KEIS

Dependents:   EthernetInterface_ccx

Fork of lwip-eth by mbed official

Committer:
khayakawa
Date:
Sat Sep 28 16:34:46 2013 +0000
Revision:
7:f974fe69517d
Parent:
6:59b01b9349d5
KEIS

Who changed what in which revision?

UserRevisionLine numberNew contents of line
emilmont 4:d827a085afd9 1 /**********************************************************************
khayakawa 7:f974fe69517d 2 * $Id$ lpc17_emac.c 2011-11-20
emilmont 4:d827a085afd9 3 *//**
khayakawa 7:f974fe69517d 4 * @file lpc17_emac.c
khayakawa 7:f974fe69517d 5 * @brief LPC17 ethernet driver for LWIP
khayakawa 7:f974fe69517d 6 * @version 1.0
khayakawa 7:f974fe69517d 7 * @date 20. Nov. 2011
khayakawa 7:f974fe69517d 8 * @author NXP MCU SW Application Team
emilmont 4:d827a085afd9 9 *
emilmont 4:d827a085afd9 10 * Copyright(C) 2011, NXP Semiconductor
emilmont 4:d827a085afd9 11 * All rights reserved.
emilmont 4:d827a085afd9 12 *
emilmont 4:d827a085afd9 13 ***********************************************************************
emilmont 4:d827a085afd9 14 * Software that is described herein is for illustrative purposes only
emilmont 4:d827a085afd9 15 * which provides customers with programming information regarding the
emilmont 4:d827a085afd9 16 * products. This software is supplied "AS IS" without any warranties.
emilmont 4:d827a085afd9 17 * NXP Semiconductors assumes no responsibility or liability for the
emilmont 4:d827a085afd9 18 * use of the software, conveys no license or title under any patent,
emilmont 4:d827a085afd9 19 * copyright, or mask work right to the product. NXP Semiconductors
emilmont 4:d827a085afd9 20 * reserves the right to make changes in the software without
emilmont 4:d827a085afd9 21 * notification. NXP Semiconductors also make no representation or
emilmont 4:d827a085afd9 22 * warranty that such application will be suitable for the specified
emilmont 4:d827a085afd9 23 * use without further testing or modification.
emilmont 4:d827a085afd9 24 **********************************************************************/
emilmont 4:d827a085afd9 25
emilmont 4:d827a085afd9 26 #include "lwip/opt.h"
emilmont 4:d827a085afd9 27 #include "lwip/sys.h"
emilmont 4:d827a085afd9 28 #include "lwip/def.h"
emilmont 4:d827a085afd9 29 #include "lwip/mem.h"
emilmont 4:d827a085afd9 30 #include "lwip/pbuf.h"
emilmont 4:d827a085afd9 31 #include "lwip/stats.h"
emilmont 4:d827a085afd9 32 #include "lwip/snmp.h"
emilmont 4:d827a085afd9 33 #include "netif/etharp.h"
emilmont 4:d827a085afd9 34 #include "netif/ppp_oe.h"
emilmont 4:d827a085afd9 35
emilmont 4:d827a085afd9 36 #include "lpc17xx_emac.h"
emilmont 4:d827a085afd9 37 #include "lpc17_emac.h"
emilmont 4:d827a085afd9 38 #include "lpc_emac_config.h"
emilmont 4:d827a085afd9 39 #include "lpc_phy.h"
emilmont 4:d827a085afd9 40 #include "sys_arch.h"
emilmont 4:d827a085afd9 41
emilmont 4:d827a085afd9 42 #include "mbed_interface.h"
emilmont 4:d827a085afd9 43 #include <string.h>
emilmont 4:d827a085afd9 44
emilmont 4:d827a085afd9 45 #ifndef LPC_EMAC_RMII
emilmont 4:d827a085afd9 46 #error LPC_EMAC_RMII is not defined!
emilmont 4:d827a085afd9 47 #endif
emilmont 4:d827a085afd9 48
emilmont 4:d827a085afd9 49 #if LPC_NUM_BUFF_TXDESCS < 2
emilmont 4:d827a085afd9 50 #error LPC_NUM_BUFF_TXDESCS must be at least 2
emilmont 4:d827a085afd9 51 #endif
emilmont 4:d827a085afd9 52
emilmont 4:d827a085afd9 53 #if LPC_NUM_BUFF_RXDESCS < 3
emilmont 4:d827a085afd9 54 #error LPC_NUM_BUFF_RXDESCS must be at least 3
emilmont 4:d827a085afd9 55 #endif
emilmont 4:d827a085afd9 56
khayakawa 7:f974fe69517d 57 /** @defgroup lwip17xx_emac_DRIVER lpc17 EMAC driver for LWIP
emilmont 4:d827a085afd9 58 * @ingroup lwip_emac
emilmont 4:d827a085afd9 59 *
emilmont 4:d827a085afd9 60 * @{
emilmont 4:d827a085afd9 61 */
emilmont 4:d827a085afd9 62
emilmont 4:d827a085afd9 63 #if NO_SYS == 0
emilmont 4:d827a085afd9 64 /** \brief Driver transmit and receive thread priorities
emilmont 4:d827a085afd9 65 *
emilmont 4:d827a085afd9 66 * Thread priorities for receive thread and TX cleanup thread. Alter
emilmont 4:d827a085afd9 67 * to prioritize receive or transmit bandwidth. In a heavily loaded
emilmont 4:d827a085afd9 68 * system or with LEIP_DEBUG enabled, the priorities might be better
emilmont 4:d827a085afd9 69 * the same. */
emilmont 4:d827a085afd9 70 #define RX_PRIORITY (osPriorityNormal)
emilmont 4:d827a085afd9 71 #define TX_PRIORITY (osPriorityNormal)
emilmont 4:d827a085afd9 72
emilmont 4:d827a085afd9 73 /** \brief Debug output formatter lock define
emilmont 4:d827a085afd9 74 *
emilmont 4:d827a085afd9 75 * When using FreeRTOS and with LWIP_DEBUG enabled, enabling this
emilmont 4:d827a085afd9 76 * define will allow RX debug messages to not interleave with the
emilmont 4:d827a085afd9 77 * TX messages (so they are actually readable). Not enabling this
emilmont 4:d827a085afd9 78 * define when the system is under load will cause the output to
emilmont 4:d827a085afd9 79 * be unreadable. There is a small tradeoff in performance for this
emilmont 4:d827a085afd9 80 * so use it only for debug. */
emilmont 4:d827a085afd9 81 //#define LOCK_RX_THREAD
emilmont 4:d827a085afd9 82
emilmont 4:d827a085afd9 83 /** \brief Receive group interrupts
emilmont 4:d827a085afd9 84 */
emilmont 4:d827a085afd9 85 #define RXINTGROUP (EMAC_INT_RX_OVERRUN | EMAC_INT_RX_ERR | EMAC_INT_RX_DONE)
emilmont 4:d827a085afd9 86
emilmont 4:d827a085afd9 87 /** \brief Transmit group interrupts
emilmont 4:d827a085afd9 88 */
emilmont 4:d827a085afd9 89 #define TXINTGROUP (EMAC_INT_TX_UNDERRUN | EMAC_INT_TX_ERR | EMAC_INT_TX_DONE)
emilmont 4:d827a085afd9 90
emilmont 4:d827a085afd9 91 #else
emilmont 4:d827a085afd9 92 #define RXINTGROUP 0
emilmont 4:d827a085afd9 93 #define TXINTGROUP 0
emilmont 4:d827a085afd9 94 #endif
emilmont 4:d827a085afd9 95
emilmont 4:d827a085afd9 96 /** \brief Structure of a TX/RX descriptor
emilmont 4:d827a085afd9 97 */
emilmont 4:d827a085afd9 98 typedef struct
emilmont 4:d827a085afd9 99 {
khayakawa 7:f974fe69517d 100 volatile u32_t packet; /**< Pointer to buffer */
khayakawa 7:f974fe69517d 101 volatile u32_t control; /**< Control word */
emilmont 4:d827a085afd9 102 } LPC_TXRX_DESC_T;
emilmont 4:d827a085afd9 103
emilmont 4:d827a085afd9 104 /** \brief Structure of a RX status entry
emilmont 4:d827a085afd9 105 */
emilmont 4:d827a085afd9 106 typedef struct
emilmont 4:d827a085afd9 107 {
khayakawa 7:f974fe69517d 108 volatile u32_t statusinfo; /**< RX status word */
khayakawa 7:f974fe69517d 109 volatile u32_t statushashcrc; /**< RX hash CRC */
emilmont 4:d827a085afd9 110 } LPC_TXRX_STATUS_T;
emilmont 4:d827a085afd9 111
emilmont 4:d827a085afd9 112 /* LPC EMAC driver data structure */
emilmont 4:d827a085afd9 113 struct lpc_enetdata {
emilmont 4:d827a085afd9 114 /* prxs must be 8 byte aligned! */
khayakawa 7:f974fe69517d 115 LPC_TXRX_STATUS_T prxs[LPC_NUM_BUFF_RXDESCS]; /**< Pointer to RX statuses */
khayakawa 7:f974fe69517d 116 struct netif *netif; /**< Reference back to LWIP parent netif */
khayakawa 7:f974fe69517d 117 LPC_TXRX_DESC_T ptxd[LPC_NUM_BUFF_TXDESCS]; /**< Pointer to TX descriptor list */
khayakawa 7:f974fe69517d 118 LPC_TXRX_STATUS_T ptxs[LPC_NUM_BUFF_TXDESCS]; /**< Pointer to TX statuses */
khayakawa 7:f974fe69517d 119 LPC_TXRX_DESC_T prxd[LPC_NUM_BUFF_RXDESCS]; /**< Pointer to RX descriptor list */
khayakawa 7:f974fe69517d 120 struct pbuf *rxb[LPC_NUM_BUFF_RXDESCS]; /**< RX pbuf pointer list, zero-copy mode */
khayakawa 7:f974fe69517d 121 u32_t rx_fill_desc_index; /**< RX descriptor next available index */
khayakawa 7:f974fe69517d 122 volatile u32_t rx_free_descs; /**< Count of free RX descriptors */
khayakawa 7:f974fe69517d 123 struct pbuf *txb[LPC_NUM_BUFF_TXDESCS]; /**< TX pbuf pointer list, zero-copy mode */
khayakawa 7:f974fe69517d 124 u32_t lpc_last_tx_idx; /**< TX last descriptor index, zero-copy mode */
emilmont 4:d827a085afd9 125 #if NO_SYS == 0
khayakawa 7:f974fe69517d 126 sys_sem_t RxSem; /**< RX receive thread wakeup semaphore */
khayakawa 7:f974fe69517d 127 sys_sem_t TxCleanSem; /**< TX cleanup thread wakeup semaphore */
khayakawa 7:f974fe69517d 128 sys_mutex_t TXLockMutex; /**< TX critical section mutex */
khayakawa 7:f974fe69517d 129 sys_sem_t xTXDCountSem; /**< TX free buffer counting semaphore */
emilmont 4:d827a085afd9 130 #endif
emilmont 4:d827a085afd9 131 };
emilmont 4:d827a085afd9 132
emilmont 5:698d868a5285 133 #if defined(TARGET_LPC4088)
emilmont 5:698d868a5285 134 # if defined (__ICCARM__)
emilmont 5:698d868a5285 135 # define ETHMEM_SECTION
emilmont 5:698d868a5285 136 # elif defined(TOOLCHAIN_GCC_CR)
emilmont 5:698d868a5285 137 # define ETHMEM_SECTION __attribute__((section(".data.$RamPeriph32")))
emilmont 5:698d868a5285 138 # else
emilmont 5:698d868a5285 139 # define ETHMEM_SECTION __attribute__((section("AHBSRAM1"),aligned))
emilmont 5:698d868a5285 140 # endif
emilmont 5:698d868a5285 141 #else
emilmont 5:698d868a5285 142 # define ETHMEM_SECTION ALIGNED(8)
emilmont 5:698d868a5285 143 #endif
emilmont 5:698d868a5285 144
emilmont 4:d827a085afd9 145 /** \brief LPC EMAC driver work data
emilmont 4:d827a085afd9 146 */
emilmont 5:698d868a5285 147 ETHMEM_SECTION struct lpc_enetdata lpc_enetdata;
emilmont 4:d827a085afd9 148
emilmont 4:d827a085afd9 149 /* Write a value via the MII link (non-blocking) */
emilmont 4:d827a085afd9 150 void lpc_mii_write_noblock(u32_t PhyReg, u32_t Value)
emilmont 4:d827a085afd9 151 {
khayakawa 7:f974fe69517d 152 /* Write value at PHY address and register */
khayakawa 7:f974fe69517d 153 LPC_EMAC->MADR = (LPC_PHYDEF_PHYADDR << 8) | PhyReg;
khayakawa 7:f974fe69517d 154 LPC_EMAC->MWTD = Value;
emilmont 4:d827a085afd9 155 }
emilmont 4:d827a085afd9 156
emilmont 4:d827a085afd9 157 /* Write a value via the MII link (blocking) */
emilmont 4:d827a085afd9 158 err_t lpc_mii_write(u32_t PhyReg, u32_t Value)
emilmont 4:d827a085afd9 159 {
khayakawa 7:f974fe69517d 160 u32_t mst = 250;
khayakawa 7:f974fe69517d 161 err_t sts = ERR_OK;
emilmont 4:d827a085afd9 162
khayakawa 7:f974fe69517d 163 /* Write value at PHY address and register */
khayakawa 7:f974fe69517d 164 lpc_mii_write_noblock(PhyReg, Value);
emilmont 4:d827a085afd9 165
khayakawa 7:f974fe69517d 166 /* Wait for unbusy status */
khayakawa 7:f974fe69517d 167 while (mst > 0) {
khayakawa 7:f974fe69517d 168 sts = LPC_EMAC->MIND;
khayakawa 7:f974fe69517d 169 if ((sts & EMAC_MIND_BUSY) == 0)
khayakawa 7:f974fe69517d 170 mst = 0;
khayakawa 7:f974fe69517d 171 else {
khayakawa 7:f974fe69517d 172 mst--;
khayakawa 7:f974fe69517d 173 osDelay(1);
khayakawa 7:f974fe69517d 174 }
khayakawa 7:f974fe69517d 175 }
emilmont 4:d827a085afd9 176
khayakawa 7:f974fe69517d 177 if (sts != 0)
khayakawa 7:f974fe69517d 178 sts = ERR_TIMEOUT;
emilmont 4:d827a085afd9 179
khayakawa 7:f974fe69517d 180 return sts;
emilmont 4:d827a085afd9 181 }
emilmont 4:d827a085afd9 182
emilmont 4:d827a085afd9 183 /* Reads current MII link busy status */
emilmont 4:d827a085afd9 184 u32_t lpc_mii_is_busy(void)
emilmont 4:d827a085afd9 185 {
khayakawa 7:f974fe69517d 186 return (u32_t) (LPC_EMAC->MIND & EMAC_MIND_BUSY);
emilmont 4:d827a085afd9 187 }
emilmont 4:d827a085afd9 188
emilmont 4:d827a085afd9 189 /* Starts a read operation via the MII link (non-blocking) */
emilmont 4:d827a085afd9 190 u32_t lpc_mii_read_data(void)
emilmont 4:d827a085afd9 191 {
khayakawa 7:f974fe69517d 192 u32_t data = LPC_EMAC->MRDD;
khayakawa 7:f974fe69517d 193 LPC_EMAC->MCMD = 0;
emilmont 4:d827a085afd9 194
khayakawa 7:f974fe69517d 195 return data;
emilmont 4:d827a085afd9 196 }
emilmont 4:d827a085afd9 197
emilmont 4:d827a085afd9 198 /* Starts a read operation via the MII link (non-blocking) */
emilmont 4:d827a085afd9 199 void lpc_mii_read_noblock(u32_t PhyReg)
emilmont 4:d827a085afd9 200 {
khayakawa 7:f974fe69517d 201 /* Read value at PHY address and register */
khayakawa 7:f974fe69517d 202 LPC_EMAC->MADR = (LPC_PHYDEF_PHYADDR << 8) | PhyReg;
khayakawa 7:f974fe69517d 203 LPC_EMAC->MCMD = EMAC_MCMD_READ;
emilmont 4:d827a085afd9 204 }
emilmont 4:d827a085afd9 205
emilmont 4:d827a085afd9 206 /* Read a value via the MII link (blocking) */
emilmont 4:d827a085afd9 207 err_t lpc_mii_read(u32_t PhyReg, u32_t *data)
emilmont 4:d827a085afd9 208 {
khayakawa 7:f974fe69517d 209 u32_t mst = 250;
khayakawa 7:f974fe69517d 210 err_t sts = ERR_OK;
emilmont 4:d827a085afd9 211
khayakawa 7:f974fe69517d 212 /* Read value at PHY address and register */
khayakawa 7:f974fe69517d 213 lpc_mii_read_noblock(PhyReg);
emilmont 4:d827a085afd9 214
khayakawa 7:f974fe69517d 215 /* Wait for unbusy status */
khayakawa 7:f974fe69517d 216 while (mst > 0) {
khayakawa 7:f974fe69517d 217 sts = LPC_EMAC->MIND & ~EMAC_MIND_MII_LINK_FAIL;
khayakawa 7:f974fe69517d 218 if ((sts & EMAC_MIND_BUSY) == 0) {
khayakawa 7:f974fe69517d 219 mst = 0;
khayakawa 7:f974fe69517d 220 *data = LPC_EMAC->MRDD;
khayakawa 7:f974fe69517d 221 } else {
khayakawa 7:f974fe69517d 222 mst--;
khayakawa 7:f974fe69517d 223 osDelay(1);
khayakawa 7:f974fe69517d 224 }
khayakawa 7:f974fe69517d 225 }
emilmont 4:d827a085afd9 226
khayakawa 7:f974fe69517d 227 LPC_EMAC->MCMD = 0;
emilmont 4:d827a085afd9 228
khayakawa 7:f974fe69517d 229 if (sts != 0)
khayakawa 7:f974fe69517d 230 sts = ERR_TIMEOUT;
emilmont 4:d827a085afd9 231
khayakawa 7:f974fe69517d 232 return sts;
emilmont 4:d827a085afd9 233 }
emilmont 4:d827a085afd9 234
emilmont 4:d827a085afd9 235 /** \brief Queues a pbuf into the RX descriptor list
emilmont 4:d827a085afd9 236 *
emilmont 4:d827a085afd9 237 * \param[in] lpc_enetif Pointer to the drvier data structure
emilmont 4:d827a085afd9 238 * \param[in] p Pointer to pbuf to queue
emilmont 4:d827a085afd9 239 */
emilmont 4:d827a085afd9 240 static void lpc_rxqueue_pbuf(struct lpc_enetdata *lpc_enetif, struct pbuf *p)
emilmont 4:d827a085afd9 241 {
khayakawa 7:f974fe69517d 242 u32_t idx;
emilmont 4:d827a085afd9 243
khayakawa 7:f974fe69517d 244 /* Get next free descriptor index */
khayakawa 7:f974fe69517d 245 idx = lpc_enetif->rx_fill_desc_index;
emilmont 4:d827a085afd9 246
khayakawa 7:f974fe69517d 247 /* Setup descriptor and clear statuses */
khayakawa 7:f974fe69517d 248 lpc_enetif->prxd[idx].control = EMAC_RCTRL_INT | ((u32_t) (p->len - 1));
khayakawa 7:f974fe69517d 249 lpc_enetif->prxd[idx].packet = (u32_t) p->payload;
khayakawa 7:f974fe69517d 250 lpc_enetif->prxs[idx].statusinfo = 0xFFFFFFFF;
khayakawa 7:f974fe69517d 251 lpc_enetif->prxs[idx].statushashcrc = 0xFFFFFFFF;
emilmont 4:d827a085afd9 252
khayakawa 7:f974fe69517d 253 /* Save pbuf pointer for push to network layer later */
khayakawa 7:f974fe69517d 254 lpc_enetif->rxb[idx] = p;
emilmont 4:d827a085afd9 255
khayakawa 7:f974fe69517d 256 /* Wrap at end of descriptor list */
khayakawa 7:f974fe69517d 257 idx++;
khayakawa 7:f974fe69517d 258 if (idx >= LPC_NUM_BUFF_RXDESCS)
khayakawa 7:f974fe69517d 259 idx = 0;
emilmont 4:d827a085afd9 260
khayakawa 7:f974fe69517d 261 /* Queue descriptor(s) */
khayakawa 7:f974fe69517d 262 lpc_enetif->rx_free_descs -= 1;
khayakawa 7:f974fe69517d 263 lpc_enetif->rx_fill_desc_index = idx;
khayakawa 7:f974fe69517d 264 LPC_EMAC->RxConsumeIndex = idx;
emilmont 4:d827a085afd9 265
khayakawa 7:f974fe69517d 266 LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
khayakawa 7:f974fe69517d 267 ("lpc_rxqueue_pbuf: pbuf packet queued: %p (free desc=%d)\n", p,
khayakawa 7:f974fe69517d 268 lpc_enetif->rx_free_descs));
emilmont 4:d827a085afd9 269 }
emilmont 4:d827a085afd9 270
emilmont 4:d827a085afd9 271 /** \brief Attempt to allocate and requeue a new pbuf for RX
emilmont 4:d827a085afd9 272 *
emilmont 4:d827a085afd9 273 * \param[in] netif Pointer to the netif structure
emilmont 4:d827a085afd9 274 * \returns 1 if a packet was allocated and requeued, otherwise 0
emilmont 4:d827a085afd9 275 */
emilmont 4:d827a085afd9 276 s32_t lpc_rx_queue(struct netif *netif)
emilmont 4:d827a085afd9 277 {
khayakawa 7:f974fe69517d 278 struct lpc_enetdata *lpc_enetif = netif->state;
khayakawa 7:f974fe69517d 279 struct pbuf *p;
khayakawa 7:f974fe69517d 280 s32_t queued = 0;
emilmont 4:d827a085afd9 281
khayakawa 7:f974fe69517d 282 /* Attempt to requeue as many packets as possible */
khayakawa 7:f974fe69517d 283 while (lpc_enetif->rx_free_descs > 0) {
khayakawa 7:f974fe69517d 284 /* Allocate a pbuf from the pool. We need to allocate at the
khayakawa 7:f974fe69517d 285 maximum size as we don't know the size of the yet to be
khayakawa 7:f974fe69517d 286 received packet. */
khayakawa 7:f974fe69517d 287 p = pbuf_alloc(PBUF_RAW, (u16_t) EMAC_ETH_MAX_FLEN, PBUF_RAM);
khayakawa 7:f974fe69517d 288 if (p == NULL) {
khayakawa 7:f974fe69517d 289 LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
khayakawa 7:f974fe69517d 290 ("lpc_rx_queue: could not allocate RX pbuf (free desc=%d)\n",
khayakawa 7:f974fe69517d 291 lpc_enetif->rx_free_descs));
khayakawa 7:f974fe69517d 292 return queued;
khayakawa 7:f974fe69517d 293 }
emilmont 4:d827a085afd9 294
khayakawa 7:f974fe69517d 295 /* pbufs allocated from the RAM pool should be non-chained. */
khayakawa 7:f974fe69517d 296 LWIP_ASSERT("lpc_rx_queue: pbuf is not contiguous (chained)",
khayakawa 7:f974fe69517d 297 pbuf_clen(p) <= 1);
emilmont 4:d827a085afd9 298
khayakawa 7:f974fe69517d 299 /* Queue packet */
khayakawa 7:f974fe69517d 300 lpc_rxqueue_pbuf(lpc_enetif, p);
emilmont 4:d827a085afd9 301
khayakawa 7:f974fe69517d 302 /* Update queued count */
khayakawa 7:f974fe69517d 303 queued++;
khayakawa 7:f974fe69517d 304 }
emilmont 4:d827a085afd9 305
khayakawa 7:f974fe69517d 306 return queued;
emilmont 4:d827a085afd9 307 }
emilmont 4:d827a085afd9 308
emilmont 4:d827a085afd9 309 /** \brief Sets up the RX descriptor ring buffers.
emilmont 4:d827a085afd9 310 *
emilmont 4:d827a085afd9 311 * This function sets up the descriptor list used for receive packets.
emilmont 4:d827a085afd9 312 *
emilmont 4:d827a085afd9 313 * \param[in] lpc_enetif Pointer to driver data structure
emilmont 4:d827a085afd9 314 * \returns Always returns ERR_OK
emilmont 4:d827a085afd9 315 */
emilmont 4:d827a085afd9 316 static err_t lpc_rx_setup(struct lpc_enetdata *lpc_enetif)
emilmont 4:d827a085afd9 317 {
khayakawa 7:f974fe69517d 318 /* Setup pointers to RX structures */
khayakawa 7:f974fe69517d 319 LPC_EMAC->RxDescriptor = (u32_t) &lpc_enetif->prxd[0];
khayakawa 7:f974fe69517d 320 LPC_EMAC->RxStatus = (u32_t) &lpc_enetif->prxs[0];
khayakawa 7:f974fe69517d 321 LPC_EMAC->RxDescriptorNumber = LPC_NUM_BUFF_RXDESCS - 1;
emilmont 4:d827a085afd9 322
khayakawa 7:f974fe69517d 323 lpc_enetif->rx_free_descs = LPC_NUM_BUFF_RXDESCS;
khayakawa 7:f974fe69517d 324 lpc_enetif->rx_fill_desc_index = 0;
emilmont 4:d827a085afd9 325
khayakawa 7:f974fe69517d 326 /* Build RX buffer and descriptors */
khayakawa 7:f974fe69517d 327 lpc_rx_queue(lpc_enetif->netif);
emilmont 4:d827a085afd9 328
khayakawa 7:f974fe69517d 329 return ERR_OK;
emilmont 4:d827a085afd9 330 }
emilmont 4:d827a085afd9 331
emilmont 4:d827a085afd9 332 /** \brief Allocates a pbuf and returns the data from the incoming packet.
emilmont 4:d827a085afd9 333 *
emilmont 4:d827a085afd9 334 * \param[in] netif the lwip network interface structure for this lpc_enetif
emilmont 4:d827a085afd9 335 * \return a pbuf filled with the received packet (including MAC header)
emilmont 4:d827a085afd9 336 * NULL on memory error
emilmont 4:d827a085afd9 337 */
emilmont 4:d827a085afd9 338 static struct pbuf *lpc_low_level_input(struct netif *netif)
emilmont 4:d827a085afd9 339 {
khayakawa 7:f974fe69517d 340 struct lpc_enetdata *lpc_enetif = netif->state;
khayakawa 7:f974fe69517d 341 struct pbuf *p = NULL;
khayakawa 7:f974fe69517d 342 u32_t idx, length;
emilmont 4:d827a085afd9 343
emilmont 4:d827a085afd9 344 #ifdef LOCK_RX_THREAD
emilmont 4:d827a085afd9 345 #if NO_SYS == 0
khayakawa 7:f974fe69517d 346 /* Get exclusive access */
khayakawa 7:f974fe69517d 347 sys_mutex_lock(&lpc_enetif->TXLockMutex);
emilmont 4:d827a085afd9 348 #endif
emilmont 4:d827a085afd9 349 #endif
emilmont 4:d827a085afd9 350
khayakawa 7:f974fe69517d 351 /* Monitor RX overrun status. This should never happen unless
khayakawa 7:f974fe69517d 352 (possibly) the internal bus is behing held up by something.
khayakawa 7:f974fe69517d 353 Unless your system is running at a very low clock speed or
khayakawa 7:f974fe69517d 354 there are possibilities that the internal buses may be held
khayakawa 7:f974fe69517d 355 up for a long time, this can probably safely be removed. */
khayakawa 7:f974fe69517d 356 if (LPC_EMAC->IntStatus & EMAC_INT_RX_OVERRUN) {
khayakawa 7:f974fe69517d 357 LINK_STATS_INC(link.err);
khayakawa 7:f974fe69517d 358 LINK_STATS_INC(link.drop);
emilmont 4:d827a085afd9 359
khayakawa 7:f974fe69517d 360 /* Temporarily disable RX */
khayakawa 7:f974fe69517d 361 LPC_EMAC->MAC1 &= ~EMAC_MAC1_REC_EN;
emilmont 4:d827a085afd9 362
khayakawa 7:f974fe69517d 363 /* Reset the RX side */
khayakawa 7:f974fe69517d 364 LPC_EMAC->MAC1 |= EMAC_MAC1_RES_RX;
khayakawa 7:f974fe69517d 365 LPC_EMAC->IntClear = EMAC_INT_RX_OVERRUN;
emilmont 4:d827a085afd9 366
khayakawa 7:f974fe69517d 367 /* De-allocate all queued RX pbufs */
khayakawa 7:f974fe69517d 368 for (idx = 0; idx < LPC_NUM_BUFF_RXDESCS; idx++) {
khayakawa 7:f974fe69517d 369 if (lpc_enetif->rxb[idx] != NULL) {
khayakawa 7:f974fe69517d 370 pbuf_free(lpc_enetif->rxb[idx]);
khayakawa 7:f974fe69517d 371 lpc_enetif->rxb[idx] = NULL;
khayakawa 7:f974fe69517d 372 }
khayakawa 7:f974fe69517d 373 }
emilmont 4:d827a085afd9 374
khayakawa 7:f974fe69517d 375 /* Start RX side again */
khayakawa 7:f974fe69517d 376 lpc_rx_setup(lpc_enetif);
emilmont 4:d827a085afd9 377
khayakawa 7:f974fe69517d 378 /* Re-enable RX */
khayakawa 7:f974fe69517d 379 LPC_EMAC->MAC1 |= EMAC_MAC1_REC_EN;
emilmont 4:d827a085afd9 380
emilmont 4:d827a085afd9 381 #ifdef LOCK_RX_THREAD
emilmont 4:d827a085afd9 382 #if NO_SYS == 0
khayakawa 7:f974fe69517d 383 sys_mutex_unlock(&lpc_enetif->TXLockMutex);
emilmont 4:d827a085afd9 384 #endif
emilmont 4:d827a085afd9 385 #endif
emilmont 4:d827a085afd9 386
khayakawa 7:f974fe69517d 387 return NULL;
khayakawa 7:f974fe69517d 388 }
emilmont 4:d827a085afd9 389
khayakawa 7:f974fe69517d 390 /* Determine if a frame has been received */
khayakawa 7:f974fe69517d 391 length = 0;
khayakawa 7:f974fe69517d 392 idx = LPC_EMAC->RxConsumeIndex;
khayakawa 7:f974fe69517d 393 if (LPC_EMAC->RxProduceIndex != idx) {
khayakawa 7:f974fe69517d 394 /* Handle errors */
khayakawa 7:f974fe69517d 395 if (lpc_enetif->prxs[idx].statusinfo & (EMAC_RINFO_CRC_ERR |
khayakawa 7:f974fe69517d 396 EMAC_RINFO_SYM_ERR | EMAC_RINFO_ALIGN_ERR | EMAC_RINFO_LEN_ERR)) {
emilmont 4:d827a085afd9 397 #if LINK_STATS
khayakawa 7:f974fe69517d 398 if (lpc_enetif->prxs[idx].statusinfo & (EMAC_RINFO_CRC_ERR |
khayakawa 7:f974fe69517d 399 EMAC_RINFO_SYM_ERR | EMAC_RINFO_ALIGN_ERR))
khayakawa 7:f974fe69517d 400 LINK_STATS_INC(link.chkerr);
khayakawa 7:f974fe69517d 401 if (lpc_enetif->prxs[idx].statusinfo & EMAC_RINFO_LEN_ERR)
khayakawa 7:f974fe69517d 402 LINK_STATS_INC(link.lenerr);
emilmont 4:d827a085afd9 403 #endif
emilmont 4:d827a085afd9 404
khayakawa 7:f974fe69517d 405 /* Drop the frame */
khayakawa 7:f974fe69517d 406 LINK_STATS_INC(link.drop);
emilmont 4:d827a085afd9 407
khayakawa 7:f974fe69517d 408 /* Re-queue the pbuf for receive */
khayakawa 7:f974fe69517d 409 lpc_enetif->rx_free_descs++;
khayakawa 7:f974fe69517d 410 p = lpc_enetif->rxb[idx];
khayakawa 7:f974fe69517d 411 lpc_enetif->rxb[idx] = NULL;
khayakawa 7:f974fe69517d 412 lpc_rxqueue_pbuf(lpc_enetif, p);
emilmont 4:d827a085afd9 413
khayakawa 7:f974fe69517d 414 LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
khayakawa 7:f974fe69517d 415 ("lpc_low_level_input: Packet dropped with errors (0x%x)\n",
khayakawa 7:f974fe69517d 416 lpc_enetif->prxs[idx].statusinfo));
khayakawa 7:f974fe69517d 417
khayakawa 7:f974fe69517d 418 p = NULL;
khayakawa 7:f974fe69517d 419 } else {
khayakawa 7:f974fe69517d 420 /* A packet is waiting, get length */
khayakawa 7:f974fe69517d 421 length = (lpc_enetif->prxs[idx].statusinfo & 0x7FF) + 1;
emilmont 4:d827a085afd9 422
khayakawa 7:f974fe69517d 423 /* Zero-copy */
khayakawa 7:f974fe69517d 424 p = lpc_enetif->rxb[idx];
khayakawa 7:f974fe69517d 425 p->len = (u16_t) length;
emilmont 4:d827a085afd9 426
khayakawa 7:f974fe69517d 427 /* Free pbuf from desriptor */
khayakawa 7:f974fe69517d 428 lpc_enetif->rxb[idx] = NULL;
khayakawa 7:f974fe69517d 429 lpc_enetif->rx_free_descs++;
emilmont 4:d827a085afd9 430
khayakawa 7:f974fe69517d 431 LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
khayakawa 7:f974fe69517d 432 ("lpc_low_level_input: Packet received: %p, size %d (index=%d)\n",
khayakawa 7:f974fe69517d 433 p, length, idx));
emilmont 4:d827a085afd9 434
khayakawa 7:f974fe69517d 435 /* Save size */
khayakawa 7:f974fe69517d 436 p->tot_len = (u16_t) length;
khayakawa 7:f974fe69517d 437 LINK_STATS_INC(link.recv);
emilmont 4:d827a085afd9 438
khayakawa 7:f974fe69517d 439 /* Queue new buffer(s) */
khayakawa 7:f974fe69517d 440 lpc_rx_queue(lpc_enetif->netif);
khayakawa 7:f974fe69517d 441 }
khayakawa 7:f974fe69517d 442 }
emilmont 4:d827a085afd9 443
emilmont 4:d827a085afd9 444 #ifdef LOCK_RX_THREAD
emilmont 4:d827a085afd9 445 #if NO_SYS == 0
khayakawa 7:f974fe69517d 446 sys_mutex_unlock(&lpc_enetif->TXLockMutex);
emilmont 4:d827a085afd9 447 #endif
emilmont 4:d827a085afd9 448 #endif
emilmont 4:d827a085afd9 449
khayakawa 7:f974fe69517d 450 return p;
emilmont 4:d827a085afd9 451 }
emilmont 4:d827a085afd9 452
emilmont 4:d827a085afd9 453 /** \brief Attempt to read a packet from the EMAC interface.
emilmont 4:d827a085afd9 454 *
emilmont 4:d827a085afd9 455 * \param[in] netif the lwip network interface structure for this lpc_enetif
emilmont 4:d827a085afd9 456 */
emilmont 4:d827a085afd9 457 void lpc_enetif_input(struct netif *netif)
emilmont 4:d827a085afd9 458 {
khayakawa 7:f974fe69517d 459 struct eth_hdr *ethhdr;
khayakawa 7:f974fe69517d 460 struct pbuf *p;
emilmont 4:d827a085afd9 461
khayakawa 7:f974fe69517d 462 /* move received packet into a new pbuf */
khayakawa 7:f974fe69517d 463 p = lpc_low_level_input(netif);
khayakawa 7:f974fe69517d 464 if (p == NULL)
khayakawa 7:f974fe69517d 465 return;
emilmont 4:d827a085afd9 466
khayakawa 7:f974fe69517d 467 /* points to packet payload, which starts with an Ethernet header */
khayakawa 7:f974fe69517d 468 ethhdr = p->payload;
emilmont 4:d827a085afd9 469
khayakawa 7:f974fe69517d 470 switch (htons(ethhdr->type)) {
khayakawa 7:f974fe69517d 471 case ETHTYPE_IP:
khayakawa 7:f974fe69517d 472 case ETHTYPE_ARP:
emilmont 4:d827a085afd9 473 #if PPPOE_SUPPORT
khayakawa 7:f974fe69517d 474 case ETHTYPE_PPPOEDISC:
khayakawa 7:f974fe69517d 475 case ETHTYPE_PPPOE:
emilmont 4:d827a085afd9 476 #endif /* PPPOE_SUPPORT */
khayakawa 7:f974fe69517d 477 /* full packet send to tcpip_thread to process */
khayakawa 7:f974fe69517d 478 if (netif->input(p, netif) != ERR_OK) {
khayakawa 7:f974fe69517d 479 LWIP_DEBUGF(NETIF_DEBUG, ("lpc_enetif_input: IP input error\n"));
khayakawa 7:f974fe69517d 480 /* Free buffer */
khayakawa 7:f974fe69517d 481 pbuf_free(p);
khayakawa 7:f974fe69517d 482 }
khayakawa 7:f974fe69517d 483 break;
emilmont 4:d827a085afd9 484
khayakawa 7:f974fe69517d 485 default:
khayakawa 7:f974fe69517d 486 /* Return buffer */
khayakawa 7:f974fe69517d 487 pbuf_free(p);
khayakawa 7:f974fe69517d 488 break;
khayakawa 7:f974fe69517d 489 }
emilmont 4:d827a085afd9 490 }
emilmont 4:d827a085afd9 491
emilmont 4:d827a085afd9 492 /** \brief Determine if the passed address is usable for the ethernet
emilmont 4:d827a085afd9 493 * DMA controller.
emilmont 4:d827a085afd9 494 *
emilmont 4:d827a085afd9 495 * \param[in] addr Address of packet to check for DMA safe operation
emilmont 4:d827a085afd9 496 * \return 1 if the packet address is not safe, otherwise 0
emilmont 4:d827a085afd9 497 */
emilmont 4:d827a085afd9 498 static s32_t lpc_packet_addr_notsafe(void *addr) {
khayakawa 7:f974fe69517d 499 /* Check for legal address ranges */
emilmont 5:698d868a5285 500 #if defined(TARGET_LPC1768)
khayakawa 7:f974fe69517d 501 if ((((u32_t) addr >= 0x2007C000) && ((u32_t) addr < 0x20083FFF))) {
emilmont 5:698d868a5285 502 #elif defined(TARGET_LPC4088)
khayakawa 7:f974fe69517d 503 if ((((u32_t) addr >= 0x20000000) && ((u32_t) addr < 0x20007FFF))) {
emilmont 5:698d868a5285 504 #endif
khayakawa 7:f974fe69517d 505 return 0;
khayakawa 7:f974fe69517d 506 }
khayakawa 7:f974fe69517d 507 return 1;
emilmont 4:d827a085afd9 508 }
emilmont 4:d827a085afd9 509
emilmont 4:d827a085afd9 510 /** \brief Sets up the TX descriptor ring buffers.
emilmont 4:d827a085afd9 511 *
emilmont 4:d827a085afd9 512 * This function sets up the descriptor list used for transmit packets.
emilmont 4:d827a085afd9 513 *
emilmont 4:d827a085afd9 514 * \param[in] lpc_enetif Pointer to driver data structure
emilmont 4:d827a085afd9 515 */
emilmont 4:d827a085afd9 516 static err_t lpc_tx_setup(struct lpc_enetdata *lpc_enetif)
emilmont 4:d827a085afd9 517 {
khayakawa 7:f974fe69517d 518 s32_t idx;
emilmont 4:d827a085afd9 519
khayakawa 7:f974fe69517d 520 /* Build TX descriptors for local buffers */
khayakawa 7:f974fe69517d 521 for (idx = 0; idx < LPC_NUM_BUFF_TXDESCS; idx++) {
khayakawa 7:f974fe69517d 522 lpc_enetif->ptxd[idx].control = 0;
khayakawa 7:f974fe69517d 523 lpc_enetif->ptxs[idx].statusinfo = 0xFFFFFFFF;
khayakawa 7:f974fe69517d 524 }
emilmont 4:d827a085afd9 525
khayakawa 7:f974fe69517d 526 /* Setup pointers to TX structures */
khayakawa 7:f974fe69517d 527 LPC_EMAC->TxDescriptor = (u32_t) &lpc_enetif->ptxd[0];
khayakawa 7:f974fe69517d 528 LPC_EMAC->TxStatus = (u32_t) &lpc_enetif->ptxs[0];
khayakawa 7:f974fe69517d 529 LPC_EMAC->TxDescriptorNumber = LPC_NUM_BUFF_TXDESCS - 1;
emilmont 4:d827a085afd9 530
khayakawa 7:f974fe69517d 531 lpc_enetif->lpc_last_tx_idx = 0;
emilmont 4:d827a085afd9 532
khayakawa 7:f974fe69517d 533 return ERR_OK;
emilmont 4:d827a085afd9 534 }
emilmont 4:d827a085afd9 535
emilmont 4:d827a085afd9 536 /** \brief Free TX buffers that are complete
emilmont 4:d827a085afd9 537 *
emilmont 4:d827a085afd9 538 * \param[in] lpc_enetif Pointer to driver data structure
emilmont 4:d827a085afd9 539 * \param[in] cidx EMAC current descriptor comsumer index
emilmont 4:d827a085afd9 540 */
emilmont 4:d827a085afd9 541 static void lpc_tx_reclaim_st(struct lpc_enetdata *lpc_enetif, u32_t cidx)
emilmont 4:d827a085afd9 542 {
emilmont 4:d827a085afd9 543 #if NO_SYS == 0
khayakawa 7:f974fe69517d 544 /* Get exclusive access */
khayakawa 7:f974fe69517d 545 sys_mutex_lock(&lpc_enetif->TXLockMutex);
emilmont 4:d827a085afd9 546 #endif
emilmont 4:d827a085afd9 547
khayakawa 7:f974fe69517d 548 while (cidx != lpc_enetif->lpc_last_tx_idx) {
khayakawa 7:f974fe69517d 549 if (lpc_enetif->txb[lpc_enetif->lpc_last_tx_idx] != NULL) {
khayakawa 7:f974fe69517d 550 LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
khayakawa 7:f974fe69517d 551 ("lpc_tx_reclaim_st: Freeing packet %p (index %d)\n",
khayakawa 7:f974fe69517d 552 lpc_enetif->txb[lpc_enetif->lpc_last_tx_idx],
khayakawa 7:f974fe69517d 553 lpc_enetif->lpc_last_tx_idx));
khayakawa 7:f974fe69517d 554 pbuf_free(lpc_enetif->txb[lpc_enetif->lpc_last_tx_idx]);
khayakawa 7:f974fe69517d 555 lpc_enetif->txb[lpc_enetif->lpc_last_tx_idx] = NULL;
khayakawa 7:f974fe69517d 556 }
emilmont 4:d827a085afd9 557
emilmont 4:d827a085afd9 558 #if NO_SYS == 0
khayakawa 7:f974fe69517d 559 osSemaphoreRelease(lpc_enetif->xTXDCountSem.id);
emilmont 4:d827a085afd9 560 #endif
khayakawa 7:f974fe69517d 561 lpc_enetif->lpc_last_tx_idx++;
khayakawa 7:f974fe69517d 562 if (lpc_enetif->lpc_last_tx_idx >= LPC_NUM_BUFF_TXDESCS)
khayakawa 7:f974fe69517d 563 lpc_enetif->lpc_last_tx_idx = 0;
khayakawa 7:f974fe69517d 564 }
emilmont 4:d827a085afd9 565
emilmont 4:d827a085afd9 566 #if NO_SYS == 0
khayakawa 7:f974fe69517d 567 /* Restore access */
khayakawa 7:f974fe69517d 568 sys_mutex_unlock(&lpc_enetif->TXLockMutex);
emilmont 4:d827a085afd9 569 #endif
emilmont 4:d827a085afd9 570 }
emilmont 4:d827a085afd9 571
emilmont 4:d827a085afd9 572 /** \brief User call for freeingTX buffers that are complete
emilmont 4:d827a085afd9 573 *
emilmont 4:d827a085afd9 574 * \param[in] netif the lwip network interface structure for this lpc_enetif
emilmont 4:d827a085afd9 575 */
emilmont 4:d827a085afd9 576 void lpc_tx_reclaim(struct netif *netif)
emilmont 4:d827a085afd9 577 {
khayakawa 7:f974fe69517d 578 lpc_tx_reclaim_st((struct lpc_enetdata *) netif->state,
khayakawa 7:f974fe69517d 579 LPC_EMAC->TxConsumeIndex);
emilmont 4:d827a085afd9 580 }
emilmont 4:d827a085afd9 581
emilmont 4:d827a085afd9 582 /** \brief Polls if an available TX descriptor is ready. Can be used to
emilmont 4:d827a085afd9 583 * determine if the low level transmit function will block.
emilmont 4:d827a085afd9 584 *
emilmont 4:d827a085afd9 585 * \param[in] netif the lwip network interface structure for this lpc_enetif
emilmont 4:d827a085afd9 586 * \return 0 if no descriptors are read, or >0
emilmont 4:d827a085afd9 587 */
emilmont 4:d827a085afd9 588 s32_t lpc_tx_ready(struct netif *netif)
emilmont 4:d827a085afd9 589 {
khayakawa 7:f974fe69517d 590 s32_t fb;
khayakawa 7:f974fe69517d 591 u32_t idx, cidx;
emilmont 4:d827a085afd9 592
khayakawa 7:f974fe69517d 593 cidx = LPC_EMAC->TxConsumeIndex;
khayakawa 7:f974fe69517d 594 idx = LPC_EMAC->TxProduceIndex;
emilmont 4:d827a085afd9 595
khayakawa 7:f974fe69517d 596 /* Determine number of free buffers */
khayakawa 7:f974fe69517d 597 if (idx == cidx)
khayakawa 7:f974fe69517d 598 fb = LPC_NUM_BUFF_TXDESCS;
khayakawa 7:f974fe69517d 599 else if (cidx > idx)
khayakawa 7:f974fe69517d 600 fb = (LPC_NUM_BUFF_TXDESCS - 1) -
khayakawa 7:f974fe69517d 601 ((idx + LPC_NUM_BUFF_TXDESCS) - cidx);
khayakawa 7:f974fe69517d 602 else
khayakawa 7:f974fe69517d 603 fb = (LPC_NUM_BUFF_TXDESCS - 1) - (cidx - idx);
emilmont 4:d827a085afd9 604
khayakawa 7:f974fe69517d 605 return fb;
emilmont 4:d827a085afd9 606 }
emilmont 4:d827a085afd9 607
emilmont 4:d827a085afd9 608 /** \brief Low level output of a packet. Never call this from an
emilmont 4:d827a085afd9 609 * interrupt context, as it may block until TX descriptors
emilmont 4:d827a085afd9 610 * become available.
emilmont 4:d827a085afd9 611 *
emilmont 4:d827a085afd9 612 * \param[in] netif the lwip network interface structure for this lpc_enetif
emilmont 4:d827a085afd9 613 * \param[in] p the MAC packet to send (e.g. IP packet including MAC addresses and type)
emilmont 4:d827a085afd9 614 * \return ERR_OK if the packet could be sent or an err_t value if the packet couldn't be sent
emilmont 4:d827a085afd9 615 */
emilmont 4:d827a085afd9 616 static err_t lpc_low_level_output(struct netif *netif, struct pbuf *p)
emilmont 4:d827a085afd9 617 {
khayakawa 7:f974fe69517d 618 struct lpc_enetdata *lpc_enetif = netif->state;
khayakawa 7:f974fe69517d 619 struct pbuf *q;
khayakawa 7:f974fe69517d 620 u8_t *dst;
emilmont 4:d827a085afd9 621 u32_t idx;
khayakawa 7:f974fe69517d 622 struct pbuf *np;
khayakawa 7:f974fe69517d 623 u32_t dn, notdmasafe = 0;
emilmont 4:d827a085afd9 624
khayakawa 7:f974fe69517d 625 /* Zero-copy TX buffers may be fragmented across mutliple payload
khayakawa 7:f974fe69517d 626 chains. Determine the number of descriptors needed for the
khayakawa 7:f974fe69517d 627 transfer. The pbuf chaining can be a mess! */
khayakawa 7:f974fe69517d 628 dn = (u32_t) pbuf_clen(p);
emilmont 4:d827a085afd9 629
khayakawa 7:f974fe69517d 630 /* Test to make sure packet addresses are DMA safe. A DMA safe
khayakawa 7:f974fe69517d 631 address is once that uses external memory or periphheral RAM.
khayakawa 7:f974fe69517d 632 IRAM and FLASH are not safe! */
khayakawa 7:f974fe69517d 633 for (q = p; q != NULL; q = q->next)
khayakawa 7:f974fe69517d 634 notdmasafe += lpc_packet_addr_notsafe(q->payload);
emilmont 4:d827a085afd9 635
emilmont 4:d827a085afd9 636 #if LPC_TX_PBUF_BOUNCE_EN==1
khayakawa 7:f974fe69517d 637 /* If the pbuf is not DMA safe, a new bounce buffer (pbuf) will be
khayakawa 7:f974fe69517d 638 created that will be used instead. This requires an copy from the
khayakawa 7:f974fe69517d 639 non-safe DMA region to the new pbuf */
khayakawa 7:f974fe69517d 640 if (notdmasafe) {
khayakawa 7:f974fe69517d 641 /* Allocate a pbuf in DMA memory */
khayakawa 7:f974fe69517d 642 np = pbuf_alloc(PBUF_RAW, p->tot_len, PBUF_RAM);
khayakawa 7:f974fe69517d 643 if (np == NULL)
khayakawa 7:f974fe69517d 644 return ERR_MEM;
emilmont 4:d827a085afd9 645
khayakawa 7:f974fe69517d 646 /* This buffer better be contiguous! */
khayakawa 7:f974fe69517d 647 LWIP_ASSERT("lpc_low_level_output: New transmit pbuf is chained",
khayakawa 7:f974fe69517d 648 (pbuf_clen(np) == 1));
emilmont 4:d827a085afd9 649
khayakawa 7:f974fe69517d 650 /* Copy to DMA safe pbuf */
khayakawa 7:f974fe69517d 651 dst = (u8_t *) np->payload;
khayakawa 7:f974fe69517d 652 for(q = p; q != NULL; q = q->next) {
khayakawa 7:f974fe69517d 653 /* Copy the buffer to the descriptor's buffer */
khayakawa 7:f974fe69517d 654 MEMCPY(dst, (u8_t *) q->payload, q->len);
khayakawa 7:f974fe69517d 655 dst += q->len;
khayakawa 7:f974fe69517d 656 }
khayakawa 7:f974fe69517d 657 np->len = p->tot_len;
emilmont 4:d827a085afd9 658
khayakawa 7:f974fe69517d 659 LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
khayakawa 7:f974fe69517d 660 ("lpc_low_level_output: Switched to DMA safe buffer, old=%p, new=%p\n",
khayakawa 7:f974fe69517d 661 q, np));
emilmont 4:d827a085afd9 662
khayakawa 7:f974fe69517d 663 /* use the new buffer for descrptor queueing. The original pbuf will
khayakawa 7:f974fe69517d 664 be de-allocated outsuide this driver. */
khayakawa 7:f974fe69517d 665 p = np;
khayakawa 7:f974fe69517d 666 dn = 1;
khayakawa 7:f974fe69517d 667 }
emilmont 4:d827a085afd9 668 #else
khayakawa 7:f974fe69517d 669 if (notdmasafe)
khayakawa 7:f974fe69517d 670 LWIP_ASSERT("lpc_low_level_output: Not a DMA safe pbuf",
khayakawa 7:f974fe69517d 671 (notdmasafe == 0));
emilmont 4:d827a085afd9 672 #endif
emilmont 4:d827a085afd9 673
khayakawa 7:f974fe69517d 674 /* Wait until enough descriptors are available for the transfer. */
khayakawa 7:f974fe69517d 675 /* THIS WILL BLOCK UNTIL THERE ARE ENOUGH DESCRIPTORS AVAILABLE */
khayakawa 7:f974fe69517d 676 while (dn > lpc_tx_ready(netif))
emilmont 4:d827a085afd9 677 #if NO_SYS == 0
khayakawa 7:f974fe69517d 678 osSemaphoreWait(lpc_enetif->xTXDCountSem.id, osWaitForever);
emilmont 4:d827a085afd9 679 #else
khayakawa 7:f974fe69517d 680 osDelay(1);
emilmont 4:d827a085afd9 681 #endif
emilmont 4:d827a085afd9 682
khayakawa 7:f974fe69517d 683 /* Get free TX buffer index */
khayakawa 7:f974fe69517d 684 idx = LPC_EMAC->TxProduceIndex;
emilmont 4:d827a085afd9 685
emilmont 4:d827a085afd9 686 #if NO_SYS == 0
khayakawa 7:f974fe69517d 687 /* Get exclusive access */
khayakawa 7:f974fe69517d 688 sys_mutex_lock(&lpc_enetif->TXLockMutex);
emilmont 4:d827a085afd9 689 #endif
emilmont 4:d827a085afd9 690
khayakawa 7:f974fe69517d 691 /* Prevent LWIP from de-allocating this pbuf. The driver will
khayakawa 7:f974fe69517d 692 free it once it's been transmitted. */
khayakawa 7:f974fe69517d 693 if (!notdmasafe)
khayakawa 7:f974fe69517d 694 pbuf_ref(p);
emilmont 4:d827a085afd9 695
khayakawa 7:f974fe69517d 696 /* Setup transfers */
khayakawa 7:f974fe69517d 697 q = p;
khayakawa 7:f974fe69517d 698 while (dn > 0) {
khayakawa 7:f974fe69517d 699 dn--;
emilmont 4:d827a085afd9 700
khayakawa 7:f974fe69517d 701 /* Only save pointer to free on last descriptor */
khayakawa 7:f974fe69517d 702 if (dn == 0) {
khayakawa 7:f974fe69517d 703 /* Save size of packet and signal it's ready */
khayakawa 7:f974fe69517d 704 lpc_enetif->ptxd[idx].control = (q->len - 1) | EMAC_TCTRL_INT |
khayakawa 7:f974fe69517d 705 EMAC_TCTRL_LAST;
emilmont 4:d827a085afd9 706 lpc_enetif->txb[idx] = p;
khayakawa 7:f974fe69517d 707 }
khayakawa 7:f974fe69517d 708 else {
khayakawa 7:f974fe69517d 709 /* Save size of packet, descriptor is not last */
khayakawa 7:f974fe69517d 710 lpc_enetif->ptxd[idx].control = (q->len - 1) | EMAC_TCTRL_INT;
khayakawa 7:f974fe69517d 711 lpc_enetif->txb[idx] = NULL;
khayakawa 7:f974fe69517d 712 }
emilmont 4:d827a085afd9 713
khayakawa 7:f974fe69517d 714 LWIP_DEBUGF(UDP_LPC_EMAC | LWIP_DBG_TRACE,
khayakawa 7:f974fe69517d 715 ("lpc_low_level_output: pbuf packet(%p) sent, chain#=%d,"
khayakawa 7:f974fe69517d 716 " size = %d (index=%d)\n", q->payload, dn, q->len, idx));
emilmont 4:d827a085afd9 717
khayakawa 7:f974fe69517d 718 lpc_enetif->ptxd[idx].packet = (u32_t) q->payload;
emilmont 4:d827a085afd9 719
khayakawa 7:f974fe69517d 720 q = q->next;
emilmont 4:d827a085afd9 721
khayakawa 7:f974fe69517d 722 idx++;
khayakawa 7:f974fe69517d 723 if (idx >= LPC_NUM_BUFF_TXDESCS)
khayakawa 7:f974fe69517d 724 idx = 0;
khayakawa 7:f974fe69517d 725 }
emilmont 4:d827a085afd9 726
khayakawa 7:f974fe69517d 727 LPC_EMAC->TxProduceIndex = idx;
emilmont 4:d827a085afd9 728
khayakawa 7:f974fe69517d 729 LINK_STATS_INC(link.xmit);
emilmont 4:d827a085afd9 730
emilmont 4:d827a085afd9 731 #if NO_SYS == 0
khayakawa 7:f974fe69517d 732 /* Restore access */
khayakawa 7:f974fe69517d 733 sys_mutex_unlock(&lpc_enetif->TXLockMutex);
emilmont 4:d827a085afd9 734 #endif
emilmont 4:d827a085afd9 735
khayakawa 7:f974fe69517d 736 return ERR_OK;
emilmont 4:d827a085afd9 737 }
emilmont 4:d827a085afd9 738
emilmont 4:d827a085afd9 739 /** \brief LPC EMAC interrupt handler.
emilmont 4:d827a085afd9 740 *
emilmont 4:d827a085afd9 741 * This function handles the transmit, receive, and error interrupt of
emilmont 4:d827a085afd9 742 * the LPC177x_8x. This is meant to be used when NO_SYS=0.
emilmont 4:d827a085afd9 743 */
emilmont 4:d827a085afd9 744 void ENET_IRQHandler(void)
emilmont 4:d827a085afd9 745 {
emilmont 4:d827a085afd9 746 #if NO_SYS == 1
khayakawa 7:f974fe69517d 747 /* Interrupts are not used without an RTOS */
emilmont 4:d827a085afd9 748 NVIC_DisableIRQ(ENET_IRQn);
emilmont 4:d827a085afd9 749 #else
khayakawa 7:f974fe69517d 750 uint32_t ints;
emilmont 4:d827a085afd9 751
khayakawa 7:f974fe69517d 752 /* Interrupts are of 2 groups - transmit or receive. Based on the
khayakawa 7:f974fe69517d 753 interrupt, kick off the receive or transmit (cleanup) task */
emilmont 4:d827a085afd9 754
khayakawa 7:f974fe69517d 755 /* Get pending interrupts */
khayakawa 7:f974fe69517d 756 ints = LPC_EMAC->IntStatus;
emilmont 4:d827a085afd9 757
khayakawa 7:f974fe69517d 758 if (ints & RXINTGROUP) {
emilmont 4:d827a085afd9 759 /* RX group interrupt(s): Give semaphore to wakeup RX receive task.*/
emilmont 4:d827a085afd9 760 sys_sem_signal(&lpc_enetdata.RxSem);
emilmont 4:d827a085afd9 761 }
emilmont 4:d827a085afd9 762
emilmont 4:d827a085afd9 763 if (ints & TXINTGROUP) {
emilmont 4:d827a085afd9 764 /* TX group interrupt(s): Give semaphore to wakeup TX cleanup task. */
emilmont 4:d827a085afd9 765 sys_sem_signal(&lpc_enetdata.TxCleanSem);
emilmont 4:d827a085afd9 766 }
emilmont 4:d827a085afd9 767
khayakawa 7:f974fe69517d 768 /* Clear pending interrupts */
khayakawa 7:f974fe69517d 769 LPC_EMAC->IntClear = ints;
emilmont 4:d827a085afd9 770 #endif
emilmont 4:d827a085afd9 771 }
emilmont 4:d827a085afd9 772
emilmont 4:d827a085afd9 773 #if NO_SYS == 0
emilmont 4:d827a085afd9 774 /** \brief Packet reception task
emilmont 4:d827a085afd9 775 *
emilmont 4:d827a085afd9 776 * This task is called when a packet is received. It will
emilmont 4:d827a085afd9 777 * pass the packet to the LWIP core.
emilmont 4:d827a085afd9 778 *
emilmont 4:d827a085afd9 779 * \param[in] pvParameters Not used yet
emilmont 4:d827a085afd9 780 */
emilmont 4:d827a085afd9 781 static void packet_rx(void* pvParameters) {
emilmont 4:d827a085afd9 782 struct lpc_enetdata *lpc_enetif = pvParameters;
emilmont 4:d827a085afd9 783
emilmont 4:d827a085afd9 784 while (1) {
emilmont 4:d827a085afd9 785 /* Wait for receive task to wakeup */
emilmont 4:d827a085afd9 786 sys_arch_sem_wait(&lpc_enetif->RxSem, 0);
emilmont 4:d827a085afd9 787
emilmont 4:d827a085afd9 788 /* Process packets until all empty */
emilmont 4:d827a085afd9 789 while (LPC_EMAC->RxConsumeIndex != LPC_EMAC->RxProduceIndex)
emilmont 4:d827a085afd9 790 lpc_enetif_input(lpc_enetif->netif);
emilmont 4:d827a085afd9 791 }
emilmont 4:d827a085afd9 792 }
emilmont 4:d827a085afd9 793
emilmont 4:d827a085afd9 794 /** \brief Transmit cleanup task
emilmont 4:d827a085afd9 795 *
emilmont 4:d827a085afd9 796 * This task is called when a transmit interrupt occurs and
emilmont 4:d827a085afd9 797 * reclaims the pbuf and descriptor used for the packet once
emilmont 4:d827a085afd9 798 * the packet has been transferred.
emilmont 4:d827a085afd9 799 *
emilmont 4:d827a085afd9 800 * \param[in] pvParameters Not used yet
emilmont 4:d827a085afd9 801 */
emilmont 4:d827a085afd9 802 static void packet_tx(void* pvParameters) {
emilmont 4:d827a085afd9 803 struct lpc_enetdata *lpc_enetif = pvParameters;
emilmont 4:d827a085afd9 804 s32_t idx;
emilmont 4:d827a085afd9 805
emilmont 4:d827a085afd9 806 while (1) {
emilmont 4:d827a085afd9 807 /* Wait for transmit cleanup task to wakeup */
emilmont 4:d827a085afd9 808 sys_arch_sem_wait(&lpc_enetif->TxCleanSem, 0);
emilmont 4:d827a085afd9 809
emilmont 4:d827a085afd9 810 /* Error handling for TX underruns. This should never happen unless
emilmont 4:d827a085afd9 811 something is holding the bus or the clocks are going too slow. It
emilmont 4:d827a085afd9 812 can probably be safely removed. */
emilmont 4:d827a085afd9 813 if (LPC_EMAC->IntStatus & EMAC_INT_TX_UNDERRUN) {
emilmont 4:d827a085afd9 814 LINK_STATS_INC(link.err);
emilmont 4:d827a085afd9 815 LINK_STATS_INC(link.drop);
emilmont 4:d827a085afd9 816
emilmont 4:d827a085afd9 817 #if NO_SYS == 0
emilmont 4:d827a085afd9 818 /* Get exclusive access */
emilmont 4:d827a085afd9 819 sys_mutex_lock(&lpc_enetif->TXLockMutex);
emilmont 4:d827a085afd9 820 #endif
emilmont 4:d827a085afd9 821 /* Reset the TX side */
emilmont 4:d827a085afd9 822 LPC_EMAC->MAC1 |= EMAC_MAC1_RES_TX;
emilmont 4:d827a085afd9 823 LPC_EMAC->IntClear = EMAC_INT_TX_UNDERRUN;
emilmont 4:d827a085afd9 824
emilmont 4:d827a085afd9 825 /* De-allocate all queued TX pbufs */
emilmont 6:59b01b9349d5 826 for (idx = 0; idx < LPC_NUM_BUFF_TXDESCS; idx++) {
emilmont 4:d827a085afd9 827 if (lpc_enetif->txb[idx] != NULL) {
emilmont 4:d827a085afd9 828 pbuf_free(lpc_enetif->txb[idx]);
emilmont 4:d827a085afd9 829 lpc_enetif->txb[idx] = NULL;
emilmont 4:d827a085afd9 830 }
emilmont 4:d827a085afd9 831 }
emilmont 4:d827a085afd9 832
emilmont 4:d827a085afd9 833 #if NO_SYS == 0
emilmont 4:d827a085afd9 834 /* Restore access */
emilmont 4:d827a085afd9 835 sys_mutex_unlock(&lpc_enetif->TXLockMutex);
emilmont 4:d827a085afd9 836 #endif
emilmont 4:d827a085afd9 837 /* Start TX side again */
emilmont 4:d827a085afd9 838 lpc_tx_setup(lpc_enetif);
emilmont 4:d827a085afd9 839 } else {
emilmont 4:d827a085afd9 840 /* Free TX buffers that are done sending */
emilmont 4:d827a085afd9 841 lpc_tx_reclaim(lpc_enetdata.netif);
emilmont 4:d827a085afd9 842 }
emilmont 4:d827a085afd9 843 }
emilmont 4:d827a085afd9 844 }
emilmont 4:d827a085afd9 845 #endif
emilmont 4:d827a085afd9 846
emilmont 4:d827a085afd9 847 /** \brief Low level init of the MAC and PHY.
emilmont 4:d827a085afd9 848 *
emilmont 4:d827a085afd9 849 * \param[in] netif Pointer to LWIP netif structure
emilmont 4:d827a085afd9 850 */
emilmont 4:d827a085afd9 851 static err_t low_level_init(struct netif *netif)
emilmont 4:d827a085afd9 852 {
khayakawa 7:f974fe69517d 853 struct lpc_enetdata *lpc_enetif = netif->state;
khayakawa 7:f974fe69517d 854 err_t err = ERR_OK;
emilmont 4:d827a085afd9 855
khayakawa 7:f974fe69517d 856 /* Enable MII clocking */
khayakawa 7:f974fe69517d 857 LPC_SC->PCONP |= CLKPWR_PCONP_PCENET;
khayakawa 7:f974fe69517d 858
emilmont 5:698d868a5285 859 #if defined(TARGET_LPC1768)
khayakawa 7:f974fe69517d 860 LPC_PINCON->PINSEL2 = 0x50150105; /* Enable P1 Ethernet Pins. */
khayakawa 7:f974fe69517d 861 LPC_PINCON->PINSEL3 = (LPC_PINCON->PINSEL3 & ~0x0000000F) | 0x00000005;
emilmont 5:698d868a5285 862 #elif defined(TARGET_LPC4088)
emilmont 5:698d868a5285 863 LPC_IOCON->P1_0 &= ~0x07; /* ENET I/O config */
emilmont 5:698d868a5285 864 LPC_IOCON->P1_0 |= 0x01; /* ENET_TXD0 */
emilmont 5:698d868a5285 865 LPC_IOCON->P1_1 &= ~0x07;
emilmont 5:698d868a5285 866 LPC_IOCON->P1_1 |= 0x01; /* ENET_TXD1 */
emilmont 5:698d868a5285 867 LPC_IOCON->P1_4 &= ~0x07;
emilmont 5:698d868a5285 868 LPC_IOCON->P1_4 |= 0x01; /* ENET_TXEN */
emilmont 5:698d868a5285 869 LPC_IOCON->P1_8 &= ~0x07;
emilmont 5:698d868a5285 870 LPC_IOCON->P1_8 |= 0x01; /* ENET_CRS */
emilmont 5:698d868a5285 871 LPC_IOCON->P1_9 &= ~0x07;
emilmont 5:698d868a5285 872 LPC_IOCON->P1_9 |= 0x01; /* ENET_RXD0 */
emilmont 5:698d868a5285 873 LPC_IOCON->P1_10 &= ~0x07;
emilmont 5:698d868a5285 874 LPC_IOCON->P1_10 |= 0x01; /* ENET_RXD1 */
emilmont 5:698d868a5285 875 LPC_IOCON->P1_14 &= ~0x07;
emilmont 5:698d868a5285 876 LPC_IOCON->P1_14 |= 0x01; /* ENET_RX_ER */
emilmont 5:698d868a5285 877 LPC_IOCON->P1_15 &= ~0x07;
emilmont 5:698d868a5285 878 LPC_IOCON->P1_15 |= 0x01; /* ENET_REF_CLK */
emilmont 5:698d868a5285 879 LPC_IOCON->P1_16 &= ~0x07; /* ENET/PHY I/O config */
emilmont 5:698d868a5285 880 LPC_IOCON->P1_16 |= 0x01; /* ENET_MDC */
emilmont 5:698d868a5285 881 LPC_IOCON->P1_17 &= ~0x07;
emilmont 5:698d868a5285 882 LPC_IOCON->P1_17 |= 0x01; /* ENET_MDIO */
emilmont 5:698d868a5285 883 #endif
khayakawa 7:f974fe69517d 884
khayakawa 7:f974fe69517d 885 /* Reset all MAC logic */
khayakawa 7:f974fe69517d 886 LPC_EMAC->MAC1 = EMAC_MAC1_RES_TX | EMAC_MAC1_RES_MCS_TX |
khayakawa 7:f974fe69517d 887 EMAC_MAC1_RES_RX | EMAC_MAC1_RES_MCS_RX | EMAC_MAC1_SIM_RES |
khayakawa 7:f974fe69517d 888 EMAC_MAC1_SOFT_RES;
khayakawa 7:f974fe69517d 889 LPC_EMAC->Command = EMAC_CR_REG_RES | EMAC_CR_TX_RES | EMAC_CR_RX_RES |
khayakawa 7:f974fe69517d 890 EMAC_CR_PASS_RUNT_FRM;
khayakawa 7:f974fe69517d 891 osDelay(10);
khayakawa 7:f974fe69517d 892
khayakawa 7:f974fe69517d 893 /* Initial MAC initialization */
khayakawa 7:f974fe69517d 894 LPC_EMAC->MAC1 = EMAC_MAC1_PASS_ALL;
khayakawa 7:f974fe69517d 895 LPC_EMAC->MAC2 = EMAC_MAC2_CRC_EN | EMAC_MAC2_PAD_EN |
khayakawa 7:f974fe69517d 896 EMAC_MAC2_VLAN_PAD_EN;
khayakawa 7:f974fe69517d 897 LPC_EMAC->MAXF = EMAC_ETH_MAX_FLEN;
emilmont 4:d827a085afd9 898
khayakawa 7:f974fe69517d 899 /* Set RMII management clock rate to lowest speed */
khayakawa 7:f974fe69517d 900 LPC_EMAC->MCFG = EMAC_MCFG_CLK_SEL(11) | EMAC_MCFG_RES_MII;
khayakawa 7:f974fe69517d 901 LPC_EMAC->MCFG &= ~EMAC_MCFG_RES_MII;
emilmont 4:d827a085afd9 902
khayakawa 7:f974fe69517d 903 /* Maximum number of retries, 0x37 collision window, gap */
khayakawa 7:f974fe69517d 904 LPC_EMAC->CLRT = EMAC_CLRT_DEF;
khayakawa 7:f974fe69517d 905 LPC_EMAC->IPGR = EMAC_IPGR_P1_DEF | EMAC_IPGR_P2_DEF;
emilmont 4:d827a085afd9 906
emilmont 4:d827a085afd9 907 #if LPC_EMAC_RMII
khayakawa 7:f974fe69517d 908 /* RMII setup */
khayakawa 7:f974fe69517d 909 LPC_EMAC->Command = EMAC_CR_PASS_RUNT_FRM | EMAC_CR_RMII;
emilmont 4:d827a085afd9 910 #else
khayakawa 7:f974fe69517d 911 /* MII setup */
khayakawa 7:f974fe69517d 912 LPC_EMAC->CR = EMAC_CR_PASS_RUNT_FRM;
emilmont 4:d827a085afd9 913 #endif
emilmont 4:d827a085afd9 914
khayakawa 7:f974fe69517d 915 /* Initialize the PHY and reset */
emilmont 4:d827a085afd9 916 err = lpc_phy_init(netif, LPC_EMAC_RMII);
khayakawa 7:f974fe69517d 917 if (err != ERR_OK)
khayakawa 7:f974fe69517d 918 return err;
emilmont 4:d827a085afd9 919
khayakawa 7:f974fe69517d 920 /* Save station address */
khayakawa 7:f974fe69517d 921 LPC_EMAC->SA2 = (u32_t) netif->hwaddr[0] |
khayakawa 7:f974fe69517d 922 (((u32_t) netif->hwaddr[1]) << 8);
khayakawa 7:f974fe69517d 923 LPC_EMAC->SA1 = (u32_t) netif->hwaddr[2] |
khayakawa 7:f974fe69517d 924 (((u32_t) netif->hwaddr[3]) << 8);
khayakawa 7:f974fe69517d 925 LPC_EMAC->SA0 = (u32_t) netif->hwaddr[4] |
khayakawa 7:f974fe69517d 926 (((u32_t) netif->hwaddr[5]) << 8);
emilmont 4:d827a085afd9 927
khayakawa 7:f974fe69517d 928 /* Setup transmit and receive descriptors */
khayakawa 7:f974fe69517d 929 if (lpc_tx_setup(lpc_enetif) != ERR_OK)
khayakawa 7:f974fe69517d 930 return ERR_BUF;
khayakawa 7:f974fe69517d 931 if (lpc_rx_setup(lpc_enetif) != ERR_OK)
khayakawa 7:f974fe69517d 932 return ERR_BUF;
emilmont 4:d827a085afd9 933
khayakawa 7:f974fe69517d 934 /* Enable packet reception */
emilmont 4:d827a085afd9 935 #if IP_SOF_BROADCAST_RECV
khayakawa 7:f974fe69517d 936 LPC_EMAC->RxFilterCtrl = EMAC_RFC_PERFECT_EN | EMAC_RFC_BCAST_EN | EMAC_RFC_MCAST_EN;
emilmont 4:d827a085afd9 937 #else
khayakawa 7:f974fe69517d 938 LPC_EMAC->RxFilterCtrl = EMAC_RFC_PERFECT_EN;
emilmont 4:d827a085afd9 939 #endif
emilmont 4:d827a085afd9 940
khayakawa 7:f974fe69517d 941 /* Clear and enable rx/tx interrupts */
khayakawa 7:f974fe69517d 942 LPC_EMAC->IntClear = 0xFFFF;
khayakawa 7:f974fe69517d 943 LPC_EMAC->IntEnable = RXINTGROUP | TXINTGROUP;
emilmont 4:d827a085afd9 944
khayakawa 7:f974fe69517d 945 /* Enable RX and TX */
khayakawa 7:f974fe69517d 946 LPC_EMAC->Command |= EMAC_CR_RX_EN | EMAC_CR_TX_EN;
khayakawa 7:f974fe69517d 947 LPC_EMAC->MAC1 |= EMAC_MAC1_REC_EN;
emilmont 4:d827a085afd9 948
khayakawa 7:f974fe69517d 949 return err;
emilmont 4:d827a085afd9 950 }
emilmont 4:d827a085afd9 951
emilmont 4:d827a085afd9 952 /* This function provides a method for the PHY to setup the EMAC
emilmont 4:d827a085afd9 953 for the PHY negotiated duplex mode */
emilmont 4:d827a085afd9 954 void lpc_emac_set_duplex(int full_duplex)
emilmont 4:d827a085afd9 955 {
khayakawa 7:f974fe69517d 956 if (full_duplex) {
khayakawa 7:f974fe69517d 957 LPC_EMAC->MAC2 |= EMAC_MAC2_FULL_DUP;
khayakawa 7:f974fe69517d 958 LPC_EMAC->Command |= EMAC_CR_FULL_DUP;
khayakawa 7:f974fe69517d 959 LPC_EMAC->IPGT = EMAC_IPGT_FULL_DUP;
khayakawa 7:f974fe69517d 960 } else {
khayakawa 7:f974fe69517d 961 LPC_EMAC->MAC2 &= ~EMAC_MAC2_FULL_DUP;
khayakawa 7:f974fe69517d 962 LPC_EMAC->Command &= ~EMAC_CR_FULL_DUP;
khayakawa 7:f974fe69517d 963 LPC_EMAC->IPGT = EMAC_IPGT_HALF_DUP;
khayakawa 7:f974fe69517d 964 }
emilmont 4:d827a085afd9 965 }
emilmont 4:d827a085afd9 966
emilmont 4:d827a085afd9 967 /* This function provides a method for the PHY to setup the EMAC
emilmont 4:d827a085afd9 968 for the PHY negotiated bit rate */
emilmont 4:d827a085afd9 969 void lpc_emac_set_speed(int mbs_100)
emilmont 4:d827a085afd9 970 {
khayakawa 7:f974fe69517d 971 if (mbs_100)
khayakawa 7:f974fe69517d 972 LPC_EMAC->SUPP = EMAC_SUPP_SPEED;
khayakawa 7:f974fe69517d 973 else
khayakawa 7:f974fe69517d 974 LPC_EMAC->SUPP = 0;
emilmont 4:d827a085afd9 975 }
emilmont 4:d827a085afd9 976
emilmont 4:d827a085afd9 977 /**
emilmont 4:d827a085afd9 978 * This function is the ethernet packet send function. It calls
emilmont 4:d827a085afd9 979 * etharp_output after checking link status.
emilmont 4:d827a085afd9 980 *
emilmont 4:d827a085afd9 981 * \param[in] netif the lwip network interface structure for this lpc_enetif
emilmont 4:d827a085afd9 982 * \param[in] q Pointer to pbug to send
emilmont 4:d827a085afd9 983 * \param[in] ipaddr IP address
emilmont 4:d827a085afd9 984 * \return ERR_OK or error code
emilmont 4:d827a085afd9 985 */
emilmont 4:d827a085afd9 986 err_t lpc_etharp_output(struct netif *netif, struct pbuf *q,
khayakawa 7:f974fe69517d 987 ip_addr_t *ipaddr)
emilmont 4:d827a085afd9 988 {
khayakawa 7:f974fe69517d 989 /* Only send packet is link is up */
khayakawa 7:f974fe69517d 990 if (netif->flags & NETIF_FLAG_LINK_UP)
khayakawa 7:f974fe69517d 991 return etharp_output(netif, q, ipaddr);
emilmont 4:d827a085afd9 992
khayakawa 7:f974fe69517d 993 return ERR_CONN;
emilmont 4:d827a085afd9 994 }
emilmont 4:d827a085afd9 995
emilmont 4:d827a085afd9 996 #if NO_SYS == 0
emilmont 4:d827a085afd9 997 /* periodic PHY status update */
emilmont 4:d827a085afd9 998 void phy_update(void const *nif) {
emilmont 4:d827a085afd9 999 lpc_phy_sts_sm((struct netif*)nif);
emilmont 4:d827a085afd9 1000 }
emilmont 4:d827a085afd9 1001 osTimerDef(phy_update, phy_update);
emilmont 4:d827a085afd9 1002 #endif
emilmont 4:d827a085afd9 1003
emilmont 4:d827a085afd9 1004 /**
emilmont 4:d827a085afd9 1005 * Should be called at the beginning of the program to set up the
emilmont 4:d827a085afd9 1006 * network interface.
emilmont 4:d827a085afd9 1007 *
emilmont 4:d827a085afd9 1008 * This function should be passed as a parameter to netif_add().
emilmont 4:d827a085afd9 1009 *
emilmont 4:d827a085afd9 1010 * @param[in] netif the lwip network interface structure for this lpc_enetif
emilmont 4:d827a085afd9 1011 * @return ERR_OK if the loopif is initialized
emilmont 4:d827a085afd9 1012 * ERR_MEM if private data couldn't be allocated
emilmont 4:d827a085afd9 1013 * any other err_t on error
emilmont 4:d827a085afd9 1014 */
emilmont 4:d827a085afd9 1015 err_t lpc_enetif_init(struct netif *netif)
emilmont 4:d827a085afd9 1016 {
khayakawa 7:f974fe69517d 1017 err_t err;
emilmont 4:d827a085afd9 1018
khayakawa 7:f974fe69517d 1019 LWIP_ASSERT("netif != NULL", (netif != NULL));
emilmont 4:d827a085afd9 1020
khayakawa 7:f974fe69517d 1021 lpc_enetdata.netif = netif;
emilmont 4:d827a085afd9 1022
khayakawa 7:f974fe69517d 1023 /* set MAC hardware address */
khayakawa 7:f974fe69517d 1024 mbed_mac_address((char *)netif->hwaddr);
khayakawa 7:f974fe69517d 1025 netif->hwaddr_len = ETHARP_HWADDR_LEN;
emilmont 4:d827a085afd9 1026
khayakawa 7:f974fe69517d 1027 /* maximum transfer unit */
khayakawa 7:f974fe69517d 1028 netif->mtu = 1500;
emilmont 4:d827a085afd9 1029
khayakawa 7:f974fe69517d 1030 /* device capabilities */
khayakawa 7:f974fe69517d 1031 netif->flags = NETIF_FLAG_BROADCAST | NETIF_FLAG_ETHARP | NETIF_FLAG_ETHERNET | NETIF_FLAG_IGMP;
emilmont 4:d827a085afd9 1032
khayakawa 7:f974fe69517d 1033 /* Initialize the hardware */
khayakawa 7:f974fe69517d 1034 netif->state = &lpc_enetdata;
khayakawa 7:f974fe69517d 1035 err = low_level_init(netif);
khayakawa 7:f974fe69517d 1036 if (err != ERR_OK)
khayakawa 7:f974fe69517d 1037 return err;
emilmont 4:d827a085afd9 1038
emilmont 4:d827a085afd9 1039 #if LWIP_NETIF_HOSTNAME
khayakawa 7:f974fe69517d 1040 /* Initialize interface hostname */
khayakawa 7:f974fe69517d 1041 netif->hostname = "lwiplpc";
emilmont 4:d827a085afd9 1042 #endif /* LWIP_NETIF_HOSTNAME */
emilmont 4:d827a085afd9 1043
khayakawa 7:f974fe69517d 1044 netif->name[0] = 'e';
khayakawa 7:f974fe69517d 1045 netif->name[1] = 'n';
emilmont 4:d827a085afd9 1046
khayakawa 7:f974fe69517d 1047 netif->output = lpc_etharp_output;
khayakawa 7:f974fe69517d 1048 netif->linkoutput = lpc_low_level_output;
emilmont 4:d827a085afd9 1049
emilmont 4:d827a085afd9 1050 /* CMSIS-RTOS, start tasks */
emilmont 4:d827a085afd9 1051 #if NO_SYS == 0
emilmont 4:d827a085afd9 1052 #ifdef CMSIS_OS_RTX
emilmont 4:d827a085afd9 1053 memset(lpc_enetdata.xTXDCountSem.data, 0, sizeof(lpc_enetdata.xTXDCountSem.data));
emilmont 4:d827a085afd9 1054 lpc_enetdata.xTXDCountSem.def.semaphore = lpc_enetdata.xTXDCountSem.data;
emilmont 4:d827a085afd9 1055 #endif
emilmont 4:d827a085afd9 1056 lpc_enetdata.xTXDCountSem.id = osSemaphoreCreate(&lpc_enetdata.xTXDCountSem.def, LPC_NUM_BUFF_TXDESCS);
khayakawa 7:f974fe69517d 1057 LWIP_ASSERT("xTXDCountSem creation error", (lpc_enetdata.xTXDCountSem.id != NULL));
emilmont 4:d827a085afd9 1058
khayakawa 7:f974fe69517d 1059 err = sys_mutex_new(&lpc_enetdata.TXLockMutex);
khayakawa 7:f974fe69517d 1060 LWIP_ASSERT("TXLockMutex creation error", (err == ERR_OK));
emilmont 4:d827a085afd9 1061
khayakawa 7:f974fe69517d 1062 /* Packet receive task */
khayakawa 7:f974fe69517d 1063 err = sys_sem_new(&lpc_enetdata.RxSem, 0);
khayakawa 7:f974fe69517d 1064 LWIP_ASSERT("RxSem creation error", (err == ERR_OK));
khayakawa 7:f974fe69517d 1065 sys_thread_new("receive_thread", packet_rx, netif->state, DEFAULT_THREAD_STACKSIZE, RX_PRIORITY);
emilmont 4:d827a085afd9 1066
khayakawa 7:f974fe69517d 1067 /* Transmit cleanup task */
khayakawa 7:f974fe69517d 1068 err = sys_sem_new(&lpc_enetdata.TxCleanSem, 0);
khayakawa 7:f974fe69517d 1069 LWIP_ASSERT("TxCleanSem creation error", (err == ERR_OK));
khayakawa 7:f974fe69517d 1070 sys_thread_new("txclean_thread", packet_tx, netif->state, DEFAULT_THREAD_STACKSIZE, TX_PRIORITY);
khayakawa 7:f974fe69517d 1071
khayakawa 7:f974fe69517d 1072 /* periodic PHY status update */
khayakawa 7:f974fe69517d 1073 osTimerId phy_timer = osTimerCreate(osTimer(phy_update), osTimerPeriodic, (void *)netif);
khayakawa 7:f974fe69517d 1074 osTimerStart(phy_timer, 250);
emilmont 4:d827a085afd9 1075 #endif
emilmont 4:d827a085afd9 1076
emilmont 4:d827a085afd9 1077 return ERR_OK;
emilmont 4:d827a085afd9 1078 }
emilmont 4:d827a085afd9 1079
emilmont 4:d827a085afd9 1080 /**
emilmont 4:d827a085afd9 1081 * @}
emilmont 4:d827a085afd9 1082 */
emilmont 4:d827a085afd9 1083
emilmont 4:d827a085afd9 1084 /* --------------------------------- End Of File ------------------------------ */