CMSIS DSP Lib
Fork of mbed-dsp by
cmsis_dsp/ComplexMathFunctions/arm_cmplx_mag_q31.c
- Committer:
- mbed_official
- Date:
- 2014-06-23
- Revision:
- 4:9cee975aadce
- Parent:
- 3:7a284390b0ce
File content as of revision 4:9cee975aadce:
/* ---------------------------------------------------------------------- * Copyright (C) 2010-2013 ARM Limited. All rights reserved. * * $Date: 17. January 2013 * $Revision: V1.4.1 * * Project: CMSIS DSP Library * Title: arm_cmplx_mag_q31.c * * Description: Q31 complex magnitude * * Target Processor: Cortex-M4/Cortex-M3/Cortex-M0 * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in * the documentation and/or other materials provided with the * distribution. * - Neither the name of ARM LIMITED nor the names of its contributors * may be used to endorse or promote products derived from this * software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGE. * ---------------------------------------------------------------------------- */ #include "arm_math.h" /** * @ingroup groupCmplxMath */ /** * @addtogroup cmplx_mag * @{ */ /** * @brief Q31 complex magnitude * @param *pSrc points to the complex input vector * @param *pDst points to the real output vector * @param numSamples number of complex samples in the input vector * @return none. * * <b>Scaling and Overflow Behavior:</b> * \par * The function implements 1.31 by 1.31 multiplications and finally output is converted into 2.30 format. * Input down scaling is not required. */ void arm_cmplx_mag_q31( q31_t * pSrc, q31_t * pDst, uint32_t numSamples) { q31_t real, imag; /* Temporary variables to hold input values */ q31_t acc0, acc1; /* Accumulators */ uint32_t blkCnt; /* loop counter */ #ifndef ARM_MATH_CM0_FAMILY /* Run the below code for Cortex-M4 and Cortex-M3 */ q31_t real1, real2, imag1, imag2; /* Temporary variables to hold input values */ q31_t out1, out2, out3, out4; /* Accumulators */ q63_t mul1, mul2, mul3, mul4; /* Temporary variables */ /*loop Unrolling */ blkCnt = numSamples >> 2u; /* First part of the processing with loop unrolling. Compute 4 outputs at a time. ** a second loop below computes the remaining 1 to 3 samples. */ while(blkCnt > 0u) { /* read complex input from source buffer */ real1 = pSrc[0]; imag1 = pSrc[1]; real2 = pSrc[2]; imag2 = pSrc[3]; /* calculate power of input values */ mul1 = (q63_t) real1 *real1; mul2 = (q63_t) imag1 *imag1; mul3 = (q63_t) real2 *real2; mul4 = (q63_t) imag2 *imag2; /* get the result to 3.29 format */ out1 = (q31_t) (mul1 >> 33); out2 = (q31_t) (mul2 >> 33); out3 = (q31_t) (mul3 >> 33); out4 = (q31_t) (mul4 >> 33); /* add real and imaginary accumulators */ out1 = out1 + out2; out3 = out3 + out4; /* read complex input from source buffer */ real1 = pSrc[4]; imag1 = pSrc[5]; real2 = pSrc[6]; imag2 = pSrc[7]; /* calculate square root */ arm_sqrt_q31(out1, &pDst[0]); /* calculate power of input values */ mul1 = (q63_t) real1 *real1; /* calculate square root */ arm_sqrt_q31(out3, &pDst[1]); /* calculate power of input values */ mul2 = (q63_t) imag1 *imag1; mul3 = (q63_t) real2 *real2; mul4 = (q63_t) imag2 *imag2; /* get the result to 3.29 format */ out1 = (q31_t) (mul1 >> 33); out2 = (q31_t) (mul2 >> 33); out3 = (q31_t) (mul3 >> 33); out4 = (q31_t) (mul4 >> 33); /* add real and imaginary accumulators */ out1 = out1 + out2; out3 = out3 + out4; /* calculate square root */ arm_sqrt_q31(out1, &pDst[2]); /* increment destination by 8 to process next samples */ pSrc += 8u; /* calculate square root */ arm_sqrt_q31(out3, &pDst[3]); /* increment destination by 4 to process next samples */ pDst += 4u; /* Decrement the loop counter */ blkCnt--; } /* If the numSamples is not a multiple of 4, compute any remaining output samples here. ** No loop unrolling is used. */ blkCnt = numSamples % 0x4u; #else /* Run the below code for Cortex-M0 */ blkCnt = numSamples; #endif /* #ifndef ARM_MATH_CM0_FAMILY */ while(blkCnt > 0u) { /* C[0] = sqrt(A[0] * A[0] + A[1] * A[1]) */ real = *pSrc++; imag = *pSrc++; acc0 = (q31_t) (((q63_t) real * real) >> 33); acc1 = (q31_t) (((q63_t) imag * imag) >> 33); /* store the result in 2.30 format in the destination buffer. */ arm_sqrt_q31(acc0 + acc1, pDst++); /* Decrement the loop counter */ blkCnt--; } } /** * @} end of cmplx_mag group */