added melody to old motorcontol

main.cpp

Committer:
le1917
Date:
2020-04-11
Revision:
27:f2e43189b0f4
Parent:
26:7f88907d7c54

File content as of revision 27:f2e43189b0f4:

#include "mbed.h"
#include "rtos.h"
#include <string>

//Photointerrupter input pins
#define I1pin D3
#define I2pin D6
#define I3pin D5

//Incremental encoder input pins
#define CHApin D12
#define CHBpin D11

//Motor Drive output pins   //Mask in output byte
#define L1Lpin D1  //0x01
#define L1Hpin A3  //0x02
#define L2Lpin D0  //0x04
#define L2Hpin A6  //0x08
#define L3Lpin D10 //0x10
#define L3Hpin D2  //0x20

#define PWMpin D9

//Motor current sense
#define MCSPpin A1
#define MCSNpin A0

//Test outputs
#define TP0pin D4
#define TP1pin D13
#define TP2pin A2

Serial pc(SERIAL_TX, SERIAL_RX);

// Melody Variables
int melody_length = 0;
int melody_index = 0;
int note_count = 1;
float notes[16];
int note_durations[16];


// Controller variables
Timer timer_velocity;
uint32_t last_time_MtrCtlr;
int i = 0;

// Velocity Controller Variables
float target_velocity = 40;
float integral_vel = 0;
float derivative_vel = 0;
float last_vel_error = 0;

int previous_position = 0;
int current_position = 0;

float kp_vel = 20;
float ki_vel = 0;
float kd_vel = 0;

// Position Controller Variables
float target_position = 500;
float integral_pos = 0;
float derivative_pos = 0;
float last_pos_error = 0;

float kp_pos = 20;
float ki_pos = 0;
float kd_pos = 10;

//Mapping from sequential drive states to motor phase outputs
/*
State   L1  L2  L3
0       H   -   L
1       -   H   L
2       L   H   -
3       L   -   H
4       -   L   H
5       H   L   -
6       -   -   -
7       -   -   -
*/
//Drive state to output table
const int8_t driveTable[] = {0x12, 0x18, 0x09, 0x21, 0x24, 0x06, 0x00, 0x00};

//Mapping from interrupter inputs to sequential rotor states. 0x00 and 0x07 are not valid
const int8_t stateMap[] = {0x07, 0x05, 0x03, 0x04, 0x01, 0x00, 0x02, 0x07};
//const int8_t stateMap[] = {0x07,0x01,0x03,0x02,0x05,0x00,0x04,0x07}; //Alternative if phase order of input or drive is reversed


// SHARED GLOBAL VARIABLES //
Semaphore pos_semaphore(0);
float position = 0;
bool direction = 1;
float pwm_period = 0.25f;
int lead = 2;

// NON-SHARED GLOBAL VARIABLES //
int lead_old;


//Status LED
DigitalOut led1(LED1);

//Photointerrupter inputs
InterruptIn I1(I1pin);
InterruptIn I2(I2pin);
InterruptIn I3(I3pin);

//Motor Drive outputs
DigitalOut L1L(L1Lpin);
DigitalOut L1H(L1Hpin);
DigitalOut L2L(L2Lpin);
DigitalOut L2H(L2Hpin);
DigitalOut L3L(L3Lpin);
DigitalOut L3H(L3Hpin);

DigitalOut TP1(TP1pin);
PwmOut MotorPWM(PWMpin);

Ticker motorCtrlTicker;
Thread thread_motorCtrl(osPriorityNormal, 1024);

volatile int8_t orState = 0; //Rotot offset at motor state 0
volatile int8_t intState = 0;
volatile int8_t intStateOld = 0;

//Set a given drive state
void motorOut(int8_t driveState)
{

    //Lookup the output byte from the drive state.
    int8_t driveOut = driveTable[driveState & 0x07];

    //Turn off first
    if (~driveOut & 0x01)
        L1L = 0;
    if (~driveOut & 0x02)
        L1H = 1;
    if (~driveOut & 0x04)
        L2L = 0;
    if (~driveOut & 0x08)
        L2H = 1;
    if (~driveOut & 0x10)
        L3L = 0;
    if (~driveOut & 0x20)
        L3H = 1;

    //Then turn on
    if (driveOut & 0x01)
        L1L = 1;
    if (driveOut & 0x02)
        L1H = 0;
    if (driveOut & 0x04)
        L2L = 1;
    if (driveOut & 0x08)
        L2H = 0;
    if (driveOut & 0x10)
        L3L = 1;
    if (driveOut & 0x20)
        L3H = 0;
}

//Convert photointerrupter inputs to a rotor state
inline int8_t readRotorState()
{
    return stateMap[I1 + 2 * I2 + 4 * I3];
}

void move()
{
    intState = readRotorState();

    // Updates direction only if statechanges by 1
    // If state chance is missed then interrupt is unchanged
    if (intState == 0 && intStateOld == 5)
    {
        direction = 1;
        position++;
    }
    else if (intState == 5 && intStateOld == 0)
    {
        direction = 0;
        position--;
    }
    else if (intState == intStateOld + 1)
    {
        direction = 1;
        position++;
    }
    else if (intState == intStateOld - 1)
    {
        direction = 0;
        position--;
    }

    pos_semaphore.release();

    intStateOld = intState;

    motorOut((intState - orState + lead + 6) % 6); //+6 to make sure the remainder is positive
}

void motorCtrlTick()
{
    thread_motorCtrl.signal_set(0x1);
    //osSignalSet(thread_motorCtrl, 0x1);
}

float get_vel_control_out(float velocity_error)
{
    integral_vel += velocity_error;
    derivative_vel = velocity_error - last_vel_error;
    float velocity_out = (kp_vel * velocity_error) + (ki_vel * integral_vel) + (kd_vel * derivative_vel);
    last_vel_error = velocity_error;
    return velocity_out;
}

float get_pos_control_out(float position_error)
{
    integral_pos += position_error;
    derivative_pos = position_error - last_pos_error;
    float velocity_out = (kp_pos * position_error) + (ki_pos * integral_pos) + (kd_pos * derivative_pos);
    last_pos_error = position_error;
    return velocity_out;
}

float get_motor_out(float velocity_out)
{
    float motor_out;
    if (velocity_out < 0)
    {
        motor_out = velocity_out * -1;
    }
    else
    {
        motor_out = velocity_out;
    }
    if (velocity_out > 1 || velocity_out < -1)
    {
        motor_out = 1;
    }
    return motor_out;
}

int get_current_position()
{
    pos_semaphore.wait();
    return position;
}

void attach_ISR()
{
    I1.rise(&move);
    I1.fall(&move);
    I2.rise(&move);
    I2.fall(&move);
    I3.rise(&move);
    I3.fall(&move);
}

float combine_control_out(float position_control_out, float velocity_control_out, float current_velocity)
{
    float velocity_out = 0;
    if (current_velocity <= 0)
    {
        velocity_out = std::max(position_control_out, velocity_control_out);
    }
    else
    {
        velocity_out = std::min(position_control_out, velocity_control_out);
    }
    return velocity_out;
}

float get_current_velocity(float current_position)
{
    float velocity_factor = (1000 / (timer_velocity.read_ms() - last_time_MtrCtlr));
    float velocity = ((current_position - previous_position) / 6) * velocity_factor;
    last_time_MtrCtlr = timer_velocity.read_ms();
    previous_position = current_position;
    return velocity;
}

void update_lead(float velocity_out)
{
    // No functionality for breaking
    if (velocity_out >= 0)
    {
        lead = 2;
    }
    else
    {
        lead = -2;
    }
}

void process_melody(std::string input){

    melody_length = 0;
    
    for(int i = 0; i < 16; i++){
        notes[i] = 0;
        note_durations[i] = 0;
    }
       
    int note_index = 0;
    for(int i = 0; i < input.length(); i++){
        switch(input[i]){
            case 'C':
                if(input[i+1] == '#'){
                    notes[note_index] = 0.003607764;
                    i++;
                }
                else{
                    notes[note_index] = 0.003822192;
                }        
            break;
            case 'D':
                if(input[i+1] == '^'){
                    notes[note_index] = 0.003607764;
                    i++;
                }
                else if(input[i+1] == '#'){
                    notes[note_index] = 0.003214091;
                    i++;
                }
                else{
                    notes[note_index] = 0.003405299;
                }        
            break;
            case 'E':
                if(input[i+1] == '^'){
                    notes[note_index] =0.003214091;
                    i++;
                }
                else{
                    notes[note_index] =0.003033704;
                }        
            break;
            case 'F':
                if(input[i+1] == '#'){
                    notes[note_index] =0.002702776;
                    i++;
                }
                else{
                    notes[note_index] = 0.002863442;
                }        
            break;
            case 'G':
                if(input[i+1] == '^'){
                    notes[note_index] = 0.002702776;
                    i++;
                }
                else if(input[i+1] == '#'){
                    notes[note_index] = 0.002407898;
                    i++;
                }
                else{
                    notes[note_index] =0.00255102;
                }        
            break;
            case 'A':
                if(input[i+1] == '^'){
                    notes[note_index] =0.002407898;
                    i++;
                }
                else if(input[i+1] == '#'){
                    notes[note_index] = 0.002145186;
                    i++;
                }
                else{
                    notes[note_index] =0.002272727;
                }        
            break;
            case 'B':
                if(input[i+1] == '^'){
                    notes[note_index] = 0.002145186;
                    i++;
                }
                else{
                    notes[note_index] = 0.002024783;
                }        
            break;
        }
        
        
        i++;
        // convert -'0' to convert char to int
        note_durations[note_index] = input[i] - '0';
       
        note_index++;
        melody_length ++;

    }
    
}
    


float get_period(){
    
    
    int curr_note_length = note_durations[melody_index];
    float curr_note_period = notes[melody_index];
  
    
    if( note_count >= curr_note_length ){
        
        melody_index = (melody_index + 1)%melody_length; 
        note_count = 1;
    }
    else{
        note_count = note_count + 1;
    }
    
 
    return curr_note_period;
}    


void motorInitSequence()
{
    motorCtrlTicker.attach_us(&motorCtrlTick, 125000);
    last_pos_error = target_position;
    last_time_MtrCtlr = 0;

    MotorPWM.write(1);
    MotorPWM.period(pwm_period);

    motorOut(0);
    wait(3.0);
    orState = readRotorState();
    attach_ISR();

    if (target_velocity > 0)
    {
        lead = 2;
        for (int i = 1; i < 4; i++)
        {
            motorOut(i);
            wait(0.2);
        }
    }
    else
    {
        lead = -2;
        for (int i = 5; i > 2; i--)
        {
            motorOut(i);
            wait(0.2);
        }
    }
    current_position = get_current_position();
    previous_position = current_position;
    timer_velocity.start();
}


void motorCtrlFn()
{
    while (1)
    {
        thread_motorCtrl.signal_wait(0x1);

        current_position = get_current_position();
        pwm_period = get_period();
        float current_velocity = get_current_velocity(current_position);

        float velocity_error = target_velocity - current_velocity;
        float velocity_control_out = get_vel_control_out(velocity_error);

        float position_error = target_position - (current_position / 6);
        float position_control_out = get_pos_control_out(position_error);

        float velocity_out = combine_control_out(position_control_out, velocity_control_out, current_velocity);
        float motor_out = get_motor_out(position_control_out);
        
        update_lead(velocity_out);
        MotorPWM.period(pwm_period);
        MotorPWM.write(0.6f);
        
       
    }
}

//Main
int main()
{
    process_melody("A4C8G4F#8");
    
    /*
    pc.printf("A = %f, C = %f, G = %f, F# = %f\r\n", notes[0], notes[1], notes[2], notes[3]);
    pc.printf("length A = %d, length C = %d, length G = %d, length F# = %d\r\n", note_durations[0], note_durations[1], note_durations[2], note_durations[3]);
    */
    
    motorInitSequence();
    thread_motorCtrl.start(motorCtrlFn);
}