mbed-os5 only for TYBLE16

Dependents:   TYBLE16_simple_data_logger TYBLE16_MP3_Air

Revision:
1:9db0e321a9f4
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/platform/source/mbed_os_timer.cpp	Tue Dec 31 06:02:27 2019 +0000
@@ -0,0 +1,252 @@
+/*
+ * Copyright (c) 2006-2019, ARM Limited, All Rights Reserved
+ * SPDX-License-Identifier: Apache-2.0
+ *
+ * Licensed under the Apache License, Version 2.0 (the "License"); you may
+ * not use this file except in compliance with the License.
+ * You may obtain a copy of the License at
+ *
+ * http://www.apache.org/licenses/LICENSE-2.0
+ *
+ * Unless required by applicable law or agreed to in writing, software
+ * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
+ * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+ * See the License for the specific language governing permissions and
+ * limitations under the License.
+ */
+
+#include "platform/mbed_power_mgmt.h"
+#include "platform/source/mbed_os_timer.h"
+#include "platform/CriticalSectionLock.h"
+#include "platform/source/SysTimer.h"
+#include "us_ticker_api.h"
+#include "lp_ticker_api.h"
+#include "mbed_critical.h"
+#include "mbed_assert.h"
+#include <new>
+
+/* This provides the marshalling point for a system global SysTimer, which
+ * is used to provide:
+ * - timed sleeps (for default idle hook in RTOS tickless mode, or non-RTOS sleeps)
+ * - regular ticks for RTOS
+ * - absolute system timing (directly for non-RTOS, or indirectly via RTOS tick count)
+ */
+
+namespace mbed {
+namespace internal {
+
+OsTimer *os_timer;
+
+namespace {
+uint64_t os_timer_data[(sizeof(OsTimer) + 7) / 8];
+}
+
+OsTimer *init_os_timer()
+{
+    // Do not use SingletonPtr since this relies on the RTOS.
+    // Locking not required as it will be first called during
+    // OS init, or else we're a non-RTOS single-threaded setup.
+    if (!os_timer) {
+#if MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER && DEVICE_USTICKER
+        os_timer = new (os_timer_data) OsTimer(get_us_ticker_data());
+#elif !MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER && DEVICE_LPTICKER
+        os_timer = new (os_timer_data) OsTimer(get_lp_ticker_data());
+#else
+        MBED_ASSERT("OS timer not available - check MBED_CONF_TARGET_TICKLESS_FROM_US_TICKER" && false);
+        return NULL;
+#endif
+        //os_timer->setup_irq();
+    }
+
+    return os_timer;
+}
+
+/* These traits classes are designed to permit chunks of code to be
+ * omitted - in particular eliminating timers. However, we don't want
+ * to cause template bloat, so don't have too many traits variants.
+ */
+
+/* Optionally timed operation, with optional predicate */
+struct timed_predicate_op {
+    timed_predicate_op(uint64_t t) : wake_time(t), orig_predicate(NULL), orig_handle(NULL)
+    {
+        init_os_timer();
+    }
+
+    timed_predicate_op(uint64_t t, bool (*wake_predicate)(void *), void *wake_predicate_handle) : wake_time(t), orig_predicate(wake_predicate), orig_handle(wake_predicate_handle)
+    {
+        init_os_timer();
+    }
+
+    ~timed_predicate_op()
+    {
+        // Make sure wake timer is cancelled. (It may or may not be, depending on
+        // why we woke).
+        os_timer->cancel_wake();
+    }
+
+    bool wake_condition() const
+    {
+        return (orig_predicate && orig_predicate(orig_handle)) || os_timer->wake_time_passed();
+    }
+
+    void sleep_prepare()
+    {
+        if (wake_time != (uint64_t) -1) {
+            os_timer->set_wake_time(wake_time);
+        }
+    }
+
+    bool sleep_prepared()
+    {
+        return wake_time == (uint64_t) -1 || os_timer->wake_time_set();
+    }
+
+private:
+    uint64_t wake_time;
+    bool (*orig_predicate)(void *);
+    void *orig_handle;
+};
+
+/* Untimed operation with predicate */
+struct untimed_op {
+    untimed_op(bool (*wake_predicate)(void *), void *wake_predicate_handle) : orig_predicate(wake_predicate), orig_handle(wake_predicate_handle)
+    {
+    }
+
+    bool wake_condition() const
+    {
+        return orig_predicate(orig_handle);
+    }
+
+    void sleep_prepare()
+    {
+    }
+
+    bool sleep_prepared()
+    {
+        return true;
+    }
+
+private:
+    bool (*orig_predicate)(void *);
+    void *orig_handle;
+};
+
+/* We require that this is called from thread context, outside a critical section,
+ * and the kernel already suspended if an RTOS, meaning we don't have to worry
+ * about any potential threading issues.
+ *
+ * The wake predicate will be called from both outside and inside a critical
+ * section, so appropriate atomic care must be taken.
+ */
+template <class OpT>
+void do_sleep_operation(OpT &op)
+{
+    // We assume the ticker is not already in use - without RTOS, it
+    // is never used, with RTOS, it will have been disabled with OS_Tick_Disable
+    while (!op.wake_condition()) {
+        // Set (or re-set) the wake time - outside a critical section, as
+        // it could take long enough to cause UART data loss on some platforms.
+        op.sleep_prepare();
+
+        // If no target sleep function, nothing else to do - just keep
+        // rechecking the wake condition.
+#if DEVICE_SLEEP
+        // Now we need to enter the critical section for the race-free sleep
+        {
+            CriticalSectionLock lock;
+
+            // Recheck wake conditions before starting sleep, avoiding race
+            if (op.wake_condition()) {
+                break;
+            }
+
+            // It's possible that an intermediate wake interrupt occurred
+            // between "set_wake_time" and the critical lock - only sleep
+            // if we see that the timer is armed or we don't need it. Otherwise,
+            // we go round to set the timer again.
+            if (op.sleep_prepared()) {
+                // Enter HAL sleep (normal or deep)
+                sleep();
+            }
+        }
+
+        // Ensure interrupts get a chance to fire, which allows new result from
+        // wake_predicate() and wake_time_passed()
+        __ISB();
+#endif
+    }
+}
+
+/* We require that this is called from thread context, outside a critical section,
+ * and the kernel already suspended if an RTOS, meaning we don't have to worry
+ * about any potential threading issues.
+ *
+ * The wake predicate will be called from both outside and inside a critical
+ * section, so appropriate atomic care must be taken.
+ */
+uint64_t do_timed_sleep_absolute(uint64_t wake_time, bool (*wake_predicate)(void *), void *wake_predicate_handle)
+{
+    {
+        timed_predicate_op op(wake_time, wake_predicate, wake_predicate_handle);
+        do_sleep_operation(op);
+    }
+
+    return os_timer->update_and_get_tick();
+}
+
+
+#if MBED_CONF_RTOS_PRESENT
+/* The 32-bit limit is part of the API - we will always wake within 2^32 ticks */
+/* This version is tuned for RTOS use, where the RTOS needs to know the time spent sleeping */
+uint32_t do_timed_sleep_relative(uint32_t wake_delay, bool (*wake_predicate)(void *), void *wake_predicate_handle)
+{
+    uint64_t sleep_start = init_os_timer()->get_tick();
+    // When running with RTOS, the requested delay will be based on the kernel's tick count.
+    // If it missed a tick as entering idle, we should reflect that by moving the
+    // start time back to reflect its current idea of time.
+    // Example: OS tick count = 100, our tick count = 101, requested delay = 50
+    // We need to schedule wake for tick 150, report 50 ticks back to our caller, and
+    // clear the unacknowledged tick count.
+    sleep_start -= os_timer->unacknowledged_ticks();
+
+    uint64_t sleep_finish = do_timed_sleep_absolute(sleep_start + wake_delay, wake_predicate, wake_predicate_handle);
+
+    return static_cast<uint32_t>(sleep_finish - sleep_start);
+}
+
+#else
+
+void do_untimed_sleep(bool (*wake_predicate)(void *), void *wake_predicate_handle)
+{
+    untimed_op op(wake_predicate, wake_predicate_handle);
+
+    do_sleep_operation(op);
+}
+
+/* (uint32_t)-1 delay is treated as "wait forever" */
+/* This version is tuned for non-RTOS use, where we don't need to return sleep time, and waiting forever is possible */
+void do_timed_sleep_relative_or_forever(uint32_t wake_delay, bool (*wake_predicate)(void *), void *wake_predicate_handle)
+{
+    // Special-case 0 delay, to save multiple callers having to do it. Just call the predicate once.
+    if (wake_delay == 0) {
+        wake_predicate(wake_predicate_handle);
+        return;
+    }
+
+    uint64_t wake_time;
+    if (wake_delay == (uint32_t) -1) {
+        wake_time = (uint64_t) -1;
+    } else {
+        wake_time = init_os_timer()->update_and_get_tick() + wake_delay;
+    }
+    /* Always use timed_predicate_op here to save pulling in two templates */
+    timed_predicate_op op(wake_time, wake_predicate, wake_predicate_handle);
+    do_sleep_operation(op);
+}
+
+#endif
+
+} // namespace internal
+} // namespace mbed