CMSIS DSP Lib
Fork of mbed-dsp by
cmsis_dsp/TransformFunctions/arm_dct4_q15.c@2:da51fb522205, 2013-05-30 (annotated)
- Committer:
- emilmont
- Date:
- Thu May 30 17:10:11 2013 +0100
- Revision:
- 2:da51fb522205
- Parent:
- 1:fdd22bb7aa52
- Child:
- 3:7a284390b0ce
Keep "cmsis-dsp" module in synch with its source
Who changed what in which revision?
User | Revision | Line number | New contents of line |
---|---|---|---|
emilmont | 1:fdd22bb7aa52 | 1 | /* ---------------------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 2 | * Copyright (C) 2010 ARM Limited. All rights reserved. |
emilmont | 1:fdd22bb7aa52 | 3 | * |
emilmont | 1:fdd22bb7aa52 | 4 | * $Date: 15. February 2012 |
emilmont | 2:da51fb522205 | 5 | * $Revision: V1.1.0 |
emilmont | 1:fdd22bb7aa52 | 6 | * |
emilmont | 2:da51fb522205 | 7 | * Project: CMSIS DSP Library |
emilmont | 2:da51fb522205 | 8 | * Title: arm_dct4_q15.c |
emilmont | 1:fdd22bb7aa52 | 9 | * |
emilmont | 2:da51fb522205 | 10 | * Description: Processing function of DCT4 & IDCT4 Q15. |
emilmont | 1:fdd22bb7aa52 | 11 | * |
emilmont | 1:fdd22bb7aa52 | 12 | * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 |
emilmont | 1:fdd22bb7aa52 | 13 | * |
emilmont | 1:fdd22bb7aa52 | 14 | * Version 1.1.0 2012/02/15 |
emilmont | 1:fdd22bb7aa52 | 15 | * Updated with more optimizations, bug fixes and minor API changes. |
emilmont | 1:fdd22bb7aa52 | 16 | * |
emilmont | 1:fdd22bb7aa52 | 17 | * Version 1.0.10 2011/7/15 |
emilmont | 1:fdd22bb7aa52 | 18 | * Big Endian support added and Merged M0 and M3/M4 Source code. |
emilmont | 1:fdd22bb7aa52 | 19 | * |
emilmont | 1:fdd22bb7aa52 | 20 | * Version 1.0.3 2010/11/29 |
emilmont | 1:fdd22bb7aa52 | 21 | * Re-organized the CMSIS folders and updated documentation. |
emilmont | 1:fdd22bb7aa52 | 22 | * |
emilmont | 1:fdd22bb7aa52 | 23 | * Version 1.0.2 2010/11/11 |
emilmont | 1:fdd22bb7aa52 | 24 | * Documentation updated. |
emilmont | 1:fdd22bb7aa52 | 25 | * |
emilmont | 1:fdd22bb7aa52 | 26 | * Version 1.0.1 2010/10/05 |
emilmont | 1:fdd22bb7aa52 | 27 | * Production release and review comments incorporated. |
emilmont | 1:fdd22bb7aa52 | 28 | * |
emilmont | 1:fdd22bb7aa52 | 29 | * Version 1.0.0 2010/09/20 |
emilmont | 1:fdd22bb7aa52 | 30 | * Production release and review comments incorporated. |
emilmont | 1:fdd22bb7aa52 | 31 | * -------------------------------------------------------------------- */ |
emilmont | 1:fdd22bb7aa52 | 32 | |
emilmont | 1:fdd22bb7aa52 | 33 | #include "arm_math.h" |
emilmont | 1:fdd22bb7aa52 | 34 | |
emilmont | 1:fdd22bb7aa52 | 35 | /** |
emilmont | 1:fdd22bb7aa52 | 36 | * @addtogroup DCT4_IDCT4 |
emilmont | 1:fdd22bb7aa52 | 37 | * @{ |
emilmont | 1:fdd22bb7aa52 | 38 | */ |
emilmont | 1:fdd22bb7aa52 | 39 | |
emilmont | 1:fdd22bb7aa52 | 40 | /** |
emilmont | 1:fdd22bb7aa52 | 41 | * @brief Processing function for the Q15 DCT4/IDCT4. |
emilmont | 1:fdd22bb7aa52 | 42 | * @param[in] *S points to an instance of the Q15 DCT4 structure. |
emilmont | 1:fdd22bb7aa52 | 43 | * @param[in] *pState points to state buffer. |
emilmont | 1:fdd22bb7aa52 | 44 | * @param[in,out] *pInlineBuffer points to the in-place input and output buffer. |
emilmont | 1:fdd22bb7aa52 | 45 | * @return none. |
emilmont | 1:fdd22bb7aa52 | 46 | * |
emilmont | 1:fdd22bb7aa52 | 47 | * \par Input an output formats: |
emilmont | 1:fdd22bb7aa52 | 48 | * Internally inputs are downscaled in the RFFT process function to avoid overflows. |
emilmont | 1:fdd22bb7aa52 | 49 | * Number of bits downscaled, depends on the size of the transform. |
emilmont | 1:fdd22bb7aa52 | 50 | * The input and output formats for different DCT sizes and number of bits to upscale are mentioned in the table below: |
emilmont | 1:fdd22bb7aa52 | 51 | * |
emilmont | 1:fdd22bb7aa52 | 52 | * \image html dct4FormatsQ15Table.gif |
emilmont | 1:fdd22bb7aa52 | 53 | */ |
emilmont | 1:fdd22bb7aa52 | 54 | |
emilmont | 1:fdd22bb7aa52 | 55 | void arm_dct4_q15( |
emilmont | 1:fdd22bb7aa52 | 56 | const arm_dct4_instance_q15 * S, |
emilmont | 1:fdd22bb7aa52 | 57 | q15_t * pState, |
emilmont | 1:fdd22bb7aa52 | 58 | q15_t * pInlineBuffer) |
emilmont | 1:fdd22bb7aa52 | 59 | { |
emilmont | 1:fdd22bb7aa52 | 60 | uint32_t i; /* Loop counter */ |
emilmont | 1:fdd22bb7aa52 | 61 | q15_t *weights = S->pTwiddle; /* Pointer to the Weights table */ |
emilmont | 1:fdd22bb7aa52 | 62 | q15_t *cosFact = S->pCosFactor; /* Pointer to the cos factors table */ |
emilmont | 1:fdd22bb7aa52 | 63 | q15_t *pS1, *pS2, *pbuff; /* Temporary pointers for input buffer and pState buffer */ |
emilmont | 1:fdd22bb7aa52 | 64 | q15_t in; /* Temporary variable */ |
emilmont | 1:fdd22bb7aa52 | 65 | |
emilmont | 1:fdd22bb7aa52 | 66 | |
emilmont | 1:fdd22bb7aa52 | 67 | /* DCT4 computation involves DCT2 (which is calculated using RFFT) |
emilmont | 1:fdd22bb7aa52 | 68 | * along with some pre-processing and post-processing. |
emilmont | 1:fdd22bb7aa52 | 69 | * Computational procedure is explained as follows: |
emilmont | 1:fdd22bb7aa52 | 70 | * (a) Pre-processing involves multiplying input with cos factor, |
emilmont | 1:fdd22bb7aa52 | 71 | * r(n) = 2 * u(n) * cos(pi*(2*n+1)/(4*n)) |
emilmont | 1:fdd22bb7aa52 | 72 | * where, |
emilmont | 1:fdd22bb7aa52 | 73 | * r(n) -- output of preprocessing |
emilmont | 1:fdd22bb7aa52 | 74 | * u(n) -- input to preprocessing(actual Source buffer) |
emilmont | 1:fdd22bb7aa52 | 75 | * (b) Calculation of DCT2 using FFT is divided into three steps: |
emilmont | 1:fdd22bb7aa52 | 76 | * Step1: Re-ordering of even and odd elements of input. |
emilmont | 1:fdd22bb7aa52 | 77 | * Step2: Calculating FFT of the re-ordered input. |
emilmont | 1:fdd22bb7aa52 | 78 | * Step3: Taking the real part of the product of FFT output and weights. |
emilmont | 1:fdd22bb7aa52 | 79 | * (c) Post-processing - DCT4 can be obtained from DCT2 output using the following equation: |
emilmont | 1:fdd22bb7aa52 | 80 | * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) |
emilmont | 1:fdd22bb7aa52 | 81 | * where, |
emilmont | 1:fdd22bb7aa52 | 82 | * Y4 -- DCT4 output, Y2 -- DCT2 output |
emilmont | 1:fdd22bb7aa52 | 83 | * (d) Multiplying the output with the normalizing factor sqrt(2/N). |
emilmont | 1:fdd22bb7aa52 | 84 | */ |
emilmont | 1:fdd22bb7aa52 | 85 | |
emilmont | 1:fdd22bb7aa52 | 86 | /*-------- Pre-processing ------------*/ |
emilmont | 1:fdd22bb7aa52 | 87 | /* Multiplying input with cos factor i.e. r(n) = 2 * x(n) * cos(pi*(2*n+1)/(4*n)) */ |
emilmont | 1:fdd22bb7aa52 | 88 | arm_mult_q15(pInlineBuffer, cosFact, pInlineBuffer, S->N); |
emilmont | 1:fdd22bb7aa52 | 89 | arm_shift_q15(pInlineBuffer, 1, pInlineBuffer, S->N); |
emilmont | 1:fdd22bb7aa52 | 90 | |
emilmont | 1:fdd22bb7aa52 | 91 | /* ---------------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 92 | * Step1: Re-ordering of even and odd elements as |
emilmont | 1:fdd22bb7aa52 | 93 | * pState[i] = pInlineBuffer[2*i] and |
emilmont | 1:fdd22bb7aa52 | 94 | * pState[N-i-1] = pInlineBuffer[2*i+1] where i = 0 to N/2 |
emilmont | 1:fdd22bb7aa52 | 95 | ---------------------------------------------------------------------*/ |
emilmont | 1:fdd22bb7aa52 | 96 | |
emilmont | 1:fdd22bb7aa52 | 97 | /* pS1 initialized to pState */ |
emilmont | 1:fdd22bb7aa52 | 98 | pS1 = pState; |
emilmont | 1:fdd22bb7aa52 | 99 | |
emilmont | 1:fdd22bb7aa52 | 100 | /* pS2 initialized to pState+N-1, so that it points to the end of the state buffer */ |
emilmont | 1:fdd22bb7aa52 | 101 | pS2 = pState + (S->N - 1u); |
emilmont | 1:fdd22bb7aa52 | 102 | |
emilmont | 1:fdd22bb7aa52 | 103 | /* pbuff initialized to input buffer */ |
emilmont | 1:fdd22bb7aa52 | 104 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 105 | |
emilmont | 1:fdd22bb7aa52 | 106 | |
emilmont | 1:fdd22bb7aa52 | 107 | #ifndef ARM_MATH_CM0 |
emilmont | 1:fdd22bb7aa52 | 108 | |
emilmont | 1:fdd22bb7aa52 | 109 | /* Run the below code for Cortex-M4 and Cortex-M3 */ |
emilmont | 1:fdd22bb7aa52 | 110 | |
emilmont | 1:fdd22bb7aa52 | 111 | /* Initializing the loop counter to N/2 >> 2 for loop unrolling by 4 */ |
emilmont | 1:fdd22bb7aa52 | 112 | i = (uint32_t) S->Nby2 >> 2u; |
emilmont | 1:fdd22bb7aa52 | 113 | |
emilmont | 1:fdd22bb7aa52 | 114 | /* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
emilmont | 1:fdd22bb7aa52 | 115 | ** a second loop below computes the remaining 1 to 3 samples. */ |
emilmont | 1:fdd22bb7aa52 | 116 | do |
emilmont | 1:fdd22bb7aa52 | 117 | { |
emilmont | 1:fdd22bb7aa52 | 118 | /* Re-ordering of even and odd elements */ |
emilmont | 1:fdd22bb7aa52 | 119 | /* pState[i] = pInlineBuffer[2*i] */ |
emilmont | 1:fdd22bb7aa52 | 120 | *pS1++ = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 121 | /* pState[N-i-1] = pInlineBuffer[2*i+1] */ |
emilmont | 1:fdd22bb7aa52 | 122 | *pS2-- = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 123 | |
emilmont | 1:fdd22bb7aa52 | 124 | *pS1++ = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 125 | *pS2-- = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 126 | |
emilmont | 1:fdd22bb7aa52 | 127 | *pS1++ = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 128 | *pS2-- = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 129 | |
emilmont | 1:fdd22bb7aa52 | 130 | *pS1++ = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 131 | *pS2-- = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 132 | |
emilmont | 1:fdd22bb7aa52 | 133 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 134 | i--; |
emilmont | 1:fdd22bb7aa52 | 135 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 136 | |
emilmont | 1:fdd22bb7aa52 | 137 | /* pbuff initialized to input buffer */ |
emilmont | 1:fdd22bb7aa52 | 138 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 139 | |
emilmont | 1:fdd22bb7aa52 | 140 | /* pS1 initialized to pState */ |
emilmont | 1:fdd22bb7aa52 | 141 | pS1 = pState; |
emilmont | 1:fdd22bb7aa52 | 142 | |
emilmont | 1:fdd22bb7aa52 | 143 | /* Initializing the loop counter to N/4 instead of N for loop unrolling */ |
emilmont | 1:fdd22bb7aa52 | 144 | i = (uint32_t) S->N >> 2u; |
emilmont | 1:fdd22bb7aa52 | 145 | |
emilmont | 1:fdd22bb7aa52 | 146 | /* Processing with loop unrolling 4 times as N is always multiple of 4. |
emilmont | 1:fdd22bb7aa52 | 147 | * Compute 4 outputs at a time */ |
emilmont | 1:fdd22bb7aa52 | 148 | do |
emilmont | 1:fdd22bb7aa52 | 149 | { |
emilmont | 1:fdd22bb7aa52 | 150 | /* Writing the re-ordered output back to inplace input buffer */ |
emilmont | 1:fdd22bb7aa52 | 151 | *pbuff++ = *pS1++; |
emilmont | 1:fdd22bb7aa52 | 152 | *pbuff++ = *pS1++; |
emilmont | 1:fdd22bb7aa52 | 153 | *pbuff++ = *pS1++; |
emilmont | 1:fdd22bb7aa52 | 154 | *pbuff++ = *pS1++; |
emilmont | 1:fdd22bb7aa52 | 155 | |
emilmont | 1:fdd22bb7aa52 | 156 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 157 | i--; |
emilmont | 1:fdd22bb7aa52 | 158 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 159 | |
emilmont | 1:fdd22bb7aa52 | 160 | |
emilmont | 1:fdd22bb7aa52 | 161 | /* --------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 162 | * Step2: Calculate RFFT for N-point input |
emilmont | 1:fdd22bb7aa52 | 163 | * ---------------------------------------------------------- */ |
emilmont | 1:fdd22bb7aa52 | 164 | /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ |
emilmont | 1:fdd22bb7aa52 | 165 | arm_rfft_q15(S->pRfft, pInlineBuffer, pState); |
emilmont | 1:fdd22bb7aa52 | 166 | |
emilmont | 1:fdd22bb7aa52 | 167 | /*---------------------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 168 | * Step3: Multiply the FFT output with the weights. |
emilmont | 1:fdd22bb7aa52 | 169 | *----------------------------------------------------------------------*/ |
emilmont | 1:fdd22bb7aa52 | 170 | arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N); |
emilmont | 1:fdd22bb7aa52 | 171 | |
emilmont | 1:fdd22bb7aa52 | 172 | /* The output of complex multiplication is in 3.13 format. |
emilmont | 1:fdd22bb7aa52 | 173 | * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */ |
emilmont | 1:fdd22bb7aa52 | 174 | arm_shift_q15(pState, 2, pState, S->N * 2); |
emilmont | 1:fdd22bb7aa52 | 175 | |
emilmont | 1:fdd22bb7aa52 | 176 | /* ----------- Post-processing ---------- */ |
emilmont | 1:fdd22bb7aa52 | 177 | /* DCT-IV can be obtained from DCT-II by the equation, |
emilmont | 1:fdd22bb7aa52 | 178 | * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) |
emilmont | 1:fdd22bb7aa52 | 179 | * Hence, Y4(0) = Y2(0)/2 */ |
emilmont | 1:fdd22bb7aa52 | 180 | /* Getting only real part from the output and Converting to DCT-IV */ |
emilmont | 1:fdd22bb7aa52 | 181 | |
emilmont | 1:fdd22bb7aa52 | 182 | /* Initializing the loop counter to N >> 2 for loop unrolling by 4 */ |
emilmont | 1:fdd22bb7aa52 | 183 | i = ((uint32_t) S->N - 1u) >> 2u; |
emilmont | 1:fdd22bb7aa52 | 184 | |
emilmont | 1:fdd22bb7aa52 | 185 | /* pbuff initialized to input buffer. */ |
emilmont | 1:fdd22bb7aa52 | 186 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 187 | |
emilmont | 1:fdd22bb7aa52 | 188 | /* pS1 initialized to pState */ |
emilmont | 1:fdd22bb7aa52 | 189 | pS1 = pState; |
emilmont | 1:fdd22bb7aa52 | 190 | |
emilmont | 1:fdd22bb7aa52 | 191 | /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ |
emilmont | 1:fdd22bb7aa52 | 192 | in = *pS1++ >> 1u; |
emilmont | 1:fdd22bb7aa52 | 193 | /* input buffer acts as inplace, so output values are stored in the input itself. */ |
emilmont | 1:fdd22bb7aa52 | 194 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 195 | |
emilmont | 1:fdd22bb7aa52 | 196 | /* pState pointer is incremented twice as the real values are located alternatively in the array */ |
emilmont | 1:fdd22bb7aa52 | 197 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 198 | |
emilmont | 1:fdd22bb7aa52 | 199 | /* First part of the processing with loop unrolling. Compute 4 outputs at a time. |
emilmont | 1:fdd22bb7aa52 | 200 | ** a second loop below computes the remaining 1 to 3 samples. */ |
emilmont | 1:fdd22bb7aa52 | 201 | do |
emilmont | 1:fdd22bb7aa52 | 202 | { |
emilmont | 1:fdd22bb7aa52 | 203 | /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ |
emilmont | 1:fdd22bb7aa52 | 204 | /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ |
emilmont | 1:fdd22bb7aa52 | 205 | in = *pS1++ - in; |
emilmont | 1:fdd22bb7aa52 | 206 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 207 | /* points to the next real value */ |
emilmont | 1:fdd22bb7aa52 | 208 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 209 | |
emilmont | 1:fdd22bb7aa52 | 210 | in = *pS1++ - in; |
emilmont | 1:fdd22bb7aa52 | 211 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 212 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 213 | |
emilmont | 1:fdd22bb7aa52 | 214 | in = *pS1++ - in; |
emilmont | 1:fdd22bb7aa52 | 215 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 216 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 217 | |
emilmont | 1:fdd22bb7aa52 | 218 | in = *pS1++ - in; |
emilmont | 1:fdd22bb7aa52 | 219 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 220 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 221 | |
emilmont | 1:fdd22bb7aa52 | 222 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 223 | i--; |
emilmont | 1:fdd22bb7aa52 | 224 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 225 | |
emilmont | 1:fdd22bb7aa52 | 226 | /* If the blockSize is not a multiple of 4, compute any remaining output samples here. |
emilmont | 1:fdd22bb7aa52 | 227 | ** No loop unrolling is used. */ |
emilmont | 1:fdd22bb7aa52 | 228 | i = ((uint32_t) S->N - 1u) % 0x4u; |
emilmont | 1:fdd22bb7aa52 | 229 | |
emilmont | 1:fdd22bb7aa52 | 230 | while(i > 0u) |
emilmont | 1:fdd22bb7aa52 | 231 | { |
emilmont | 1:fdd22bb7aa52 | 232 | /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ |
emilmont | 1:fdd22bb7aa52 | 233 | /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ |
emilmont | 1:fdd22bb7aa52 | 234 | in = *pS1++ - in; |
emilmont | 1:fdd22bb7aa52 | 235 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 236 | /* points to the next real value */ |
emilmont | 1:fdd22bb7aa52 | 237 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 238 | |
emilmont | 1:fdd22bb7aa52 | 239 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 240 | i--; |
emilmont | 1:fdd22bb7aa52 | 241 | } |
emilmont | 1:fdd22bb7aa52 | 242 | |
emilmont | 1:fdd22bb7aa52 | 243 | |
emilmont | 1:fdd22bb7aa52 | 244 | /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ |
emilmont | 1:fdd22bb7aa52 | 245 | |
emilmont | 1:fdd22bb7aa52 | 246 | /* Initializing the loop counter to N/4 instead of N for loop unrolling */ |
emilmont | 1:fdd22bb7aa52 | 247 | i = (uint32_t) S->N >> 2u; |
emilmont | 1:fdd22bb7aa52 | 248 | |
emilmont | 1:fdd22bb7aa52 | 249 | /* pbuff initialized to the pInlineBuffer(now contains the output values) */ |
emilmont | 1:fdd22bb7aa52 | 250 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 251 | |
emilmont | 1:fdd22bb7aa52 | 252 | /* Processing with loop unrolling 4 times as N is always multiple of 4. Compute 4 outputs at a time */ |
emilmont | 1:fdd22bb7aa52 | 253 | do |
emilmont | 1:fdd22bb7aa52 | 254 | { |
emilmont | 1:fdd22bb7aa52 | 255 | /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ |
emilmont | 1:fdd22bb7aa52 | 256 | in = *pbuff; |
emilmont | 1:fdd22bb7aa52 | 257 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
emilmont | 1:fdd22bb7aa52 | 258 | |
emilmont | 1:fdd22bb7aa52 | 259 | in = *pbuff; |
emilmont | 1:fdd22bb7aa52 | 260 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
emilmont | 1:fdd22bb7aa52 | 261 | |
emilmont | 1:fdd22bb7aa52 | 262 | in = *pbuff; |
emilmont | 1:fdd22bb7aa52 | 263 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
emilmont | 1:fdd22bb7aa52 | 264 | |
emilmont | 1:fdd22bb7aa52 | 265 | in = *pbuff; |
emilmont | 1:fdd22bb7aa52 | 266 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
emilmont | 1:fdd22bb7aa52 | 267 | |
emilmont | 1:fdd22bb7aa52 | 268 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 269 | i--; |
emilmont | 1:fdd22bb7aa52 | 270 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 271 | |
emilmont | 1:fdd22bb7aa52 | 272 | |
emilmont | 1:fdd22bb7aa52 | 273 | #else |
emilmont | 1:fdd22bb7aa52 | 274 | |
emilmont | 1:fdd22bb7aa52 | 275 | /* Run the below code for Cortex-M0 */ |
emilmont | 1:fdd22bb7aa52 | 276 | |
emilmont | 1:fdd22bb7aa52 | 277 | /* Initializing the loop counter to N/2 */ |
emilmont | 1:fdd22bb7aa52 | 278 | i = (uint32_t) S->Nby2; |
emilmont | 1:fdd22bb7aa52 | 279 | |
emilmont | 1:fdd22bb7aa52 | 280 | do |
emilmont | 1:fdd22bb7aa52 | 281 | { |
emilmont | 1:fdd22bb7aa52 | 282 | /* Re-ordering of even and odd elements */ |
emilmont | 1:fdd22bb7aa52 | 283 | /* pState[i] = pInlineBuffer[2*i] */ |
emilmont | 1:fdd22bb7aa52 | 284 | *pS1++ = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 285 | /* pState[N-i-1] = pInlineBuffer[2*i+1] */ |
emilmont | 1:fdd22bb7aa52 | 286 | *pS2-- = *pbuff++; |
emilmont | 1:fdd22bb7aa52 | 287 | |
emilmont | 1:fdd22bb7aa52 | 288 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 289 | i--; |
emilmont | 1:fdd22bb7aa52 | 290 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 291 | |
emilmont | 1:fdd22bb7aa52 | 292 | /* pbuff initialized to input buffer */ |
emilmont | 1:fdd22bb7aa52 | 293 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 294 | |
emilmont | 1:fdd22bb7aa52 | 295 | /* pS1 initialized to pState */ |
emilmont | 1:fdd22bb7aa52 | 296 | pS1 = pState; |
emilmont | 1:fdd22bb7aa52 | 297 | |
emilmont | 1:fdd22bb7aa52 | 298 | /* Initializing the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 299 | i = (uint32_t) S->N; |
emilmont | 1:fdd22bb7aa52 | 300 | |
emilmont | 1:fdd22bb7aa52 | 301 | do |
emilmont | 1:fdd22bb7aa52 | 302 | { |
emilmont | 1:fdd22bb7aa52 | 303 | /* Writing the re-ordered output back to inplace input buffer */ |
emilmont | 1:fdd22bb7aa52 | 304 | *pbuff++ = *pS1++; |
emilmont | 1:fdd22bb7aa52 | 305 | |
emilmont | 1:fdd22bb7aa52 | 306 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 307 | i--; |
emilmont | 1:fdd22bb7aa52 | 308 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 309 | |
emilmont | 1:fdd22bb7aa52 | 310 | |
emilmont | 1:fdd22bb7aa52 | 311 | /* --------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 312 | * Step2: Calculate RFFT for N-point input |
emilmont | 1:fdd22bb7aa52 | 313 | * ---------------------------------------------------------- */ |
emilmont | 1:fdd22bb7aa52 | 314 | /* pInlineBuffer is real input of length N , pState is the complex output of length 2N */ |
emilmont | 1:fdd22bb7aa52 | 315 | arm_rfft_q15(S->pRfft, pInlineBuffer, pState); |
emilmont | 1:fdd22bb7aa52 | 316 | |
emilmont | 1:fdd22bb7aa52 | 317 | /*---------------------------------------------------------------------- |
emilmont | 1:fdd22bb7aa52 | 318 | * Step3: Multiply the FFT output with the weights. |
emilmont | 1:fdd22bb7aa52 | 319 | *----------------------------------------------------------------------*/ |
emilmont | 1:fdd22bb7aa52 | 320 | arm_cmplx_mult_cmplx_q15(pState, weights, pState, S->N); |
emilmont | 1:fdd22bb7aa52 | 321 | |
emilmont | 1:fdd22bb7aa52 | 322 | /* The output of complex multiplication is in 3.13 format. |
emilmont | 1:fdd22bb7aa52 | 323 | * Hence changing the format of N (i.e. 2*N elements) complex numbers to 1.15 format by shifting left by 2 bits. */ |
emilmont | 1:fdd22bb7aa52 | 324 | arm_shift_q15(pState, 2, pState, S->N * 2); |
emilmont | 1:fdd22bb7aa52 | 325 | |
emilmont | 1:fdd22bb7aa52 | 326 | /* ----------- Post-processing ---------- */ |
emilmont | 1:fdd22bb7aa52 | 327 | /* DCT-IV can be obtained from DCT-II by the equation, |
emilmont | 1:fdd22bb7aa52 | 328 | * Y4(k) = Y2(k) - Y4(k-1) and Y4(-1) = Y4(0) |
emilmont | 1:fdd22bb7aa52 | 329 | * Hence, Y4(0) = Y2(0)/2 */ |
emilmont | 1:fdd22bb7aa52 | 330 | /* Getting only real part from the output and Converting to DCT-IV */ |
emilmont | 1:fdd22bb7aa52 | 331 | |
emilmont | 1:fdd22bb7aa52 | 332 | /* Initializing the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 333 | i = ((uint32_t) S->N - 1u); |
emilmont | 1:fdd22bb7aa52 | 334 | |
emilmont | 1:fdd22bb7aa52 | 335 | /* pbuff initialized to input buffer. */ |
emilmont | 1:fdd22bb7aa52 | 336 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 337 | |
emilmont | 1:fdd22bb7aa52 | 338 | /* pS1 initialized to pState */ |
emilmont | 1:fdd22bb7aa52 | 339 | pS1 = pState; |
emilmont | 1:fdd22bb7aa52 | 340 | |
emilmont | 1:fdd22bb7aa52 | 341 | /* Calculating Y4(0) from Y2(0) using Y4(0) = Y2(0)/2 */ |
emilmont | 1:fdd22bb7aa52 | 342 | in = *pS1++ >> 1u; |
emilmont | 1:fdd22bb7aa52 | 343 | /* input buffer acts as inplace, so output values are stored in the input itself. */ |
emilmont | 1:fdd22bb7aa52 | 344 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 345 | |
emilmont | 1:fdd22bb7aa52 | 346 | /* pState pointer is incremented twice as the real values are located alternatively in the array */ |
emilmont | 1:fdd22bb7aa52 | 347 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 348 | |
emilmont | 1:fdd22bb7aa52 | 349 | do |
emilmont | 1:fdd22bb7aa52 | 350 | { |
emilmont | 1:fdd22bb7aa52 | 351 | /* Calculating Y4(1) to Y4(N-1) from Y2 using equation Y4(k) = Y2(k) - Y4(k-1) */ |
emilmont | 1:fdd22bb7aa52 | 352 | /* pState pointer (pS1) is incremented twice as the real values are located alternatively in the array */ |
emilmont | 1:fdd22bb7aa52 | 353 | in = *pS1++ - in; |
emilmont | 1:fdd22bb7aa52 | 354 | *pbuff++ = in; |
emilmont | 1:fdd22bb7aa52 | 355 | /* points to the next real value */ |
emilmont | 1:fdd22bb7aa52 | 356 | pS1++; |
emilmont | 1:fdd22bb7aa52 | 357 | |
emilmont | 1:fdd22bb7aa52 | 358 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 359 | i--; |
emilmont | 1:fdd22bb7aa52 | 360 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 361 | |
emilmont | 1:fdd22bb7aa52 | 362 | /*------------ Normalizing the output by multiplying with the normalizing factor ----------*/ |
emilmont | 1:fdd22bb7aa52 | 363 | |
emilmont | 1:fdd22bb7aa52 | 364 | /* Initializing the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 365 | i = (uint32_t) S->N; |
emilmont | 1:fdd22bb7aa52 | 366 | |
emilmont | 1:fdd22bb7aa52 | 367 | /* pbuff initialized to the pInlineBuffer(now contains the output values) */ |
emilmont | 1:fdd22bb7aa52 | 368 | pbuff = pInlineBuffer; |
emilmont | 1:fdd22bb7aa52 | 369 | |
emilmont | 1:fdd22bb7aa52 | 370 | do |
emilmont | 1:fdd22bb7aa52 | 371 | { |
emilmont | 1:fdd22bb7aa52 | 372 | /* Multiplying pInlineBuffer with the normalizing factor sqrt(2/N) */ |
emilmont | 1:fdd22bb7aa52 | 373 | in = *pbuff; |
emilmont | 1:fdd22bb7aa52 | 374 | *pbuff++ = ((q15_t) (((q31_t) in * S->normalize) >> 15)); |
emilmont | 1:fdd22bb7aa52 | 375 | |
emilmont | 1:fdd22bb7aa52 | 376 | /* Decrement the loop counter */ |
emilmont | 1:fdd22bb7aa52 | 377 | i--; |
emilmont | 1:fdd22bb7aa52 | 378 | } while(i > 0u); |
emilmont | 1:fdd22bb7aa52 | 379 | |
emilmont | 1:fdd22bb7aa52 | 380 | #endif /* #ifndef ARM_MATH_CM0 */ |
emilmont | 1:fdd22bb7aa52 | 381 | |
emilmont | 1:fdd22bb7aa52 | 382 | } |
emilmont | 1:fdd22bb7aa52 | 383 | |
emilmont | 1:fdd22bb7aa52 | 384 | /** |
emilmont | 1:fdd22bb7aa52 | 385 | * @} end of DCT4_IDCT4 group |
emilmont | 1:fdd22bb7aa52 | 386 | */ |