fork of what I have been writing

Dependencies:   Crypto

ES_CW2_Starter_STARFISH/main.cpp

Committer:
kubitz
Date:
2020-03-04
Revision:
10:3669e3d832ed
Parent:
9:4135d0c8dc10
Child:
11:038d3ba0d720

File content as of revision 10:3669e3d832ed:


#include "mbed.h"
#include "SHA256.h"
#include "rtos.h"
#include <stdlib.h>
#include <string>

// Mail variables to pass data to threads

Mail<uint64_t, 16> crypto_mail;
Mail<uint8_t, 8> inCharQ;

// Declaration of threads
Thread thread_crypto;
Thread thread_processor;

Mutex NewKey_mutex;
Mutex Speed_mutex; 
Mutex Music_mutex; 
Mutex Rotation_mutex; 

// Crypto mining variables
uint8_t sequence[] = {0x45, 0x6D, 0x62, 0x65, 0x64, 0x64, 0x65, 0x64,
                      0x20, 0x53, 0x79, 0x73, 0x74, 0x65, 0x6D, 0x73,
                      0x20, 0x61, 0x72, 0x65, 0x20, 0x66, 0x75, 0x6E,
                      0x20, 0x61, 0x6E, 0x64, 0x20, 0x64, 0x6F, 0x20,
                      0x61, 0x77, 0x65, 0x73, 0x6F, 0x6D, 0x65, 0x20,
                      0x74, 0x68, 0x69, 0x6E, 0x67, 0x73, 0x21, 0x20,
                      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
                      0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00};
uint64_t *key = (uint64_t *)&sequence[48];
uint64_t *nonce = (uint64_t *)&sequence[56];
uint32_t successful_nonce = 0;
uint32_t last_nonce_number = 0;
uint8_t hash[32];
uint64_t NewKey;

float NewRotation; 
float NewSpeed; 

// Timing variables for printing calculation rate
Timer timer_nonce;
uint32_t previous_time;

// Serial port variables
// Max size of serial input is 49 + Null character
char serial_buffer[50];
std::string buffer_serial = ""; 
RawSerial pc(USBTX, USBRX);
char command_category;
char *trimmed_serial_buffer;
uint64_t extracted_value_serial_hex;
uint8_t idx;
//Photointerrupter input pins
#define I1pin D3
#define I2pin D6
#define I3pin D5

//Incremental encoder input pins
#define CHApin D12
#define CHBpin D11

//Motor Drive output pins   //Mask in output byte
#define L1Lpin D1  //0x01
#define L1Hpin A3  //0x02
#define L2Lpin D0  //0x04
#define L2Hpin A6  //0x08
#define L3Lpin D10 //0x10
#define L3Hpin D2  //0x20

#define PWMpin D9

//Motor current sense
#define MCSPpin A1
#define MCSNpin A0

//Test outputs
#define TP0pin D4
#define TP1pin D13
#define TP2pin A2

//Mapping from sequential drive states to motor phase outputs
/*
State   L1  L2  L3
0       H   -   L
1       -   H   L
2       L   H   -
3       L   -   H
4       -   L   H
5       H   L   -
6       -   -   -
7       -   -   -
*/
//Drive state to output table
const int8_t driveTable[] = {0x12, 0x18, 0x09, 0x21, 0x24, 0x06, 0x00, 0x00};

//Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
const int8_t stateMap[] = {0x07, 0x05, 0x03, 0x04, 0x01, 0x00, 0x02, 0x07};
//const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed

//Phase lead to make motor spin
const int8_t lead = 2; //2 for forwards, -2 for backwards

//Status LED
DigitalOut led1(LED1);

//Photointerrupter inputs
InterruptIn I1(I1pin);
InterruptIn I2(I2pin);
InterruptIn I3(I3pin);

//Motor Drive outputs
DigitalOut L1L(L1Lpin);
DigitalOut L1H(L1Hpin);
DigitalOut L2L(L2Lpin);
DigitalOut L2H(L2Hpin);
DigitalOut L3L(L3Lpin);
DigitalOut L3H(L3Hpin);

DigitalOut TP1(TP1pin);
PwmOut MotorPWM(PWMpin);

int8_t orState = 0; //Rotot offset at motor state 0
int8_t intState = 0;
int8_t intStateOld = 0;

//Set a given drive state
void motorOut(int8_t driveState)
{

    //Lookup the output byte from the drive state.
    int8_t driveOut = driveTable[driveState & 0x07];

    //Turn off first
    if (~driveOut & 0x01)
        L1L = 0;
    if (~driveOut & 0x02)
        L1H = 1;
    if (~driveOut & 0x04)
        L2L = 0;
    if (~driveOut & 0x08)
        L2H = 1;
    if (~driveOut & 0x10)
        L3L = 0;
    if (~driveOut & 0x20)
        L3H = 1;

    //Then turn on
    if (driveOut & 0x01)
        L1L = 1;
    if (driveOut & 0x02)
        L1H = 0;
    if (driveOut & 0x04)
        L2L = 1;
    if (driveOut & 0x08)
        L2H = 0;
    if (driveOut & 0x10)
        L3L = 1;
    if (driveOut & 0x20)
        L3H = 0;
}

//Convert photointerrupter inputs to a rotor state
inline int8_t readRotorState()
{
    return stateMap[I1 + 2 * I2 + 4 * I3];
}

//Basic synchronisation routine
int8_t motorHome()
{
    //Put the motor in drive state 0 and wait for it to stabilise
    motorOut(0);
    wait(2.0);

    //Get the rotor state
    return readRotorState();
}

void move()
{
    intState = readRotorState();
    motorOut((intState - orState + lead + 6) % 6); //+6 to make sure the remainder is positive
    intStateOld = intState;
}

// Thread to print successful Hashes
void thread_crypto_print()
{
    while (true)
    {
        osEvent evt = crypto_mail.get();
        if (evt.status == osEventMail)
        {
            uint64_t *matching_nonce = (uint64_t *)evt.value.p;
            pc.printf("Matching nonce found: %llu \n\r",(long long) *matching_nonce); 
            crypto_mail.free(matching_nonce);
        }
    }
}

void decode_serial_buffer(std::string serial_buffer)
{   
    command_category = serial_buffer[0]; 
    switch (command_category)
    {
    case 'R':
        // Rotation command - R-?\d{1,s4}(\.\d)?
        Rotation_mutex.lock(); 
        sscanf(serial_buffer.c_str(), "%c-%f", &command_category, &NewRotation); 
        pc.printf("You have a new rotation: %f \r\n", NewRotation);
        Rotation_mutex.unlock(); 

        break;
    case 'V':
        // Speed command - V\d{1,3}(\.\d)?
        Speed_mutex.lock();
        sscanf(serial_buffer.c_str(), "%c %f", &command_category, &NewSpeed); 
        pc.printf("You have a new speed: %f \r\n", NewSpeed);
        Speed_mutex.unlock(); 
        // to implement !
        break;

    case 'K':
        // Bitcoin key command - K[0-9a-fA-F]{16}
        NewKey_mutex.lock();
        sscanf(serial_buffer.c_str(), "%c %llx", &command_category, &NewKey); 
        pc.printf("You have entered a new bitcoin key: %llu \r\n",(long long) NewKey);
        NewKey_mutex.unlock();
        break;

    case 'T':
        // Melody command - T([A-G][#^]?[1-8]){1,16}
        Music_mutex.lock();
        pc.printf("You have entered a new melody: --> TO IMPLEMENT <--- \r\n");
        Music_mutex.unlock(); 
        // to implement !

    default:
        printf("Input value out of format - please try again! \r\n");
    }
}

// Thread processor raw serial inputs:
void thread_processor_callback()
{
    while (true)
    {
        osEvent evt = inCharQ.get();
        uint8_t *newChar = (uint8_t *)evt.value.p;
        buffer_serial += (*newChar); 
        //Store the new character
        if (buffer_serial.back() == '\r')
          {
            buffer_serial += '\0';
            decode_serial_buffer(buffer_serial);
            buffer_serial = ""; 
            }
        inCharQ.free(newChar);
    }
}


// Put message in Mail box for Crypto printing
void putMessageCrypto(uint64_t nonce)
{
    uint64_t *mail = crypto_mail.alloc();
    *mail = nonce; 
    crypto_mail.put(mail);
}

// ISR routine to get charachter from Serial command
void serialISR()
{   
    uint8_t *newChar = inCharQ.alloc();
    *newChar = pc.getc();
    inCharQ.put(newChar);
}

// Attach interrupt routine on serial port

//Main
int main()
{
    pc.attach(&serialISR);
    const int32_t PWM_PRD = 2500;
    MotorPWM.period_us(PWM_PRD);
    MotorPWM.pulsewidth_us(PWM_PRD);

    pc.printf("Hello\n\r");

    //Run the motor synchronisation
    orState = motorHome();
    pc.printf("Rotor origin: %x\n\r", orState);

    I1.rise(&move);
    I1.fall(&move);
    I2.rise(&move);
    I2.fall(&move);
    I3.rise(&move);
    I3.fall(&move);

    // Initialize threads and timers
    timer_nonce.start();
    thread_crypto.start(thread_crypto_print);
    thread_processor.start(thread_processor_callback);
    uint8_t hash[32];

    while (1)
    {
        // Set main as lowest priority thread

        NewKey_mutex.lock();
        *key = NewKey; 
        NewKey_mutex.unlock();

        SHA256::computeHash(hash, (uint8_t *)sequence, 64);
        *nonce = *nonce + 1;

        if ((hash[0] == 0) && (hash[1] == 0))
        {
            last_nonce_number = successful_nonce;
            putMessageCrypto(*nonce);
            successful_nonce++;
        }

        if ((timer_nonce.read_ms() - previous_time) > 1000)
        {
            //pc.printf("Computation Rate: %lu computation /sec\n\r", (*nonce - last_nonce_number));
            last_nonce_number = *nonce;
            previous_time = timer_nonce.read_ms();
        }
    }

    return 0;
}