fork of what I have been writing

Dependencies:   Crypto

Committer:
kubitz
Date:
Sun Mar 01 15:02:27 2020 +0000
Revision:
7:aef5b29d7a7c
Parent:
6:5f4a954cb8bc
Child:
8:c30a4106d08c
adding rawSerial processor thread

Who changed what in which revision?

UserRevisionLine numberNew contents of line
kubitz 5:de6430aee646 1
kubitz 0:19fd8c1944fb 2 #include "mbed.h"
kubitz 0:19fd8c1944fb 3 #include "SHA256.h"
kubitz 6:5f4a954cb8bc 4 #include "rtos.h"
kubitz 7:aef5b29d7a7c 5 #include<string.h>
kubitz 7:aef5b29d7a7c 6
kubitz 6:5f4a954cb8bc 7 typedef struct {
kubitz 6:5f4a954cb8bc 8 uint8_t hash[32]; /* hash of successful nonce */
kubitz 6:5f4a954cb8bc 9 } mail_t;
kubitz 0:19fd8c1944fb 10 Timer timer_nonce;
kubitz 7:aef5b29d7a7c 11 Mail<mail_t, 16> crypto_mail;
kubitz 7:aef5b29d7a7c 12 Mail<uint8_t, 8> inCharQ;
kubitz 7:aef5b29d7a7c 13 RawSerial pc;
kubitz 6:5f4a954cb8bc 14 Thread thread_crypto;
kubitz 7:aef5b29d7a7c 15 Thread thread_processor;
kubitz 0:19fd8c1944fb 16
kubitz 3:8443825642d1 17
kubitz 0:19fd8c1944fb 18 uint8_t sequence[] = {0x45,0x6D,0x62,0x65,0x64,0x64,0x65,0x64,
kubitz 0:19fd8c1944fb 19 0x20,0x53,0x79,0x73,0x74,0x65,0x6D,0x73,
kubitz 0:19fd8c1944fb 20 0x20,0x61,0x72,0x65,0x20,0x66,0x75,0x6E,
kubitz 0:19fd8c1944fb 21 0x20,0x61,0x6E,0x64,0x20,0x64,0x6F,0x20,
kubitz 0:19fd8c1944fb 22 0x61,0x77,0x65,0x73,0x6F,0x6D,0x65,0x20,
kubitz 0:19fd8c1944fb 23 0x74,0x68,0x69,0x6E,0x67,0x73,0x21,0x20,
kubitz 0:19fd8c1944fb 24 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
kubitz 0:19fd8c1944fb 25 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00};
kubitz 0:19fd8c1944fb 26 uint64_t* key = (uint64_t*)&sequence[48];
kubitz 0:19fd8c1944fb 27 uint64_t* nonce = (uint64_t*)&sequence[56];
kubitz 0:19fd8c1944fb 28 uint32_t successful_nonce = 0;
kubitz 0:19fd8c1944fb 29 uint32_t last_nonce_number = 0;
kubitz 5:de6430aee646 30
kubitz 0:19fd8c1944fb 31 uint8_t hash[32];
kubitz 0:19fd8c1944fb 32 uint32_t previous_time;
kubitz 0:19fd8c1944fb 33 //Photointerrupter input pins
kubitz 0:19fd8c1944fb 34 #define I1pin D3
kubitz 0:19fd8c1944fb 35 #define I2pin D6
kubitz 0:19fd8c1944fb 36 #define I3pin D5
kubitz 0:19fd8c1944fb 37
kubitz 0:19fd8c1944fb 38 //Incremental encoder input pins
kubitz 0:19fd8c1944fb 39 #define CHApin D12
kubitz 0:19fd8c1944fb 40 #define CHBpin D11
kubitz 0:19fd8c1944fb 41
kubitz 0:19fd8c1944fb 42 //Motor Drive output pins //Mask in output byte
kubitz 0:19fd8c1944fb 43 #define L1Lpin D1 //0x01
kubitz 0:19fd8c1944fb 44 #define L1Hpin A3 //0x02
kubitz 0:19fd8c1944fb 45 #define L2Lpin D0 //0x04
kubitz 0:19fd8c1944fb 46 #define L2Hpin A6 //0x08
kubitz 0:19fd8c1944fb 47 #define L3Lpin D10 //0x10
kubitz 0:19fd8c1944fb 48 #define L3Hpin D2 //0x20
kubitz 0:19fd8c1944fb 49
kubitz 0:19fd8c1944fb 50 #define PWMpin D9
kubitz 0:19fd8c1944fb 51
kubitz 0:19fd8c1944fb 52 //Motor current sense
kubitz 0:19fd8c1944fb 53 #define MCSPpin A1
kubitz 0:19fd8c1944fb 54 #define MCSNpin A0
kubitz 0:19fd8c1944fb 55
kubitz 0:19fd8c1944fb 56 //Test outputs
kubitz 0:19fd8c1944fb 57 #define TP0pin D4
kubitz 0:19fd8c1944fb 58 #define TP1pin D13
kubitz 0:19fd8c1944fb 59 #define TP2pin A2
kubitz 0:19fd8c1944fb 60
kubitz 0:19fd8c1944fb 61 //Mapping from sequential drive states to motor phase outputs
kubitz 0:19fd8c1944fb 62 /*
kubitz 0:19fd8c1944fb 63 State L1 L2 L3
kubitz 0:19fd8c1944fb 64 0 H - L
kubitz 0:19fd8c1944fb 65 1 - H L
kubitz 0:19fd8c1944fb 66 2 L H -
kubitz 0:19fd8c1944fb 67 3 L - H
kubitz 0:19fd8c1944fb 68 4 - L H
kubitz 0:19fd8c1944fb 69 5 H L -
kubitz 0:19fd8c1944fb 70 6 - - -
kubitz 0:19fd8c1944fb 71 7 - - -
kubitz 0:19fd8c1944fb 72 */
kubitz 0:19fd8c1944fb 73 //Drive state to output table
kubitz 0:19fd8c1944fb 74 const int8_t driveTable[] = {0x12,0x18,0x09,0x21,0x24,0x06,0x00,0x00};
kubitz 0:19fd8c1944fb 75
kubitz 0:19fd8c1944fb 76 //Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
kubitz 0:19fd8c1944fb 77 const int8_t stateMap[] = {0x07,0x05,0x03,0x04,0x01,0x00,0x02,0x07};
kubitz 0:19fd8c1944fb 78 //const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed
kubitz 0:19fd8c1944fb 79
kubitz 0:19fd8c1944fb 80 //Phase lead to make motor spin
kubitz 0:19fd8c1944fb 81 const int8_t lead = 2; //2 for forwards, -2 for backwards
kubitz 0:19fd8c1944fb 82
kubitz 0:19fd8c1944fb 83 //Status LED
kubitz 0:19fd8c1944fb 84 DigitalOut led1(LED1);
kubitz 0:19fd8c1944fb 85
kubitz 0:19fd8c1944fb 86 //Photointerrupter inputs
kubitz 0:19fd8c1944fb 87 InterruptIn I1(I1pin);
kubitz 0:19fd8c1944fb 88 InterruptIn I2(I2pin);
kubitz 0:19fd8c1944fb 89 InterruptIn I3(I3pin);
kubitz 0:19fd8c1944fb 90
kubitz 0:19fd8c1944fb 91 //Motor Drive outputs
kubitz 0:19fd8c1944fb 92 DigitalOut L1L(L1Lpin);
kubitz 0:19fd8c1944fb 93 DigitalOut L1H(L1Hpin);
kubitz 0:19fd8c1944fb 94 DigitalOut L2L(L2Lpin);
kubitz 0:19fd8c1944fb 95 DigitalOut L2H(L2Hpin);
kubitz 0:19fd8c1944fb 96 DigitalOut L3L(L3Lpin);
kubitz 0:19fd8c1944fb 97 DigitalOut L3H(L3Hpin);
kubitz 0:19fd8c1944fb 98
kubitz 0:19fd8c1944fb 99 DigitalOut TP1(TP1pin);
kubitz 0:19fd8c1944fb 100 PwmOut MotorPWM(PWMpin);
kubitz 0:19fd8c1944fb 101
kubitz 0:19fd8c1944fb 102 int8_t orState = 0; //Rotot offset at motor state 0
kubitz 0:19fd8c1944fb 103 int8_t intState = 0;
kubitz 0:19fd8c1944fb 104 int8_t intStateOld = 0;
kubitz 0:19fd8c1944fb 105
kubitz 0:19fd8c1944fb 106
kubitz 0:19fd8c1944fb 107 //Set a given drive state
kubitz 0:19fd8c1944fb 108 void motorOut(int8_t driveState){
kubitz 0:19fd8c1944fb 109
kubitz 0:19fd8c1944fb 110 //Lookup the output byte from the drive state.
kubitz 0:19fd8c1944fb 111 int8_t driveOut = driveTable[driveState & 0x07];
kubitz 0:19fd8c1944fb 112
kubitz 0:19fd8c1944fb 113 //Turn off first
kubitz 0:19fd8c1944fb 114 if (~driveOut & 0x01) L1L = 0;
kubitz 0:19fd8c1944fb 115 if (~driveOut & 0x02) L1H = 1;
kubitz 0:19fd8c1944fb 116 if (~driveOut & 0x04) L2L = 0;
kubitz 0:19fd8c1944fb 117 if (~driveOut & 0x08) L2H = 1;
kubitz 0:19fd8c1944fb 118 if (~driveOut & 0x10) L3L = 0;
kubitz 0:19fd8c1944fb 119 if (~driveOut & 0x20) L3H = 1;
kubitz 0:19fd8c1944fb 120
kubitz 0:19fd8c1944fb 121 //Then turn on
kubitz 0:19fd8c1944fb 122 if (driveOut & 0x01) L1L = 1;
kubitz 0:19fd8c1944fb 123 if (driveOut & 0x02) L1H = 0;
kubitz 0:19fd8c1944fb 124 if (driveOut & 0x04) L2L = 1;
kubitz 0:19fd8c1944fb 125 if (driveOut & 0x08) L2H = 0;
kubitz 0:19fd8c1944fb 126 if (driveOut & 0x10) L3L = 1;
kubitz 0:19fd8c1944fb 127 if (driveOut & 0x20) L3H = 0;
kubitz 0:19fd8c1944fb 128 }
kubitz 0:19fd8c1944fb 129
kubitz 0:19fd8c1944fb 130 //Convert photointerrupter inputs to a rotor state
kubitz 0:19fd8c1944fb 131 inline int8_t readRotorState(){
kubitz 0:19fd8c1944fb 132 return stateMap[I1 + 2*I2 + 4*I3];
kubitz 0:19fd8c1944fb 133 }
kubitz 0:19fd8c1944fb 134
kubitz 0:19fd8c1944fb 135 //Basic synchronisation routine
kubitz 0:19fd8c1944fb 136 int8_t motorHome() {
kubitz 0:19fd8c1944fb 137 //Put the motor in drive state 0 and wait for it to stabilise
kubitz 0:19fd8c1944fb 138 motorOut(0);
kubitz 0:19fd8c1944fb 139 wait(2.0);
kubitz 0:19fd8c1944fb 140
kubitz 0:19fd8c1944fb 141 //Get the rotor state
kubitz 0:19fd8c1944fb 142 return readRotorState();
kubitz 0:19fd8c1944fb 143 }
kubitz 0:19fd8c1944fb 144
kubitz 0:19fd8c1944fb 145 void move() {
kubitz 0:19fd8c1944fb 146 intState = readRotorState();
kubitz 0:19fd8c1944fb 147 motorOut((intState-orState+lead+6)%6); //+6 to make sure the remainder is positive
kubitz 0:19fd8c1944fb 148 intStateOld = intState;
kubitz 0:19fd8c1944fb 149 }
kubitz 0:19fd8c1944fb 150
kubitz 6:5f4a954cb8bc 151 // Thread to print successful Hashes
kubitz 7:aef5b29d7a7c 152 void thread_crypto_print() {
kubitz 6:5f4a954cb8bc 153 while (true) {
kubitz 7:aef5b29d7a7c 154 osEvent evt = crypto_mail.get();
kubitz 6:5f4a954cb8bc 155 if (evt.status == osEventMail) {
kubitz 6:5f4a954cb8bc 156 mail_t *mail = (mail_t*)evt.value.p;
kubitz 6:5f4a954cb8bc 157 for (int i = 0; i < 32; i++)
kubitz 7:aef5b29d7a7c 158 printf("%02x", mail->hash[i]);
kubitz 7:aef5b29d7a7c 159 printf("\n");
kubitz 7:aef5b29d7a7c 160 crypto_mail.free(mail);
kubitz 6:5f4a954cb8bc 161 }
kubitz 6:5f4a954cb8bc 162 }
kubitz 6:5f4a954cb8bc 163 }
kubitz 6:5f4a954cb8bc 164
kubitz 7:aef5b29d7a7c 165 // Thread processor raw serial inputs:
kubitz 7:aef5b29d7a7c 166 void thread_processor(){
kubitz 7:aef5b29d7a7c 167 while(true) {
kubitz 7:aef5b29d7a7c 168 osEvent newEvent = inCharQ.get();
kubitz 7:aef5b29d7a7c 169 if (evt.status == osEventMail){
kubitz 7:aef5b29d7a7c 170 uint8_t* newChar = (uint8_t*)newEvent.value.p;
kubitz 7:aef5b29d7a7c 171 //Store the new character
kubitz 7:aef5b29d7a7c 172
kubitz 7:aef5b29d7a7c 173 inCharQ.free(newChar);
kubitz 7:aef5b29d7a7c 174 }
kubitz 7:aef5b29d7a7c 175 //Decode the command if it is complete
kubitz 7:aef5b29d7a7c 176
kubitz 7:aef5b29d7a7c 177 }
kubitz 7:aef5b29d7a7c 178 }
kubitz 7:aef5b29d7a7c 179
kubitz 6:5f4a954cb8bc 180 // Put message in Mail box
kubitz 7:aef5b29d7a7c 181 void putMessage(uint8_t* hash){
kubitz 7:aef5b29d7a7c 182 mail_t *mail = crypto_mail.alloc();
kubitz 7:aef5b29d7a7c 183
kubitz 7:aef5b29d7a7c 184 for(int loop = 0; loop < 32; loop++) {
kubitz 7:aef5b29d7a7c 185 mail->hash[loop] = hash[loop];
kubitz 7:aef5b29d7a7c 186 }
kubitz 7:aef5b29d7a7c 187 crypto_mail.put(mail);
kubitz 7:aef5b29d7a7c 188 }
kubitz 7:aef5b29d7a7c 189 // ISR routine to get charachter from Serial command
kubitz 7:aef5b29d7a7c 190 void serialISR(){
kubitz 7:aef5b29d7a7c 191 uint8_t* newChar = inCharQ.alloc();
kubitz 7:aef5b29d7a7c 192 *newChar = pc.getc();
kubitz 7:aef5b29d7a7c 193 inCharQ.put(newChar);
kubitz 7:aef5b29d7a7c 194 }
kubitz 7:aef5b29d7a7c 195 // Attach interrupt routine on received character
kubitz 7:aef5b29d7a7c 196 pc.attach(&serialISR);
kubitz 6:5f4a954cb8bc 197
kubitz 0:19fd8c1944fb 198 //Main
kubitz 0:19fd8c1944fb 199 int main() {
kubitz 0:19fd8c1944fb 200
kubitz 0:19fd8c1944fb 201 const int32_t PWM_PRD = 2500;
kubitz 0:19fd8c1944fb 202 MotorPWM.period_us(PWM_PRD);
kubitz 0:19fd8c1944fb 203 MotorPWM.pulsewidth_us(PWM_PRD);
kubitz 0:19fd8c1944fb 204
kubitz 0:19fd8c1944fb 205 //Initialise the serial port
kubitz 7:aef5b29d7a7c 206 RawSerial pc(SERIAL_TX, SERIAL_RX);
kubitz 0:19fd8c1944fb 207 pc.printf("Hello\n\r");
kubitz 0:19fd8c1944fb 208
kubitz 0:19fd8c1944fb 209 //Run the motor synchronisation
kubitz 0:19fd8c1944fb 210 orState = motorHome();
kubitz 0:19fd8c1944fb 211 pc.printf("Rotor origin: %x\n\r",orState);
kubitz 0:19fd8c1944fb 212
kubitz 0:19fd8c1944fb 213 I1.rise(&move);
kubitz 0:19fd8c1944fb 214 I1.fall(&move);
kubitz 0:19fd8c1944fb 215 I2.rise(&move);
kubitz 0:19fd8c1944fb 216 I2.fall(&move);
kubitz 0:19fd8c1944fb 217 I3.rise(&move);
kubitz 0:19fd8c1944fb 218 I3.fall(&move);
kubitz 0:19fd8c1944fb 219 timer_nonce.start();
kubitz 5:de6430aee646 220 pc.printf("time is %d\n\r", timer_nonce.read_ms());
kubitz 5:de6430aee646 221 pc.printf("time is %d\n\r", (timer_nonce.read_ms()-previous_time));
kubitz 5:de6430aee646 222 uint8_t hash[32];
kubitz 7:aef5b29d7a7c 223 thread_crypto.start(thread_crypto_print);
kubitz 7:aef5b29d7a7c 224 thread_processor.start(thread_processor);
kubitz 5:de6430aee646 225 while (1){
kubitz 5:de6430aee646 226
kubitz 5:de6430aee646 227 *nonce = *nonce + 1;
kubitz 5:de6430aee646 228
kubitz 0:19fd8c1944fb 229 SHA256::computeHash(hash, (uint8_t*)sequence, 64);
kubitz 5:de6430aee646 230
kubitz 0:19fd8c1944fb 231 if ((hash[0]==0)&&(hash[1]==0)){
kubitz 0:19fd8c1944fb 232 last_nonce_number = successful_nonce;
kubitz 0:19fd8c1944fb 233 successful_nonce++;
kubitz 6:5f4a954cb8bc 234 putMessage(hash);
kubitz 0:19fd8c1944fb 235 }
kubitz 5:de6430aee646 236
kubitz 5:de6430aee646 237 if ((timer_nonce.read_ms()-previous_time) > 1000){
kubitz 5:de6430aee646 238 pc.printf("Computation Rate: %lu computation /sec\n\r" , (*nonce-last_nonce_number));
kubitz 0:19fd8c1944fb 239 last_nonce_number = *nonce;
kubitz 5:de6430aee646 240 previous_time = timer_nonce.read_ms();
kubitz 5:de6430aee646 241
kubitz 0:19fd8c1944fb 242 }
kubitz 0:19fd8c1944fb 243
kubitz 0:19fd8c1944fb 244 }
kubitz 0:19fd8c1944fb 245
kubitz 0:19fd8c1944fb 246 return 0;
kubitz 0:19fd8c1944fb 247
kubitz 0:19fd8c1944fb 248 }
kubitz 0:19fd8c1944fb 249