Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: MX12 ServoRingBuffer mbed-src
Fork of SpindleBot by
main.cpp
- Committer:
- labmrd
- Date:
- 2015-04-06
- Revision:
- 4:e44ac08027bd
- Parent:
- 2:dfeadd6c651c
- Child:
- 5:72e92c721cd5
File content as of revision 4:e44ac08027bd:
#define USE_DYNAMIXELS
//#define USE_BLUETOOTH
#define USE_SD_CARD
// We have different modes for different things
#define MODE_MANUAL 1
#define MODE_AUTOMATIC 2
#define MODE_IDLE 3
#define MODE_NULL 0
// We always want to know if we are closing or opening
#define DIRECTION_CLOSING 1
#define DIRECTION_OPENING 2
#define DIRECTION_SLACK_WATER 3
#define DIRECTION_NULL 0
// General includes
#include "mbed.h"
#include "ServoRingBuffer.h"
#include "ram_test.h"
#include "Serial_Receive.h"
#include <string>
// Specific to Dynamixels
#ifdef USE_DYNAMIXELS
#include "MX12.h"
#include "AD7730.h"
#endif
// Specific to SD Card
#ifdef USE_SD_CARD
#include "SDFileSystem.h"
#endif
// Everyone should know pi...
#ifndef M_PI
#define M_PI 3.14159265358979323846 /* pi */
#endif
#ifndef M_PI_2
#define M_PI_2 1.57079632679489661923 /* pi/2 */
#endif
// Create enum for the Jaw state (Closing, hold, opening)
enum jaw_state{
STATE_CLOSING=0,
STATE_CLOSE_HOLD=1,
STATE_OPENING=2,
STATE_OPEN_HOLD=3
};
// Define pins and interrupts
Ticker potISR; //Define a recurring timer interrupt
DigitalOut led1(LED1); //Led 1 for debugging purposes
DigitalOut led2(LED2); //Led 2 for debugging purposes
DigitalOut led3(LED3); //Led 3 for debugging purposes
//DigitalOut led4(LED4); //Led 4 for debugging purposes
DigitalOut triggerOut(p11);
Serial pc(USBTX, USBRX); //Set up serial connection to pc
#ifdef USE_BLUETOOTH
Serial bt(p13,p14); //Set up serial connection to bluetooth adapter
#endif
AnalogIn AinLeftForce(p16); //Set up potentiometer on pin 20
AnalogIn AinRightForce(p15); //Set up potentiometer on pin 20
#ifdef USE_SD_CARD
// Attach SD card
SDFileSystem sd(p5, p6, p7, p8, "sd"); // the pinout on the mbed Cool Components workshop board
FILE *fp = NULL;
#define SAMPLES_PER_FILE 10000
#endif
// Dummy variable for debugging
unsigned int global_count=0;
float max_percent_full=0;
// Define variables for the program
float servoAngle; //This is the desired servo angle based on the scaled potentiometer value
float potData; //This is the value of the potentiometer from Ain.read()
bool collect_data = false; //This is
bool keyStrokeFlag = false; //This is a flag to see if a keystroke has been pressed
char keyStrokeVal; //This is a character storing the value of the keystroke
char g_tissue_type_name[32];
float g_frequency;
int g_max_force;
int g_num_cycles;
float g_current_trajectory_time;
float g_theta;
float g_theta_last=0;
unsigned char g_current_mode=MODE_NULL;
jaw_state g_current_direction=STATE_OPEN_HOLD;
unsigned char g_current_cycle=0;
// Warning, this buffer is large!
ServoRingBuffer Buffer;
spindleData tempSpindleData; //For sending to the buffer
Timer ISRDurationTimer;
Timer AuxSerialTimer;
int worst_latency=0;
int current_latency;
#ifdef USE_DYNAMIXELS
//Dynamixels can only handle 500Hz for now. Working on it...
float samplingPeriod = 0.005; //This is the sampling period for the timer interrupt
#define LEFT_JAW_DYNAMIXEL_ID 3
#define RIGHT_JAW_DYNAMIXEL_ID 4
#define CLOSED_SERVO_ANGLE_LEFT 1121 //This is the closed in encoder counts
#define OPEN_SERVO_ANGLE_LEFT 2783 //This is the open in encoder counts
#define CLOSED_SERVO_ANGLE_RIGHT 3259 //This is the closed in encoder counts
#define OPEN_SERVO_ANGLE_RIGHT 1486 //This is the open in encoder counts
// Dynamixel Object
MX12 mx12_left_jaw (p28, p27, p30, p29, LEFT_JAW_DYNAMIXEL_ID, 1000000);
MX12 mx12_right_jaw (p28, p27, p30, p29, RIGHT_JAW_DYNAMIXEL_ID, 1000000);
AD7730 adc(p9, p26, p11, p12, p25);
/// Set these to inputs so that they don't interfere with the serial communication
DigitalIn nullOut1(p21);
DigitalIn nullOut2(p22);
DigitalIn nullOut3(p23);
DigitalIn nullOut4(p24);
#else
float samplingPeriod = 0.001; //This is the sampling period for the timer interrupt
#define SERVO_DEGREE_0 900 //This is the pulse width value for HiTEC-422 in microseconds to turn 0 degrees
#define SERVO_DEGREE_180 2100 //This is the pulse width value for HiTEC-422 in microseconds to turn 180 degrees
#define MIN_SERVO_ANGLE 0.0 //This is the minimum servo angle in degrees
#define MAX_SERVO_ANGLE 180.0 //This is the maximum servo angle in degrees
#define MIN_SERVO_ANGLE_Da_VINCI 20.0 //This is the minimum servo angle in degrees
#define MAX_SERVO_ANGLE_Da_VINCI 100.0 //This is the maximum servo angle in degrees
const float servoConversion = ((SERVO_DEGREE_180-SERVO_DEGREE_0)/(MAX_SERVO_ANGLE - MIN_SERVO_ANGLE))/1000000.0; //This is the interpolation between min and max servo values
const float servoOffset = SERVO_DEGREE_0/1000000.0; //This is the pulsewidth value (in seconds) that corresponds to 0 degrees (i.e.-the offset)
PwmOut myServoLeft(p21); //Set up servo on pin 21
PwmOut myServoRight(p22); //Set up servo on pin 22
AnalogIn AinLeftPosition(p20); //Set up potentiometer on pin 20
AnalogIn AinRightPosition(p19); //Set up potentiometer on pin 20
// Function moveServoTo: Convert a degree value to pulsewidth for Servo
void moveServoTo(float angle) {
// Make sure none of the user input falls outside of min and max angle limits
if( angle < MIN_SERVO_ANGLE){angle = MIN_SERVO_ANGLE;}
else if(angle > MAX_SERVO_ANGLE){angle = MAX_SERVO_ANGLE;}
myServoLeft.pulsewidth(servoOffset + servoConversion*(180-angle));
myServoRight.pulsewidth(servoOffset + servoConversion*(angle));
}
#endif
// Function trapezoidalTrajectory: Function that takes in a time (float in seconds) and outputs a float (0 to 1) that corresponds to a trapezoidal trajectory
float trapezoidalTrajectory(float t, jaw_state &state, unsigned char &cycle_num) {
// Define variables specific to this function
float y_trapezoid = 0.0;
float timeMod;
float modifiedFrequency = g_frequency/2.0;
float period = 1/modifiedFrequency;
cycle_num=t*modifiedFrequency;
// Take the time and mod it with the period to be able to break up each cycle into 4 piecewise sections
timeMod = fmodf(t,period);
//
if (timeMod < period/4.0)
{
y_trapezoid = (-4.0/period)*(timeMod)+1.0;
state = STATE_CLOSING;
}
else if (timeMod >= period/4.0 && timeMod < period/2.0)
{
y_trapezoid = 0.0;
state = STATE_CLOSE_HOLD;
}
else if (timeMod >= period/2.0 && timeMod < 3*period/4.0)
{
y_trapezoid = (4.0/period)*(timeMod)-2;
state = STATE_OPENING;
}
else if (timeMod >= 3*period/4.0)
{
y_trapezoid = 1.0;
state = STATE_OPEN_HOLD;
}
return y_trapezoid;
}
void sinusoidalTrajectory(float t, jaw_state &state, unsigned char &cycle_num) {
//Fill me with SCIENCE!!!
}
// Function timerISRFunction: Timer ISR function to collect data and write to ring buffer
void timerISRFunction() {
if(collect_data){
//led 1 is used as a 'thinking' light, brighter=worse
led1 = 1;
led2 = 0;
triggerOut = 1;
ISRDurationTimer.reset();
ISRDurationTimer.start();
// Warning, this calculation is in the ISR and as such is probably slower than we would prefer.
// @todo The math could certainly be optimized with some precalculated constants. Lookup tables are faster than sin()
float percent=trapezoidalTrajectory(g_current_trajectory_time,g_current_direction,g_current_cycle);
g_current_trajectory_time+=samplingPeriod;
//float angle=g_current_trajectory_time*g_frequency*2.0*M_PI-M_PI_2;
//g_current_direction=(cos(angle)<0);
//g_current_cycle=(angle+M_PI_2)/(2.0*M_PI);
#ifdef USE_DYNAMIXELS
//float percent=(sin(angle)+1)/2.0;
if(adc.isReady()){
adc.interruptRead();
}
short left_servo =percent*(CLOSED_SERVO_ANGLE_LEFT -OPEN_SERVO_ANGLE_LEFT )+OPEN_SERVO_ANGLE_LEFT ;
short right_servo=percent*(CLOSED_SERVO_ANGLE_RIGHT-OPEN_SERVO_ANGLE_RIGHT)+OPEN_SERVO_ANGLE_RIGHT;
mx12_right_jaw.coordinated_move(LEFT_JAW_DYNAMIXEL_ID,left_servo, 0, RIGHT_JAW_DYNAMIXEL_ID,right_servo, 0);
// tempSpindleData.myServoData[LEFT_SERVO_INDEX].force = adc.read();
// tempSpindleData.myServoData[LEFT_SERVO_INDEX].pos = mx12_left_jaw.GetRawPosition();
// tempSpindleData.myServoData[RIGHT_SERVO_INDEX].force = AinRightForce.read_u16();
// tempSpindleData.myServoData[RIGHT_SERVO_INDEX].pos = mx12_right_jaw.GetRawPosition();
// tempSpindleData.direction=g_current_direction;
// tempSpindleData.cycle=g_current_cycle;
// Buffer.write(tempSpindleData);
#else
g_theta=(1.0-percent)*(MAX_SERVO_ANGLE_Da_VINCI-MIN_SERVO_ANGLE_Da_VINCI)+MIN_SERVO_ANGLE_Da_VINCI;
tempSpindleData.myServoData[LEFT_SERVO_INDEX].force = AinLeftForce.read_u16();
tempSpindleData.myServoData[LEFT_SERVO_INDEX].pos = AinLeftPosition.read_u16();
tempSpindleData.myServoData[RIGHT_SERVO_INDEX].force = AinRightForce.read_u16();
tempSpindleData.myServoData[RIGHT_SERVO_INDEX].pos = AinRightPosition.read_u16();
tempSpindleData.direction=g_current_direction;
tempSpindleData.cycle=g_current_cycle;
Buffer.write(tempSpindleData);
moveServoTo(g_theta); // in degrees, son
#endif
//done thinking
led1 = 0;
led2 = 1;
triggerOut = 0;
ISRDurationTimer.stop();
current_latency=ISRDurationTimer.read_us();
if(current_latency>worst_latency){
worst_latency=current_latency;
}
}
}
int main() {
// Crazy fast baud rate!
pc.baud(921600);
#ifdef USE_BLUETOOTH
bt.baud(9600);
#endif
// Attach ISR routines
potISR.attach(&timerISRFunction, samplingPeriod); // setup serialPot to call every samplingPeriod
// Some debug info:
//DisplayRAMBanks();
//printf ("System clock = %d\r\n", SystemCoreClock);
pc.printf("\n\n\n");
pc.printf("----------------------------------\n");
pc.printf("| |\n");
pc.printf("| Welcome to our mbed! |\n");
pc.printf("| |\n");
pc.printf("| John and Trevor, Proprietors |\n");
pc.printf("| |\n");
pc.printf("----------------------------------\n");
pc.printf(" ||\n");
pc.printf(" ||\n");
pc.printf(" || _\n");
pc.printf(" || _( )_\n");
pc.printf(" || (_(#)_)\n");
pc.printf(" || (_)\\\n");
pc.printf(" || | __\n");
pc.printf(" \\ / | || |/_/\n");
pc.printf(" / | | / / / | || | \\ \\ | / \n");
pc.printf("/ / \\ \\ / / / || / | / / \\ \\ \n");
pc.printf("#################################\n");
pc.printf("#################################\n");
pc.printf("\n\n");
#ifdef USE_DYNAMIXELS
mx12_left_jaw.Init();
//mx12_left_jaw.SetBaud(3000000);
//mx12_left_jaw.SetBaud(1000000);
//printf("Current Position=%1.3f\n",mx12_left_jaw.GetPosition());
mx12_right_jaw.Set_Return_Delay_Time(0.050);
printf("Current ReturnDelay=%f ms\n",mx12_left_jaw.Get_Return_Delay_Time());
mx12_left_jaw.Set_Return_Delay_Time(0.050);
//mx12_left_jaw.Set_Torque_Limit(99.9);
//mx12_right_jaw.Set_Torque_Limit(99.9);
mx12_left_jaw.write_short(MX12_REG_MAX_TORQUE,0x03FF);
mx12_right_jaw.write_short(MX12_REG_MAX_TORQUE,0x03FF);
mx12_left_jaw.Set_P_Gain(4);
mx12_right_jaw.Set_P_Gain(4);
mx12_left_jaw.Set_I_Gain(8);
mx12_right_jaw.Set_I_Gain(8);
mx12_left_jaw.Set_Alarm_Shutdown(0x04);
mx12_right_jaw.Set_Alarm_Shutdown(0x04);
mx12_left_jaw.Dump_OD_to_Serial(pc);
mx12_right_jaw.Dump_OD_to_Serial(pc);
adc.setFilter(256 , false, 1);
adc.start();
#else
// Configure Servo for HiTec 422
myServoLeft.period_ms(20);
myServoRight.period_ms(20);
#endif
printf("Setup Complete.\n");
AuxSerialTimer.start();
while(1)
{
// spin in a main loop. serialISR will interrupt it to call serialPot
///This checks for any new serial bytes, and returns true if
///we have an entire packet ready. The new packet will live
///in newData.
if(
#ifdef USE_BLUETOOTH
receivePacket(bt)
#else
receivePacket(pc)
#endif
)
{
// < Tissue Type (string), Frequency Value (Hz) (int), Force Max (N) (int), # Cycles (in) >
//<date/tissue/time,2,3,4>
//g_tissue_type_name=tissue_type_name;
std::string file_name_in=inString.substr(0, inString.find(","));
g_frequency=newData[1]/10.0; // Since all we send are ints
g_max_force=newData[2];
g_num_cycles=newData[3];
g_current_trajectory_time=0;
g_current_cycle=0;
g_current_mode=MODE_AUTOMATIC;
#ifdef USE_SD_CARD
int first_slash=file_name_in.find("/");
std::string new_dir="/sd/"+file_name_in.substr(0, first_slash);
std::string new_subdir="/sd/"+file_name_in.substr(0, file_name_in.find("/",first_slash+1));
mkdir(new_dir.c_str(), 0777);
mkdir(new_subdir.c_str(), 0777);
std::string file_name="/sd/"+file_name_in+".csv";
//pc.printf("subdir=\"%s\"\n",file_name.c_str());
fp = fopen(file_name.c_str(), "w");
//FILE *fp = fopen("/sd/data/sdtest.txt", "w");
if(fp == NULL) {
error("Could not open file for write\n");
}
fprintf(fp, "%%Starting New Trajectory\n");
fprintf(fp, "%%File Name=\"%s\"\n",file_name.c_str());
fprintf(fp, "%%Current Mode=AUTOMATIC\n");
fprintf(fp, "%%Trajectory Type=TRAPEZOIDAL\n");
fprintf(fp, "%%Frequency=%f Hz\n",g_frequency);
fprintf(fp, "%%Max Force=%f ??\n",g_max_force);
fprintf(fp, "%%Num Cycles=%d\n",g_num_cycles);
fprintf(fp, "%%Re. Direction: ,Closing=%d,Opening=%d,Undef=%d\n", DIRECTION_CLOSING , DIRECTION_OPENING , DIRECTION_SLACK_WATER );
fprintf(fp, "%%PositionLeft,ForceLeft,PositionRight,ForceRight,Time(ms),Direction,CycleNum\n");
#endif
// We are go-times!
collect_data=true;
}
if( collect_data && g_current_cycle >= g_num_cycles)
{
// STOOOOOOOOOP
collect_data=false;
#ifdef USE_SD_CARD
// Close the file
fclose(fp);
fp = NULL;
#endif
}
// This section of code should run whenever there is free time to print to the screen
#ifdef USE_SD_CARD
if(fp != NULL) {
// Only write to SD if there is a valid file handle
led3 = 1;
Buffer.dumpBufferToSD(fp);
led3 = 0;
}
#else
Buffer.dumpBufferToSerial();
#endif
if(AuxSerialTimer.read_ms()>100 && collect_data){
//Send some extra data for GUI purposes
printf("<%d,%d,%d,%d,%d,%d,%d> ",tempSpindleData.myServoData[LEFT_SERVO_INDEX].pos,
tempSpindleData.myServoData[LEFT_SERVO_INDEX].force,
tempSpindleData.myServoData[RIGHT_SERVO_INDEX].pos,
tempSpindleData.myServoData[RIGHT_SERVO_INDEX].force,
tempSpindleData.time,
tempSpindleData.direction,
tempSpindleData.cycle);
printf(" %dus\n", worst_latency);
worst_latency=0;
AuxSerialTimer.reset();
}
}
}
