start(thread_processor); 
    while (1){

        *nonce = *nonce + 1;

        SHA256::computeHash(hash, (uint8_t*)sequence, 64);

        if ((hash[0]==0)&&(hash[1]==0)){
            last_nonce_number = successful_nonce;
            successful_nonce++;
            putMessage(hash);
            }
            
        if ((timer_nonce.read_ms()-previous_time) > 1000){
            pc.printf("Computation Rate: %lu computation /sec\n\r" , (*nonce-last_nonce_number));
            last_nonce_number = *nonce;
            previous_time = timer_nonce.read_ms();

            }   
        
        }

        return 0;
    
    }