Frequency counter library only for NucleoF411RE

Dependents:   Frequency_Counter_w_GPS_1PPS

frq_cuntr_full.cpp

Committer:
kenjiArai
Date:
2015-01-01
Revision:
4:9d3b3f0a3882
Parent:
3:339307e1dc0d

File content as of revision 4:9d3b3f0a3882:

/*
 * mbed Library / Frequency Counter with GPS 1PPS Compensation
 *      Frequency Counter Hardware relataed program
 *      Only for ST Nucleo F411RE
 *
 * Copyright (c) 2014 Kenji Arai / JH1PJL
 *  http://www.page.sannet.ne.jp/kenjia/index.html
 *  http://mbed.org/users/kenjiArai/
 *      Additional functions and modification
 *      started: October   18th, 2014
 *      Revised: January    1st, 2015
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
 * INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
 * AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
 * DAMAGES OR OTHER  LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
 */

#if defined(TARGET_NUCLEO_F411RE)

#include "frq_cuntr_full.h"

#ifdef DEBUG
Serial pcm(USBTX, USBRX);
DigitalOut debug_led(LED1);
#endif

#ifdef DEBUG
#define BAUD(x)         pcm.baud(x)
#define PRINTF(...)     pcm.printf(__VA_ARGS__)
#else
#define BAUD(x)         {;}
#define PRINTF(...)     {;}
#endif

namespace Frequency_counter
{
// TIM2 OC
static uint32_t oc_set_time0;
static uint32_t oc_set_time1;
static uint8_t  new_gt_value;
static uint32_t oc_hi_time;
static uint32_t oc_lo_time;
// TIM2 IC
static uint8_t  tim2_ready_flg;
static uint32_t tim2_cnt_data;
static uint32_t tim2_old_cnt_data;
// TIM3+4 IC
static uint8_t  tim3p4_ready_flg;
static uint32_t tim3p4_cnt_data;

//-------------------------------------------------------------------------------------------------
//  Interrupt Handlers
//-------------------------------------------------------------------------------------------------
// TIM2 IC2 Interrupt control
void irq_ic2_TIM2(void)
{
    uint16_t reg;
    reg = TIM2->SR;
    if (reg & TIM_SR_CC2IF) {
        TIM2->SR &= ~TIM_SR_CC2IF;      // clear IC flag
        tim2_old_cnt_data = tim2_cnt_data;
        tim2_cnt_data = TIM2->CCR2;
        tim2_ready_flg = 1;
#if defined(DEBUG)
        debug_led = !debug_led;
#endif // defined(DEBUG)
    } else if (reg & TIM_SR_CC3IF) {    // Output Compare
        TIM2->SR &= ~TIM_SR_CC3IF;      // clear IC flag
        if (GPIOB->IDR & 0x0400) {      // Check PB10 status
            TIM2->CCR3 = TIM2->CCR3 + oc_hi_time;
        } else {
            TIM2->CCR3 = TIM2->CCR3 + oc_lo_time;
            if (new_gt_value) {
                new_gt_value = 0;
                oc_hi_time = oc_set_time0;
                oc_lo_time = oc_set_time1;
            }
        }
#if defined(DEBUG)
        debug_led = !debug_led;
#endif // defined(DEBUG)
    }
}

// TIM3 IC2 Interrupt control (same signal connected to TIM4 IC1)
void irq_ic2_TIM3P4(void)
{
    TIM3->SR &= ~TIM_SR_CC2IF;      // clear IC flag
    TIM4->SR &= ~TIM_SR_CC1IF;
    tim3p4_cnt_data = (TIM4->CCR1 << 16) + TIM3->CCR2;
    tim3p4_ready_flg = 1;
#if defined(DEBUG)
    debug_led = !debug_led;
#endif // defined(DEBUG)
}

//---------------------------------------------------------------------------------------
//  Frequency Counter
//---------------------------------------------------------------------------------------
FRQ_CUNTR::FRQ_CUNTR(PinName f_in, double gt, double ex_clock): _pin(f_in)
{
    // Don't change calling sequence!!
    set_external_clock(ex_clock);   // 1st
    set_gate_time(gt);              // 2nd
    initialize_Freq_counter();      // 3rd
}

// Set gate time
double FRQ_CUNTR::set_gate_time(double gt)
{
    if (gt < 0.05) {
        gate_time = 0.05;
    } else if (gt > 60.0) {
        gate_time = 60.0;
    } else {
        gate_time = gt;
    }
    oc_set_time0 = clk_hi_const;
    double gt_tmp0 = ex_clk_base * gate_time;
    uint32_t gt_tmp1 = (uint32_t)gt_tmp0;
    if ((gt_tmp0 - (double)gt_tmp1) >= 0.5) {
        ++gt_tmp1;
    }
    oc_set_time1 = gt_tmp1 - clk_hi_const;
    new_gt_value = 1;
    return gate_time;
}

// Read gate time
double FRQ_CUNTR::read_gate_time(void)
{
    return gate_time;
}

// Set External Clock Frequency
void FRQ_CUNTR::set_external_clock(double ex_clock)
{
#if defined(BASE_EXTERNAL_CLOCK)
    ex_clock_freq = ex_clock;
    ex_clk_base = (uint32_t)(ex_clock_freq * 1000000); // MHz->Hz
    clk_hi_const = (uint32_t)(ex_clock_freq * 1000000 * 0.04);  // 40mS
    uint32_t err = (uint32_t)(ex_clock_freq * 1000000 * 0.00001);  // 10ppm error range
    clk_upper_limit = ex_clk_base + err;
    clk_lower_limit = ex_clk_base - err;
    PRINTF("EXTERNAL Clock mode\r\n");
#else // defined(BASE_EXTERNAL_CLOCK)
    ex_clock_freq = 100;     // Internal 100MHz
    ex_clk_base = 100000000; // MHz->Hz
    clk_hi_const = 4000000;  // 40mS
    uint32_t err = 10000;    // error range
    clk_upper_limit = ex_clk_base + err;
    clk_lower_limit = ex_clk_base - err;
    PRINTF("INTERNAL Clock mode\r\n");
#endif // defined(BASE_EXTERNAL_CLOCK)
}

// Read new frequency data
double FRQ_CUNTR::read_freq_data(void)
{
    old_cntr_tim3p4 = counter_tim3p4;
    counter_tim3p4 = read_ic2_counter_TIM3P4();
    double freq0 = (double)(counter_tim3p4 - old_cntr_tim3p4);
    newest_frequency = freq0 / gate_time;
    return newest_frequency;
}

// Read status (new frequency data is available or not)
uint32_t FRQ_CUNTR::status_freq_update(void)
{
    return check_ic2_status_TIM3P4();
}

// Read status (new 1PPS data is available or not)
uint32_t FRQ_CUNTR::status_1pps(void)
{
    return check_ic2_status_TIM2();
}

// Read GPS 1PPS counter value
uint32_t FRQ_CUNTR::set_1PPS_data(void)
{
    uint32_t diff = tim2_cnt_data - tim2_old_cnt_data;
    if ((diff > clk_upper_limit) || (diff < clk_lower_limit)) {
        PRINTF("IC0 %d %d %d \r\n", diff, clk_upper_limit, clk_lower_limit);
        gps_ready = 0;
        return 0;
    } else {
        gps_ready = 1;
        onepps_cnt[onepps_num] = diff;
        if (++onepps_num >= CNT_BF_SIZE) {
            onepps_num = 0;
            onepps_buf_full = 1;
        }
        onepps_newest = diff;
        return diff;
    }
}

// Avarage measued data GPS 1PPS by 25MHz External Clock
uint32_t FRQ_CUNTR::read_avarage_1pps(void)
{
    uint64_t total = 0;
    if (onepps_buf_full == 1) {
        for (uint32_t i = 0; i < CNT_BF_SIZE; i++) {
            total += (uint64_t)onepps_cnt[i];
        }
        onepps_cnt_avarage = total / CNT_BF_SIZE;
        PRINTF("buf");
    } else {
        for (uint32_t i = 0; i < onepps_num; i++) {
            total += (uint64_t)onepps_cnt[i];
        }
        onepps_cnt_avarage = total / onepps_num;
        PRINTF("not");
    }
    PRINTF(" full, num= %3d , 1PPS/new= %9d\r\n", onepps_num, onepps_newest);
    return onepps_cnt_avarage;
}

// Newest measued data GPS 1PPS
uint32_t FRQ_CUNTR::read_newest_1pps(void)
{
    return onepps_newest;
}

// Check GPS condition
uint8_t FRQ_CUNTR::status_gps(void)
{
    return gps_ready;
}

//---------------------------------------------------------------------------------------
//  TIM2 (32bit Counter + IC + OC)
//---------------------------------------------------------------------------------------
// Read TIM2 captured counter value
uint32_t FRQ_CUNTR::read_ic2_counter_TIM2(void)
{
    return tim2_cnt_data;   // return TIM2->CCR2;
}

// Check TIM2 IC2 status
uint32_t FRQ_CUNTR::check_ic2_status_TIM2(void)
{
    if (tim2_ready_flg == 0) {
        return 0;
    } else {
        tim2_ready_flg = 0;
        set_1PPS_data();
        return 1;
    }
}

// Check OC port status
uint8_t FRQ_CUNTR::read_oc_port_status(void)
{
    uint32_t p = GPIOB->IDR;
    if (p & 0x0400) {   // Check PB10 status
        return 1;
    } else {
        return 0;
    }
}

//---------------------------------------------------------------------------------------
//  TIM3+TIM4 (32bit Counter + IC)
//---------------------------------------------------------------------------------------
// Read TIM3+4(as 32bit) captured counter value
uint32_t FRQ_CUNTR::read_ic2_counter_TIM3P4(void)
{
    return tim3p4_cnt_data;
}

// Check TIM3 IC2 & TIM4 IC1 status
uint32_t FRQ_CUNTR::check_ic2_status_TIM3P4(void)
{
    if (tim3p4_ready_flg == 0) {
        return 0;
    } else {
        tim3p4_ready_flg = 0;
        return 1;
    }
}

//---------------------------------------------------------------------------------------
//  Frequency check for test purpose
//---------------------------------------------------------------------------------------
// Read TIM2 Clock frequency
uint32_t FRQ_CUNTR::read_frequency_TIM2(float gate_time)
{
    uint32_t freq = 0;
    TIM2->CNT = 0;
    wait(gate_time);                // Gate time for count
    freq = TIM2->CNT;               // read counter
    PRINTF("Clock freq.=%10d [Hz], gate= %4.2f [Sec]\r\n", freq, gate_time);
    return freq;                    // return counter data
}

// Read TIM3(+TIM4) Input frequency
uint32_t FRQ_CUNTR::read_frequency_TIM3P4(float gate_time)
{
    uint32_t freq0 = 0;
    uint32_t freq1 = 0;
    TIM3->CNT = 0;
    TIM4->CNT = 0;
    TIM3->CNT = 0;
    wait(gate_time);                // Gate time for count
    freq0 = TIM3->CNT;
    freq1 = TIM4->CNT;
    freq0 = (freq1 << 16) + freq0;
    PRINTF("Input freq.=%10d [Hz], gate= %4.2f [Sec]\r\n", freq0, gate_time);
    return freq0;                   // read counter
}

//---------------------------------------------------------------------------------------
//  Clock output for test purpose
//---------------------------------------------------------------------------------------
// Output internal clock
void FRQ_CUNTR::port_mco1_mco2_set(uint8_t select)
{
    // PA8 -> MCO_1
    GPIOA->AFR[1] &= 0xfffffff0;
    GPIOA->AFR[1] |= GPIO_AF0_MCO << 0;
    GPIOA->MODER &= ~(GPIO_MODER_MODER8);   // AF
    GPIOA->MODER |= GPIO_MODER_MODER8_1;
    GPIOA->OTYPER &= ~(GPIO_OTYPER_OT_8);   // Output Push-Pull=0
    GPIOA->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR8;// Speed full=11
    GPIOA->PUPDR &= ~(GPIO_PUPDR_PUPDR8);   // Pull-up=01
    GPIOA->PUPDR |= GPIO_PUPDR_PUPDR8_0;
    // PC9 -> MCO_2
    GPIOC->AFR[1] &= 0xffffff0f;
    GPIOC->AFR[1] |= GPIO_AF0_MCO << 4;
    GPIOC->MODER &= ~(GPIO_MODER_MODER9);   // AF
    GPIOC->MODER |= GPIO_MODER_MODER9_1;
    GPIOC->OTYPER &= ~(GPIO_OTYPER_OT_9);   // Output Push-Pull=0
    GPIOC->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR9;// Speed full=11
    GPIOC->PUPDR &= ~(GPIO_PUPDR_PUPDR9);   // Pull-up=01
    GPIOC->PUPDR |= GPIO_PUPDR_PUPDR9_0;
    // Select output clock source
    RCC->CFGR &= 0x009fffff;
    if (select == 1) {
        // MC01 output HSE 1/1, MCO2 output SYSCLK 1/1
        //             MCO2          MCO2PRE       MCO1PRE       MCO1
        RCC->CFGR |= (0x0 << 30) + (0x0 << 27) + (0x0 << 24) + (0x2 << 21);
        PRINTF("Set MCO1(PA8):HSE/1, MCO2(PC9):SYSCLK/1\r\n");
    } else if (select == 2) {
        // MC01 output HSE 1/2, MCO2 output SYSCLK 1/2
        //             MCO2          MCO2PRE       MCO1PRE       MCO1
        RCC->CFGR |= (0x0 << 30) + (0x4 << 27) + (0x4 << 24) + (0x2 << 21);
        PRINTF("Set MCO1(PA8):HSE/2, MCO2(PC9):SYSCLK/2\r\n");
    } else { // select = 4 and other wrong order
        // MC01 output HSE 1/4, MCO2 output SYSCLK 1/4
        //             MCO2          MCO2PRE       MCO1PRE       MCO1
        RCC->CFGR |= (0x0 << 30) + (0x6 << 27) + (0x6 << 24) + (0x2 << 21);
        PRINTF("Set MCO1(PA8):HSE/4, MCO2(PC9):SYSCLK/4\r\n");
    }
}

//---------------------------------------------------------------------------------------
//  Initialize TIM2 and TIM3+4
//---------------------------------------------------------------------------------------
void FRQ_CUNTR::initialize_Freq_counter(void)
{
    initialize_TIM2();
    initialize_TIM3P4();
}

// Initialize TIM2
// Internal clock (100MHz) or External clock(?MHz) and IC2 for GPS 1pps signal measurement
void FRQ_CUNTR::initialize_TIM2(void)
{
#if defined(BASE_EXTERNAL_CLOCK)
    // PA0 -> Counter frequency input pin as Timer2 CH1/ETR
    RCC->AHB1ENR |= (RCC_AHB1ENR_GPIOAEN);
    GPIOA->AFR[0] &= 0xfffffff0;
    GPIOA->AFR[0] |= GPIO_AF1_TIM2;
    GPIOA->MODER &= ~(GPIO_MODER_MODER0);   // AF
    GPIOA->MODER |= GPIO_MODER_MODER0_1;
    GPIOA->PUPDR &= ~(GPIO_PUPDR_PUPDR0);   // PU
    GPIOA->PUPDR |= GPIO_PUPDR_PUPDR0_0;
    // Initialize Timer2(32bit) for an external up counter mode
    RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
    TIM2->CR1 &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS | TIM_CR1_CKD));// count_up + div by 1
    TIM2->CR1 |= TIM_CR1_URS;
    TIM2->ARR = 0xffffffff;
    TIM2->PSC = 0x0000;
    TIM2->CCER &= (uint16_t)~TIM_CCER_CC1E;      // Disable the CC1
    TIM2->CCMR1 &= (uint16_t)~(TIM_CCMR1_IC1F | TIM_CCMR1_CC1S);    // input filter + input select
    TIM2->CCMR1 |= (uint16_t)TIM_CCMR1_CC1S_0;
    TIM2->CCER &= (uint16_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NE | TIM_CCER_CC1NP); // positive edge
    TIM2->SMCR  = (uint16_t)(TIM_SMCR_ECE| TIM_SMCR_ETPS_0 | TIM_SMCR_TS);  // clock/2 !!
    TIM2->CR1 |= (uint16_t)TIM_CR1_CEN;          // Enable the TIM Counter
#else // defined(BASE_EXTERNAL_CLOCK)
    // Initialize Timer2(32bit) for an internal up counter mode
    RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
    TIM2->CR1 &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS | TIM_CR1_CKD));  // count_up + div by 1
    TIM2->CR1 |= TIM_CR1_URS;
    TIM2->ARR = 0xffffffff;
    TIM2->PSC = 0x0000;
    TIM2->CCER &= (uint16_t)~TIM_CCER_CC1E;      // Disable the CC1
    TIM2->SMCR &= (uint16_t)~(TIM_SMCR_ECE | TIM_SMCR_TS | TIM_SMCR_SMS);
    TIM2->SMCR |= (uint16_t)0;     // Internal clock = 100MHz
    TIM2->CR1 |= (uint16_t)TIM_CR1_CEN;          // Enable the TIM Counter
#endif // defined(BASE_EXTERNAL_CLOCK)
    // PA1 -> Input Capture pin as Timer2 IC2
    GPIOA->AFR[0] &= 0xffffff0f;
    GPIOA->AFR[0] |= GPIO_AF1_TIM2 << 4;
    GPIOA->MODER &= ~(GPIO_MODER_MODER1);  // AF
    GPIOA->MODER |= GPIO_MODER_MODER1_1;
    GPIOA->PUPDR &= ~(GPIO_PUPDR_PUPDR1);
    GPIOA->PUPDR |= GPIO_PUPDR_PUPDR1_0;   // PU
    // Initialize Timer2 I.C.2
    TIM2->CCER  &= (uint16_t)~TIM_CCER_CC2E;    // Disable the CC2
    TIM2->CCMR1 &= (uint16_t)~(TIM_CCMR1_IC2F | TIM_CCMR1_CC2S);// input filter + input select
    TIM2->CCMR1 |= (uint16_t)TIM_CCMR1_CC2S_0;
    TIM2->CCER  &= (uint16_t)~(TIM_CCER_CC2P | TIM_CCER_CC2NP); // positive edge
    TIM2->CCER  |= (uint16_t)TIM_CCER_CC2E;     // enable capture
    // PB10 -> Output Compare pin as Timer2 CH3/OC3
    GPIOB->AFR[1] &= 0xfffff0ff;
    GPIOB->AFR[1] |= GPIO_AF1_TIM2 << 8;
    GPIOB->MODER &= ~(GPIO_MODER_MODER10);  // AF
    GPIOB->MODER |= GPIO_MODER_MODER10_1;
    GPIOB->OTYPER &= ~(GPIO_OTYPER_OT_10);// Output Push-Pull=0
    GPIOB->OSPEEDR |= GPIO_OSPEEDER_OSPEEDR10;// Speed full=11
    GPIOB->PUPDR &= ~(GPIO_PUPDR_PUPDR10);   // Pull-up=01
    GPIOB->PUPDR |= GPIO_PUPDR_PUPDR10_0;
    // Initialize Timer2 O.C.3
    TIM2->CCER &= (uint16_t)~TIM_CCER_CC3E; // Reset the CC3E Bit
    TIM2->CCMR2 &= (uint16_t)~(TIM_CCMR2_OC3M | TIM_CCMR2_CC3S |
                               TIM_CCMR2_OC3PE | TIM_CCMR2_OC3CE | TIM_CCMR2_OC3FE);
    TIM2->CCMR2 |= (TIM_CCMR2_OC3M_0 | TIM_CCMR2_OC3M_1);
    TIM2->CCER &= (uint16_t)~TIM_CCER_CC3P;// Reset the Output Polarity level
    TIM2->CCER |= (uint16_t)TIM_CCER_CC3E; // Set the CC3E Bit
    new_gt_value = 0;
    oc_hi_time = oc_set_time0;
    oc_lo_time = oc_set_time1;
    TIM2->CCR3 = TIM2->CNT + oc_hi_time;// Set the Capture Compare Register value
    // Only for Debug purpose
    BAUD(9600);
    //  PA
    PRINTF("\r\n// Timer2(32bit) for an internal up counter mode\r\n");
    PRINTF("// PA1  -> Input Capture pin as Timer2 CH2/TI2\r\n");
    PRINTF("GPIOA->AFR[0]0x%08x:0x%08x\r\n",&GPIOA->AFR[0], GPIOA->AFR[0]);
    PRINTF("GPIOA->AFR[1]0x%08x:0x%08x\r\n",&GPIOA->AFR[1], GPIOA->AFR[1]);
    PRINTF("GPIOA->MODER 0x%08x:0x%08x\r\n",&GPIOA->MODER, GPIOA->MODER);
    PRINTF("GPIOA->PUPDR 0x%08x:0x%08x\r\n",&GPIOA->PUPDR, GPIOA->PUPDR);
    //  PB
    PRINTF("// PB10 -> Output Compare pin as Timer2 CH3/TI3\r\n");
    PRINTF("GPIOB->AFR[0]0x%08x:0x%08x\r\n",&GPIOB->AFR[0], GPIOB->AFR[0]);
    PRINTF("GPIOB->AFR[1]0x%08x:0x%08x\r\n",&GPIOB->AFR[1], GPIOB->AFR[1]);
    PRINTF("GPIOB->MODER 0x%08x:0x%08x\r\n",&GPIOB->MODER, GPIOB->MODER);
    PRINTF("GPIOB->PUPDR 0x%08x:0x%08x\r\n",&GPIOB->PUPDR, GPIOB->PUPDR);
    //  TIM2
    PRINTF("// PA1 -> Timer2 IC2\r\n");
    PRINTF("// PB10-> Timer2 OC3\r\n");
    PRINTF("TIM2->CR1    0x%08x:0x%08x\r\n",&TIM2->CR1, TIM2->CR1);
    PRINTF("TIM2->ARR    0x%08x:0x%08x\r\n",&TIM2->ARR, TIM2->ARR);
    PRINTF("TIM2->PSC    0x%08x:0x%08x\r\n",&TIM2->PSC, TIM2->PSC);
    PRINTF("TIM2->CCMR1  0x%08x:0x%08x\r\n",&TIM2->CCMR1, TIM2->CCMR1);
    PRINTF("TIM2->CCMR2  0x%08x:0x%08x\r\n",&TIM2->CCMR2, TIM2->CCMR2);
    PRINTF("TIM2->CCER   0x%08x:0x%08x\r\n",&TIM2->CCER, TIM2->CCER);
    PRINTF("TIM2->SMCR   0x%08x:0x%08x\r\n",&TIM2->SMCR, TIM2->SMCR);
    PRINTF("TIM2->CCR3   0x%08x:0x%08x\r\n\r\n",&TIM2->CCR3, TIM2->CCR3);
    // Interrupt Timer2 IC2
    for (uint32_t i = 0; i < CNT_BF_SIZE; i++) {
        onepps_cnt[i] = 0;
    }
    onepps_num = 0;
    onepps_ready_flg = 0;
    onepps_buf_full = 0;
    onepps_cnt_avarage = 0;
    tim2_ready_flg = 0;
    tim2_cnt_data = 0;
    tim2_old_cnt_data = 0;
    TIM2->SR &= ~(TIM_SR_CC2IF + TIM_SR_CC3IF); // clear IC flag
    TIM2->DIER |= TIM_DIER_CC2IE + TIM_DIER_CC3IE;
    NVIC_SetVector(TIM2_IRQn, (uint32_t)irq_ic2_TIM2);
    NVIC_ClearPendingIRQ(TIM2_IRQn);
    NVIC_EnableIRQ(TIM2_IRQn);
}

// Initialize TIM3 and TIM4 as 32bit counter (TIM3(16bit) + TIM4(16bit))
//      TIM3 clock input is unkown freq.(measuring freq.) and TIM4 is slave counter
//      1sec gate signal connected both TIM3 IC2 and TIM4 IC1
void FRQ_CUNTR::initialize_TIM3P4(void)
{
    // PC6 -> Unkown frequency input pin as Timer3 CH1/TI1
    RCC->AHB1ENR  |= (RCC_AHB1ENR_GPIOCEN);
    GPIOC->AFR[0] &= 0xf0ffffff;
    GPIOC->AFR[0] |= GPIO_AF2_TIM3 << 24;
    GPIOC->MODER  &= ~(GPIO_MODER_MODER6);   // AF
    GPIOC->MODER  |= GPIO_MODER_MODER6_1;
    GPIOC->PUPDR &= ~(GPIO_PUPDR_PUPDR6);
    GPIOC->PUPDR |= GPIO_PUPDR_PUPDR6_0;   // PU
    // Initialize Timer3(16bit) for an external up counter mode
    RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
    TIM3->CR1   &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS | TIM_CR1_CKD));// count_up + div by 1
    TIM3->CR1   |= (uint16_t)TIM_CR1_URS;
    TIM3->ARR    = 0xffff;
    TIM3->CCER  &= (uint16_t)~TIM_CCER_CC1E;    // Disable the CC1
    TIM3->CCMR1 &= (uint16_t)~(TIM_CCMR1_IC1F | TIM_CCMR1_CC1S);    // input filter + input select
    TIM3->CCMR1 |= (uint16_t)TIM_CCMR1_CC1S_0;
    TIM3->CCER  &= (uint16_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NE | TIM_CCER_CC1NP);// positive edge
    TIM3->SMCR  &= (uint16_t)~(TIM_SMCR_ECE | TIM_SMCR_TS | TIM_SMCR_SMS);// external mode 1
    TIM3->SMCR  |= (uint16_t)( TIM_TS_TI1FP1 | TIM_SLAVEMODE_EXTERNAL1);  // ECE must be ZERO!!!!
    TIM3->CR2   &= (uint16_t)~(TIM_CR2_TI1S | TIM_CR2_MMS);
    TIM3->CR2   |= (uint16_t)TIM_CR2_MMS_1;       // TRGO update
    TIM3->CR1   |= (uint16_t)TIM_CR1_CEN;         // Enable the TIM Counter
    // Initialize Timer4(16bit) for an slave up counter of TIM3
    RCC->APB1ENR |= RCC_APB1ENR_TIM4EN;
    TIM4->CR1  &= (uint16_t)(~(TIM_CR1_DIR | TIM_CR1_CMS | TIM_CR1_CKD));// count_up + div by 1
    TIM4->CR1  |= (uint16_t)TIM_CR1_URS;
    TIM4->ARR   = 0xffff;
    TIM4->CCER &= (uint16_t)TIM_CCER_CC1E; // Capture enable
    TIM4->SMCR &= (uint16_t)~(TIM_SMCR_ECE | TIM_SMCR_TS | TIM_SMCR_SMS);// external mode 1
    TIM4->SMCR |= (uint16_t)( TIM_TS_ITR2 | TIM_SLAVEMODE_EXTERNAL1);// ECE must be ZERO!!!!
    TIM4->CR2  &= (uint16_t)~(TIM_CR2_TI1S | TIM_CR2_MMS);
    TIM4->CR1  |= (uint16_t)TIM_CR1_CEN;         // Enable the TIM Counter
    // PC7 -> Input Capture pin as Timer3 IC2
    GPIOC->AFR[0] &= 0x0fffffff;
    GPIOC->AFR[0] |= GPIO_AF2_TIM3 << 28;
    GPIOC->MODER  &= ~(GPIO_MODER_MODER7);  // AF
    GPIOC->MODER  |= GPIO_MODER_MODER7_1;
    GPIOC->PUPDR &= ~(GPIO_PUPDR_PUPDR7);
    GPIOC->PUPDR |= GPIO_PUPDR_PUPDR7_0;   // PU
    // Initialize Timer3 IC2
    TIM3->CCER  &= (uint16_t)~TIM_CCER_CC2E;    // Disable the CC2
    TIM3->CCMR1 &= (uint16_t)~(TIM_CCMR1_IC2F | TIM_CCMR1_CC2S);// input filter + input select
    TIM3->CCMR1 |= (uint16_t)TIM_CCMR1_CC2S_0;
    TIM3->CCER  &= (uint16_t)~(TIM_CCER_CC2P | TIM_CCER_CC2NP); // positive edge
    TIM3->CCER  |= (uint16_t)TIM_CCER_CC2E;     // enable capture
    // PB6 -> Input Capture pin as Timer4 IC1
    GPIOB->AFR[0] &= 0xf0ffffff;
    GPIOB->AFR[0] |= GPIO_AF2_TIM4 << 24;
    GPIOB->MODER  &= ~(GPIO_MODER_MODER6);  // AF
    GPIOB->MODER  |= GPIO_MODER_MODER6_1;
    GPIOB->PUPDR &= ~(GPIO_PUPDR_PUPDR6);
    GPIOB->PUPDR |= GPIO_PUPDR_PUPDR6_0;   // Pull-up=01
    // Initialize Timer4 IC1
    TIM4->CCER  &= (uint16_t)~TIM_CCER_CC1E;
    TIM4->CCMR1 &= ((uint16_t)~TIM_CCMR1_CC1S) & ((uint16_t)~TIM_CCMR1_IC1F);
    TIM4->CCMR1 |= (uint16_t)TIM_CCMR1_CC1S_0;
    TIM4->CCER  &= (uint16_t)~(TIM_CCER_CC1P | TIM_CCER_CC1NP); // positive edge
    TIM4->CCER  |= (uint16_t)TIM_CCER_CC1E;     // enable capture
    // Only for Debug purpose
    //  PB
    PRINTF("// PB6 -> Input Capture pin as Timer4 CH1/TI1\r\n");
    PRINTF("GPIOB->AFR[0]0x%08x:0x%08x\r\n",&GPIOB->AFR[0], GPIOB->AFR[0]);
    PRINTF("GPIOB->AFR[1]0x%08x:0x%08x\r\n",&GPIOB->AFR[1], GPIOB->AFR[1]);
    PRINTF("GPIOB->MODER 0x%08x:0x%08x\r\n",&GPIOB->MODER, GPIOB->MODER);
    PRINTF("GPIOB->PUPDR 0x%08x:0x%08x\r\n",&GPIOB->PUPDR, GPIOB->PUPDR);
    PRINTF("GPIOB->OTYPER  0x%08x:0x%08x\r\n",&GPIOB->OTYPER, GPIOB->OTYPER);
    PRINTF("GPIOB->OSPEEDR 0x%08x:0x%08x\r\n",&GPIOB->OSPEEDR, GPIOB->OSPEEDR);
    //  PC
    PRINTF("// PC6 -> unkown frequency input pin as Timer3 CH1/TI1\r\n");
    PRINTF("// PC7 -> Input Capture pin as Timer3 CH2/TI2\r\n");
    PRINTF("GPIOC->AFR[0]0x%08x:0x%08x\r\n",&GPIOC->AFR[0], GPIOC->AFR[0]);
    PRINTF("GPIOC->AFR[1]0x%08x:0x%08x\r\n",&GPIOC->AFR[1], GPIOC->AFR[1]);
    PRINTF("GPIOC->MODER 0x%08x:0x%08x\r\n",&GPIOC->MODER, GPIOC->MODER);
    PRINTF("GPIOC->PUPDR 0x%08x:0x%08x\r\n",&GPIOC->PUPDR, GPIOC->PUPDR);
    PRINTF("GPIOC->OTYPER  0x%08x:0x%08x\r\n",&GPIOC->OTYPER, GPIOC->OTYPER);
    PRINTF("GPIOC->OSPEEDR 0x%08x:0x%08x\r\n",&GPIOC->OSPEEDR, GPIOC->OSPEEDR);
    //  TIM3
    PRINTF("// PC6 -> Timer3(16bit) for an external up counter mode\r\n");
    PRINTF("// PC7 -> Timer3 IC2\r\n");
    PRINTF("TIM3->CR1    0x%08x:0x%08x\r\n",&TIM3->CR1, TIM3->CR1);
    PRINTF("TIM3->ARR    0x%08x:0x%08x\r\n",&TIM3->ARR, TIM3->ARR);
    PRINTF("TIM3->PSC    0x%08x:0x%08x\r\n",&TIM3->PSC, TIM3->PSC);
    PRINTF("TIM3->CCMR1  0x%08x:0x%08x\r\n",&TIM3->CCMR1, TIM3->CCMR1);
    PRINTF("TIM3->CCMR2  0x%08x:0x%08x\r\n",&TIM3->CCMR2, TIM3->CCMR2);
    PRINTF("TIM3->CCER   0x%08x:0x%08x\r\n",&TIM3->CCER, TIM3->CCER);
    PRINTF("TIM3->SMCR   0x%08x:0x%08x\r\n",&TIM3->SMCR, TIM3->SMCR);
    //  TIM4
    PRINTF("// none-> Timer4(16bit) for an slave counter\r\n");
    PRINTF("// PB6 -> Timer4 IC1\r\n");
    PRINTF("TIM4->CR1    0x%08x:0x%08x\r\n",&TIM4->CR1, TIM4->CR1);
    PRINTF("TIM4->ARR    0x%08x:0x%08x\r\n",&TIM4->ARR, TIM4->ARR);
    PRINTF("TIM4->PSC    0x%08x:0x%08x\r\n",&TIM4->PSC, TIM4->PSC);
    PRINTF("TIM4->CCMR1  0x%08x:0x%08x\r\n",&TIM4->CCMR1, TIM4->CCMR1);
    PRINTF("TIM4->CCMR2  0x%08x:0x%08x\r\n",&TIM4->CCMR2, TIM4->CCMR2);
    PRINTF("TIM4->CCER   0x%08x:0x%08x\r\n",&TIM4->CCER, TIM4->CCER);
    PRINTF("TIM4->SMCR   0x%08x:0x%08x\r\n\r\n",&TIM4->SMCR, TIM4->SMCR);
    PRINTF("RCC->APB1ENR 0x%08x:0x%08x\r\n\r\n",&RCC->APB1ENR, RCC->APB1ENR);
    // Interrupt Timer3 IC2
    tim3p4_ready_flg = 0;
    tim3p4_cnt_data = 0;
    TIM3->SR &= ~TIM_SR_CC2IF;          // clear IC flag
    TIM4->SR &= ~TIM_SR_CC1IF;
    TIM3->DIER |= TIM_DIER_CC2IE;
    NVIC_SetVector(TIM3_IRQn, (uint32_t)irq_ic2_TIM3P4);
    NVIC_ClearPendingIRQ(TIM3_IRQn);
    NVIC_EnableIRQ(TIM3_IRQn);
}

//---------------------------------------------------------------------------------------
//  Only for Debug purpose
//---------------------------------------------------------------------------------------
void FRQ_CUNTR::debug_printf_internal_data(void)
{
    PRINTF("Debug information\r\n");
    PRINTF("gate_time       %f\r\n", gate_time);
    PRINTF("ex_clock_freq   %f\r\n", ex_clock_freq);
    PRINTF("ex_clk_base     %9d\r\n", ex_clk_base);
    PRINTF("clk_hi_const    %9d\r\n", clk_hi_const);
    PRINTF("clk_upper_limit %9d\r\n", clk_upper_limit);
    PRINTF("clk_lower_limit %9d\r\n", clk_lower_limit);
    PRINTF("\r\n");
}

}   // Frequency_counter

#endif      // #if defined(TARGET_NUCLEO_F411RE)