mbed-os5 only for TYBLE16
Dependents: TYBLE16_simple_data_logger TYBLE16_MP3_Air
platform/source/mbed_os_timer.cpp
- Committer:
- kenjiArai
- Date:
- 2019-12-31
- Revision:
- 1:9db0e321a9f4
File content as of revision 1:9db0e321a9f4:
/* * Copyright (c) 2006-2019, ARM Limited, All Rights Reserved * SPDX-License-Identifier: Apache-2.0 * * Licensed under the Apache License, Version 2.0 (the "License"); you may * not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "platform/mbed_power_mgmt.h" #include "platform/source/mbed_os_timer.h" #include "platform/CriticalSectionLock.h" #include "platform/source/SysTimer.h" #include "us_ticker_api.h" #include "lp_ticker_api.h" #include "mbed_critical.h" #include "mbed_assert.h" #include <new> /* This provides the marshalling point for a system global SysTimer, which * is used to provide: * - timed sleeps (for default idle hook in RTOS tickless mode, or non-RTOS sleeps) * - regular ticks for RTOS * - absolute system timing (directly for non-RTOS, or indirectly via RTOS tick count) */ namespace mbed { namespace internal { OsTimer *os_timer; namespace { uint64_t os_timer_data[(sizeof(OsTimer) + 7) / 8]; } OsTimer *init_os_timer() { // Do not use SingletonPtr since this relies on the RTOS. // Locking not required as it will be first called during // OS init, or else we're a non-RTOS single-threaded setup. if (!os_timer) { #if MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER && DEVICE_USTICKER os_timer = new (os_timer_data) OsTimer(get_us_ticker_data()); #elif !MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER && DEVICE_LPTICKER os_timer = new (os_timer_data) OsTimer(get_lp_ticker_data()); #else MBED_ASSERT("OS timer not available - check MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER" && false); return NULL; #endif //os_timer->setup_irq(); } return os_timer; } /* These traits classes are designed to permit chunks of code to be * omitted - in particular eliminating timers. However, we don't want * to cause template bloat, so don't have too many traits variants. */ /* Optionally timed operation, with optional predicate */ struct timed_predicate_op { timed_predicate_op(uint64_t t) : wake_time(t), orig_predicate(NULL), orig_handle(NULL) { init_os_timer(); } timed_predicate_op(uint64_t t, bool (*wake_predicate)(void *), void *wake_predicate_handle) : wake_time(t), orig_predicate(wake_predicate), orig_handle(wake_predicate_handle) { init_os_timer(); } ~timed_predicate_op() { // Make sure wake timer is cancelled. (It may or may not be, depending on // why we woke). os_timer->cancel_wake(); } bool wake_condition() const { return (orig_predicate && orig_predicate(orig_handle)) || os_timer->wake_time_passed(); } void sleep_prepare() { if (wake_time != (uint64_t) -1) { os_timer->set_wake_time(wake_time); } } bool sleep_prepared() { return wake_time == (uint64_t) -1 || os_timer->wake_time_set(); } private: uint64_t wake_time; bool (*orig_predicate)(void *); void *orig_handle; }; /* Untimed operation with predicate */ struct untimed_op { untimed_op(bool (*wake_predicate)(void *), void *wake_predicate_handle) : orig_predicate(wake_predicate), orig_handle(wake_predicate_handle) { } bool wake_condition() const { return orig_predicate(orig_handle); } void sleep_prepare() { } bool sleep_prepared() { return true; } private: bool (*orig_predicate)(void *); void *orig_handle; }; /* We require that this is called from thread context, outside a critical section, * and the kernel already suspended if an RTOS, meaning we don't have to worry * about any potential threading issues. * * The wake predicate will be called from both outside and inside a critical * section, so appropriate atomic care must be taken. */ template <class OpT> void do_sleep_operation(OpT &op) { // We assume the ticker is not already in use - without RTOS, it // is never used, with RTOS, it will have been disabled with OS_Tick_Disable while (!op.wake_condition()) { // Set (or re-set) the wake time - outside a critical section, as // it could take long enough to cause UART data loss on some platforms. op.sleep_prepare(); // If no target sleep function, nothing else to do - just keep // rechecking the wake condition. #if DEVICE_SLEEP // Now we need to enter the critical section for the race-free sleep { CriticalSectionLock lock; // Recheck wake conditions before starting sleep, avoiding race if (op.wake_condition()) { break; } // It's possible that an intermediate wake interrupt occurred // between "set_wake_time" and the critical lock - only sleep // if we see that the timer is armed or we don't need it. Otherwise, // we go round to set the timer again. if (op.sleep_prepared()) { // Enter HAL sleep (normal or deep) sleep(); } } // Ensure interrupts get a chance to fire, which allows new result from // wake_predicate() and wake_time_passed() __ISB(); #endif } } /* We require that this is called from thread context, outside a critical section, * and the kernel already suspended if an RTOS, meaning we don't have to worry * about any potential threading issues. * * The wake predicate will be called from both outside and inside a critical * section, so appropriate atomic care must be taken. */ uint64_t do_timed_sleep_absolute(uint64_t wake_time, bool (*wake_predicate)(void *), void *wake_predicate_handle) { { timed_predicate_op op(wake_time, wake_predicate, wake_predicate_handle); do_sleep_operation(op); } return os_timer->update_and_get_tick(); } #if MBED_CONF_RTOS_PRESENT /* The 32-bit limit is part of the API - we will always wake within 2^32 ticks */ /* This version is tuned for RTOS use, where the RTOS needs to know the time spent sleeping */ uint32_t do_timed_sleep_relative(uint32_t wake_delay, bool (*wake_predicate)(void *), void *wake_predicate_handle) { uint64_t sleep_start = init_os_timer()->get_tick(); // When running with RTOS, the requested delay will be based on the kernel's tick count. // If it missed a tick as entering idle, we should reflect that by moving the // start time back to reflect its current idea of time. // Example: OS tick count = 100, our tick count = 101, requested delay = 50 // We need to schedule wake for tick 150, report 50 ticks back to our caller, and // clear the unacknowledged tick count. sleep_start -= os_timer->unacknowledged_ticks(); uint64_t sleep_finish = do_timed_sleep_absolute(sleep_start + wake_delay, wake_predicate, wake_predicate_handle); return static_cast<uint32_t>(sleep_finish - sleep_start); } #else void do_untimed_sleep(bool (*wake_predicate)(void *), void *wake_predicate_handle) { untimed_op op(wake_predicate, wake_predicate_handle); do_sleep_operation(op); } /* (uint32_t)-1 delay is treated as "wait forever" */ /* This version is tuned for non-RTOS use, where we don't need to return sleep time, and waiting forever is possible */ void do_timed_sleep_relative_or_forever(uint32_t wake_delay, bool (*wake_predicate)(void *), void *wake_predicate_handle) { // Special-case 0 delay, to save multiple callers having to do it. Just call the predicate once. if (wake_delay == 0) { wake_predicate(wake_predicate_handle); return; } uint64_t wake_time; if (wake_delay == (uint32_t) -1) { wake_time = (uint64_t) -1; } else { wake_time = init_os_timer()->update_and_get_tick() + wake_delay; } /* Always use timed_predicate_op here to save pulling in two templates */ timed_predicate_op op(wake_time, wake_predicate, wake_predicate_handle); do_sleep_operation(op); } #endif } // namespace internal } // namespace mbed