Bandpass, notch, abs en laagdoorlaat 3H
Dependencies: HIDScope MODSERIAL TextLCD mbed-dsp mbed
Fork of EMGmeten by
EMGmeten.cpp
- Committer:
- lauradeheus
- Date:
- 2014-10-31
- Revision:
- 8:4b275b1667d8
- Parent:
- 7:0e76120eb7ad
File content as of revision 8:4b275b1667d8:
#include "mbed.h" #include "HIDScope.h" #include "arm_math.h" #include "MODSERIAL.h" #include "TextLCD.h" #define EMG_treshhold 0,05 //Serial pc(USBTX,USBRX); AnalogIn emg(PTB1); //Analog input HIDScope scope(3); // Twee kanalen op de HIDScope DigitalIn knop(PTD4); /*Digital input pin (knop) definieren*/ TextLCD lcd(PTD2, PTA12, PTB2, PTB3, PTC2, PTA13, TextLCD::LCD16x2); arm_biquad_casd_df1_inst_f32 lowpass_1; //2e orde lowpass biquad butterworthfilter 99Hz arm_biquad_casd_df1_inst_f32 lowpass_2; //2e orde lowpass biquad butterworthfilter 3Hz arm_biquad_casd_df1_inst_f32 highpass; //2e orde highpass biquad butterworthfilter 20Hz arm_biquad_casd_df1_inst_f32 notch; //2e orde lowpass biquad butterworthfilter 50Hz float lowpass_1_const[] = {0.978030479206560 , 1.956060958413119 , 0.978030479206560 , -1.955578240315036 , -0.956543676511203}; float lowpass_1_states[4]; float lowpass_2_const[] = {0.002080567135492 , 0.004161134270985 , 0.002080567135492 , 1.866892279711715 , -0.875214548253684}; //3Hz //{0.0009446914586925257 , 0.0018893829173850514 , 0.0009446914586925257 , 1.911196288237583 , -0.914975054072353};//2Hz //{0.00024135899874854145 , 0.0004827179974970829 , 0.00024135899874854145 , 1.9555778328194147 , -0.9565432688144089}; 1Hz float lowpass_2_states[4]; float highpass_const[] = {0.638945525159022 , -1.277891050318045 , 0.638945525159022 , 1.142980502539901 , -0.412801598096189}; float highpass_states[4]; float notch_const[] = {0.978048948305681 , 0.000000000000000 , 0.978048948305681 , 0.000000000000000 , -0.956097896611362}; float notch_states[4]; float emg_filtered; float emg_max=0.15; float emg_treshhold_laag = 0.3*emg_max; float emg_treshhold_hoog = 0.7*emg_max; bool aanspan; int aantal_pieken; int doel; void emg_filtering(); void pieken_tellen(); void emg_max_meting(); //void emg_max_meting(){ // if (emg_filtered>=emg_max) // { // emg_max=emg_filtered; // } // emg_treshhold_laag = 0.3*emg_max; // emg_treshhold_hoog = 0.7*emg_max; //} void emg_filtering() { uint16_t emg_value; float emg_value_f32; emg_value = emg.read_u16(); // read direct ADC result, converted to 16 bit integer (0..2^16 = 0..65536 = 0..3.3V) emg_value_f32 = emg.read(); arm_biquad_cascade_df1_f32(&highpass, &emg_value_f32, &emg_filtered, 1 ); arm_biquad_cascade_df1_f32(&lowpass_1, &emg_filtered, &emg_filtered, 1 ); arm_biquad_cascade_df1_f32(¬ch, &emg_filtered, &emg_filtered, 1); emg_filtered = fabs(emg_filtered); arm_biquad_cascade_df1_f32(&lowpass_2, &emg_filtered, &emg_filtered, 1 ); pieken_tellen(); doel = aantal_pieken-((aantal_pieken/3)*3)+1; scope.set(0,emg_value); //uint value scope.set(1,emg_filtered); //processed float scope.set(2,doel); scope.send(); lcd.cls(); lcd.printf("Hallo"); } void pieken_tellen(){ if (emg_filtered>=emg_treshhold_hoog) { aanspan=true; //maak een variabele waarin je opslaat dat het signaal hoog is. } if (aanspan==true && emg_filtered<=emg_treshhold_laag)//== ipv =, anders wordt aanspan true gemaakt { aanspan=false; aantal_pieken++; doel = aantal_pieken-((aantal_pieken/3)*3)+1; } } //char *lcd_r1 = new char[16]; //char *lcd_r2 = new char[16]; /* void emg_filtering() { uint16_t emg_value; float emg_value_f32; emg_value = emg.read_u16(); // read direct ADC result, converted to 16 bit integer (0..2^16 = 0..65536 = 0..3.3V) emg_value_f32 = emg.read(); arm_biquad_cascade_df1_f32(&highpass, &emg_value_f32, &emg_filtered, 1 ); arm_biquad_cascade_df1_f32(&lowpass_1, &emg_filtered, &emg_filtered, 1 ); arm_biquad_cascade_df1_f32(¬ch, &emg_filtered, &emg_filtered, 1); emg_filtered = fabs(emg_filtered); //emg_value_f32 = fabs(emg_value_f32); arm_biquad_cascade_df1_f32(&lowpass_2, &emg_filtered, &emg_filtered, 1 ); //EMG_max_meting(); pieken_tellen(); doel = aantal_pieken-((aantal_pieken/3)*3)+1; //pc.printf("%d",doel); scope.set(0,emg_value); //uint value scope.set(1,emg_filtered); //processed float scope.set(2,doel); scope.send(); } void emg_max_meting() { //int i=0; // tijdspad //lcd.cls(); //lcd.printf("Maximale\nEMGmeting"); //for(i=0; i<300; i++) //{ // wait(0.1); if (emg_filtered>=emg_max) { emg_max=emg_filtered; } //} //lcd.cls(); //lcd.printf("Maximale EMG\nbepaald"); //wait(3); emg_treshhold_laag = 0.3*emg_max; emg_treshhold_hoog = 0.7*emg_max; } void pieken_tellen() { if (emg_filtered>=emg_treshhold_hoog) { aanspan=true; //maak een variabele waarin je opslaat dat het signaal hoog is. } if (aanspan==true && emg_filtered<=emg_treshhold_laag)//== ipv =, anders wordt aanspan true gemaakt { aanspan=false; aantal_pieken++; } } */ int main() { Ticker log_timer; arm_biquad_cascade_df1_init_f32(&lowpass_1,1 , lowpass_1_const, lowpass_1_states); arm_biquad_cascade_df1_init_f32(&highpass,1 , highpass_const, highpass_states); arm_biquad_cascade_df1_init_f32(¬ch,1 , notch_const, notch_states); arm_biquad_cascade_df1_init_f32(&lowpass_2,1 , lowpass_2_const, lowpass_2_states); log_timer.attach(emg_filtering, 0.005); while(1) //Loop { //lcd.cls(); //lcd.printf("Te raken doel =\n%d", doel); //pc.baud(9600); //(0.02); /*Empty!*/ /*Everything is handled by the interrupt routine now!*/ //pc.baud(9600); } }