CW Decoder (Morse code decoder) 1st release version. Only run on Nucleo-F446RE mbed board.
Dependencies: Array_Matrix F446_AD_DA ST7565_SPI_LCD TextLCD UIT_FFT_Real
Fork of F446_MySoundMachine by
Base on F446_MySoundMachine program created by 不韋 呂-san.
Thanks to 不韋 呂-san making fundamental part such as FFT and ADC high speed interrupt driven program.
I just combined LCD and show CW code.
MySpectrogram/MethodCollection.hpp
- Committer:
- kenjiArai
- Date:
- 2017-02-05
- Revision:
- 6:5e21ac9f0550
File content as of revision 6:5e21ac9f0550:
//-------------------------------------------------------------- // スペクトログラムで使う大域関数 // // 2016/08/11, Copyright (c) 2016 MIKAMI, Naoki //-------------------------------------------------------------- #ifndef METHOD_COLLECTION_HPP #define METHOD_COLLECTION_HPP #include "mbed.h" #include "NumericLabel.hpp" #include "Matrix.hpp" #include "FFT_Analysis.hpp" namespace Mikami { // 色相の違いで表示 // 0.0 <= x <= 1.0 uint32_t HueScale(float x) { if (x >= 1) return LCD_COLOR_WHITE; int r = 0; int b = 0; if (x<0.5f) b = (x<0.33f) ? 255 : -(int)(1500.0f*x) + 750; else r = (0.67f<x) ? 255 : (int)(1500.0f*x) - 750; int g = 255 - (int)(1020.0f*(x - 0.5f)*(x - 0.5f)); return 0xFF000000 | (((r << 8) | g) << 8) | b; } // 座標軸 void DrawAxis(int x0, int y0, int w0, int h0, uint32_t axisColor, uint16_t ms100, uint16_t px1kHz, LCD_DISCO_F746NG *lcd) { const uint16_t TICK = 5; // 目盛線の長さ // 横標軸 lcd->SetTextColor(axisColor); lcd->DrawHLine(x0, y0+TICK, w0); for (int n=0; n<=w0/ms100; n++) if ((n % 10)== 0) lcd->DrawVLine(x0+n*ms100, y0, 5); else lcd->DrawVLine(x0+n*ms100, y0+3, 2); for (int n=0; n<=w0/ms100; n+=10) NumericLabel<int> num(x0+n*ms100, y0+TICK+3, "%1d", (int)(n*0.1f), Label::CENTER); Label time(x0+w0/2, y0+22, "TIME [s]", Label::CENTER); // 縦標軸 lcd->SetTextColor(axisColor); lcd->DrawVLine(x0-TICK, y0-h0, h0); for (int n=0; n<=h0/px1kHz; n++) lcd->DrawHLine(x0-TICK, y0-n*px1kHz, TICK); for (int n=0; n<=h0/px1kHz; n++) NumericLabel<int> num(x0-TICK-12, y0-n*px1kHz-5, "%1d", n); Label hz(x0-32, y0-5*px1kHz-20, "[kHz]"); } // 色と dB の関係の表示 void ColorDb(int y0, uint32_t axisColor, LCD_DISCO_F746NG *lcd) { lcd->SetTextColor(axisColor); lcd->DrawVLine(455, y0-100, 100); for (int n=0; n<=8; n++) lcd->DrawHLine(455, y0-(n*100)/8, 4); for (int n=0; n<=4; n++) NumericLabel<int> num(440, y0-(n*100)/4-5, "%2d", n*20); Label dB(432, y0-120, "[dB]"); for (int n=0; n<=100; n++) { lcd->SetTextColor(HueScale(n/100.0f)); lcd->DrawHLine(460, y0-n, 16); } } // スペクトルの更新 void SpectrumUpdate(Matrix<uint32_t> &x, FftAnalyzer &analyzer, const Array<float> &sn, const Array<float> &db) { // 過去のスペクトルを一つずらす for (int n=0; n<x.Rows()-1; n++) for (int k=0; k<x.Cols(); k++) x[n][k] = x[n+1][k]; // 新しいスペクトル analyzer.Execute(sn, db); const float FACTOR = 1.0f/80.0f; // 表示範囲: 0 ~ 80 dB for (int k=0; k<=x.Cols(); k++) x[x.Rows()-1][k] = HueScale(FACTOR*((db[k] > 20) ? db[k]-20 : 0)); } // スペクトルの表示 void DisplaySpectrum(const Matrix<uint32_t> &x, int x0, int y0, int hBar, LCD_DISCO_F746NG *lcd) { for (int n=0; n<x.Rows(); n++) for (int k=0; k<x.Cols(); k++) { lcd->SetTextColor(x[n][k]); lcd->DrawHLine(x0+n*hBar, y0-k, hBar); } } } #endif // METHOD_COLLECTION_HPP