fork of what I have been writing

Dependencies:   Crypto

ES_CW2_Starter_STARFISH/main.cpp

Committer:
kubitz
Date:
2020-03-06
Revision:
11:038d3ba0d720
Parent:
10:3669e3d832ed
Child:
12:38afe92e67d0

File content as of revision 11:038d3ba0d720:


#include "import.h"

// Declaration of threads
Thread thread_crypto;
Thread thread_processor;


// Timing variables for printing calculation rate
Timer timer_nonce;
uint32_t previous_time;


//Photointerrupter input pins
#define I1pin D3
#define I2pin D6
#define I3pin D5

//Incremental encoder input pins
#define CHApin D12
#define CHBpin D11

//Motor Drive output pins   //Mask in output byte
#define L1Lpin D1  //0x01
#define L1Hpin A3  //0x02
#define L2Lpin D0  //0x04
#define L2Hpin A6  //0x08
#define L3Lpin D10 //0x10
#define L3Hpin D2  //0x20

#define PWMpin D9

//Motor current sense
#define MCSPpin A1
#define MCSNpin A0

//Test outputs
#define TP0pin D4
#define TP1pin D13
#define TP2pin A2

//Mapping from sequential drive states to motor phase outputs
/*
State   L1  L2  L3
0       H   -   L
1       -   H   L
2       L   H   -
3       L   -   H
4       -   L   H
5       H   L   -
6       -   -   -
7       -   -   -
*/
//Drive state to output table
const int8_t driveTable[] = {0x12, 0x18, 0x09, 0x21, 0x24, 0x06, 0x00, 0x00};

//Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
const int8_t stateMap[] = {0x07, 0x05, 0x03, 0x04, 0x01, 0x00, 0x02, 0x07};
//const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed

//Phase lead to make motor spin
const int8_t lead = 2; //2 for forwards, -2 for backwards

//Status LED
DigitalOut led1(LED1);

//Photointerrupter inputs
InterruptIn I1(I1pin);
InterruptIn I2(I2pin);
InterruptIn I3(I3pin);

//Motor Drive outputs
DigitalOut L1L(L1Lpin);
DigitalOut L1H(L1Hpin);
DigitalOut L2L(L2Lpin);
DigitalOut L2H(L2Hpin);
DigitalOut L3L(L3Lpin);
DigitalOut L3H(L3Hpin);

DigitalOut TP1(TP1pin);
PwmOut MotorPWM(PWMpin);

int8_t orState = 0; //Rotot offset at motor state 0
int8_t intState = 0;
int8_t intStateOld = 0;

//Set a given drive state
void motorOut(int8_t driveState)
{

    //Lookup the output byte from the drive state.
    int8_t driveOut = driveTable[driveState & 0x07];

    //Turn off first
    if (~driveOut & 0x01)
        L1L = 0;
    if (~driveOut & 0x02)
        L1H = 1;
    if (~driveOut & 0x04)
        L2L = 0;
    if (~driveOut & 0x08)
        L2H = 1;
    if (~driveOut & 0x10)
        L3L = 0;
    if (~driveOut & 0x20)
        L3H = 1;

    //Then turn on
    if (driveOut & 0x01)
        L1L = 1;
    if (driveOut & 0x02)
        L1H = 0;
    if (driveOut & 0x04)
        L2L = 1;
    if (driveOut & 0x08)
        L2H = 0;
    if (driveOut & 0x10)
        L3L = 1;
    if (driveOut & 0x20)
        L3H = 0;
}

//Convert photointerrupter inputs to a rotor state
inline int8_t readRotorState()
{
    return stateMap[I1 + 2 * I2 + 4 * I3];
}

//Basic synchronisation routine
int8_t motorHome()
{
    //Put the motor in drive state 0 and wait for it to stabilise
    motorOut(0);
    wait(2.0);

    //Get the rotor state
    return readRotorState();
}

void move()
{
    intState = readRotorState();
    motorOut((intState - orState + lead + 6) % 6); //+6 to make sure the remainder is positive
    intStateOld = intState;
}


//Main
int main()
{
    pc.attach(&serialISR);
    const int32_t PWM_PRD = 2500;
    MotorPWM.period_us(PWM_PRD);
    MotorPWM.pulsewidth_us(PWM_PRD);

    pc.printf("Hello\n\r");

    //Run the motor synchronisation
    orState = motorHome();
    pc.printf("Rotor origin: %x\n\r", orState);

    I1.rise(&move);
    I1.fall(&move);
    I2.rise(&move);
    I2.fall(&move);
    I3.rise(&move);
    I3.fall(&move);

    // Initialize threads and timers
    timer_nonce.start();
    thread_crypto.start(thread_crypto_print);
    thread_processor.start(thread_processor_callback);
    uint8_t hash[32];

    while (1)
    {
        // Set main as lowest priority thread

        NewKey_mutex.lock();
        *key = NewKey; 
        NewKey_mutex.unlock();

        SHA256::computeHash(hash, (uint8_t *)sequence, 64);
        *nonce = *nonce + 1;

        if ((hash[0] == 0) && (hash[1] == 0))
        {
            last_nonce_number = successful_nonce;
            putMessageCrypto(*nonce);
            successful_nonce++;
        }

        if ((timer_nonce.read_ms() - previous_time) > 1000)
        {
            //pc.printf("Computation Rate: %lu computation /sec\n\r", (*nonce - last_nonce_number));
            last_nonce_number = *nonce;
            previous_time = timer_nonce.read_ms();
        }
    }

    return 0;
}