Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependents: Check_VL6180XA1_ToF
Fork of X_NUCLEO_6180XA1 by
Components/VL6180X/VL6180X.h
- Committer:
- nikapov
- Date:
- 2017-08-21
- Revision:
- 58:1e9a3a46f814
- Parent:
- 57:fa4c622b04a7
File content as of revision 58:1e9a3a46f814:
/**
******************************************************************************
* @file VL6180X.h
* @author AST / EST
* @version V0.0.1
* @date 9-November-2015
* @brief Header file for component VL6180X
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
#ifndef __VL6180X_CLASS_H
#define __VL6180X_CLASS_H
/* Includes ------------------------------------------------------------------*/
#include "RangeSensor.h"
#include "LightSensor.h"
#include "DevI2C.h"
//#include "vl6180x_api.h"
#include "vl6180x_cfg.h"
#include "vl6180x_def.h"
#include "vl6180x_types.h"
#include "vl6180x_platform.h"
#include "STMPE1600.h"
/* Definitions ---------------------------------------------------------------*/
/**
* @brief Clear error interrupt
*
* @param dev The device
* @return 0 On success
*/
#define VL6180X_ClearErrorInterrupt(dev) VL6180X_ClearInterrupt(dev, INTERRUPT_CLEAR_ERROR)
/**
* @brief Clear All interrupt causes (als+range+error)
*
* @param dev The device
* @return 0 On success
*/
#define VL6180X_ClearAllInterrupt(dev) VL6180X_ClearInterrupt(dev, INTERRUPT_CLEAR_ERROR|INTERRUPT_CLEAR_RANGING|INTERRUPT_CLEAR_ALS)
/**
* Default device address
*/
#define DEFAULT_DEVICE_ADDRESS 0x29
/* Types ---------------------------------------------------------------------*/
/* data struct containing range measure, light measure and type of error provided to the user
in case of invalid data range_mm=0xFFFFFFFF and lux=0xFFFFFFFF */
typedef struct MeasureData
{
uint32_t range_mm;
uint32_t lux;
uint32_t range_error;
uint32_t als_error;
uint32_t int_error;
} measure_data_t;
/* sensor operating modes */
typedef enum
{
range_single_shot_polling=1,
als_single_shot_polling,
range_continuous_polling,
als_continuous_polling,
range_continuous_interrupt,
als_continuous_interrupt,
interleaved_mode_interrupt,
range_continuous_polling_low_threshold,
range_continuous_polling_high_threshold,
range_continuous_polling_out_of_window,
als_continuous_polling_low_threshold,
als_continuous_polling_high_threshold,
als_continuous_polling_out_of_window,
range_continuous_interrupt_low_threshold,
range_continuous_interrupt_high_threshold,
range_continuous_interrupt_out_of_window,
als_continuous_interrupt_low_threshold,
als_continuous_interrupt_high_threshold,
als_continuous_interrupt_out_of_window,
range_continuous_als_single_shot,
range_single_shot_als_continuous,
} operating_mode_t;
/* Classes -------------------------------------------------------------------*/
/**
* Class representing a VL6180X sensor component
*/
class VL6180X : public RangeSensor, public LightSensor
{
public:
/** Constructor 1 (DigitalOut)
* @param[in] &i2c device I2C to be used for communication
* @param[in] &pin Mbed DigitalOut pin to be used as component GPIO_0 CE
* @param[in] &pin_gpio1 pin Mbed InterruptIn PinName to be used as component GPIO_1 INT
* @param[in] DevAddr device address, 0x29 by default
*/
VL6180X(DevI2C &i2c, DigitalOut &pin, PinName pin_gpio1, uint8_t DevAddr=DEFAULT_DEVICE_ADDRESS) : RangeSensor(), LightSensor(), _dev_i2c(&i2c), _gpio0(&pin)
{
_my_device.I2cAddr=DevAddr;
_my_device.Present=0;
_my_device.Ready=0;
_device=&_my_device;;
_expgpio0=NULL;
if (pin_gpio1 != NC) {
_gpio1Int = new InterruptIn(pin_gpio1);
} else {
_gpio1Int = NULL;
}
}
/** Constructor 2 (STMPE1600DigiOut)
* @param[in] i2c device I2C to be used for communication
* @param[in] &pin Gpio Expander STMPE1600DigiOut pin to be used as component GPIO_0 CE
* @param[in] pin_gpio1 pin Mbed InterruptIn PinName to be used as component GPIO_1 INT
* @param[in] device address, 0x29 by default
*/
VL6180X(DevI2C &i2c, STMPE1600DigiOut &pin, PinName pin_gpio1, uint8_t DevAddr=DEFAULT_DEVICE_ADDRESS) : RangeSensor(), LightSensor(), _dev_i2c(&i2c), _expgpio0(&pin)
{
_my_device.I2cAddr=DevAddr;
_my_device.Present=0;
_my_device.Ready=0;
_device=&_my_device;
_gpio0=NULL;
if (pin_gpio1 != NC) {
_gpio1Int = new InterruptIn(pin_gpio1);
} else {
_gpio1Int = NULL;
}
}
/** Destructor
*/
virtual ~VL6180X() {
if (_gpio1Int != NULL) {
delete _gpio1Int;
}
}
/* warning: VL6180X class inherits from GenericSensor, RangeSensor and LightSensor, that haven`t a destructor.
The warning should request to introduce a virtual destructor to make sure to delete the object */
/*** Interface Methods ***/
/*** High level API ***/
/**
* @brief PowerOn the sensor
* @return void
*/
/* turns on the sensor */
void on(void)
{
if (_gpio0) {
*_gpio0=1;
} else if(_expgpio0) {
*_expgpio0=1;
}
_my_device.I2cAddr=DEFAULT_DEVICE_ADDRESS;
_my_device.Ready=0;
}
/**
* @brief PowerOff the sensor
* @return void
*/
/* turns off the sensor */
void off(void)
{
if (_gpio0) {
*_gpio0=0;
} else if(_expgpio0) {
*_expgpio0=0;
}
_my_device.I2cAddr=DEFAULT_DEVICE_ADDRESS;
_my_device.Ready=0;
}
/**
* @brief Start the measure indicated by operating mode
* @param[in] operating_mode specifies requested measure
* @param[in] fptr specifies call back function must be !NULL in case of interrupt measure
* @param[in] low specifies measure low threashold in Lux or in mm according to measure
* @param[in] high specifies measure high threashold in Lux or in mm according to measure
* @return 0 on Success
*/
int start_measurement(operating_mode_t operating_mode, void (*fptr)(void), uint16_t low, uint16_t high);
/**
* @brief Get results for the measure indicated by operating mode
* @param[in] operating_mode specifies requested measure results
* @param[out] Data pointer to the measure_data_t structure to read data in to
* @return 0 on Success
*/
int get_measurement(operating_mode_t operating_mode, measure_data_t *Data);
/**
* @brief Stop the currently running measure indicate by operating_mode
* @param[in] operating_mode specifies requested measure to stop
* @return 0 on Success
*/
int stop_measurement(operating_mode_t operating_mode);
/**
* @brief Interrupt handling func to be called by user after an INT is occourred
* @param[in] opeating_mode indicating the in progress measure
* @param[out] Data pointer to the measure_data_t structure to read data in to
* @return 0 on Success
*/
int handle_irq(operating_mode_t operating_mode, measure_data_t *Data);
/**
* @brief Enable interrupt measure IRQ
* @return 0 on Success
*/
void enable_interrupt_measure_detection_irq(void)
{
if (_gpio1Int != NULL) {
_gpio1Int->enable_irq();
}
}
/**
* @brief Disable interrupt measure IRQ
* @return 0 on Success
*/
void disable_interrupt_measure_detection_irq(void)
{
if (_gpio1Int != NULL) {
_gpio1Int->disable_irq();
}
}
/*** End High level API ***/
/**
* @brief Attach a function to call when an interrupt is detected, i.e. measurement is ready
* @param[in] fptr pointer to call back function to be called whenever an interrupt occours
* @return 0 on Success
*/
void attach_interrupt_measure_detection_irq(void (*fptr)(void))
{
if (_gpio1Int != NULL) {
_gpio1Int->rise(fptr);
}
}
/**
* @brief Check the sensor presence
* @return 1 when device is present
*/
unsigned present()
{
return _device->Present;
}
/** Wrapper functions */
/** @defgroup api_init Init functions
* @brief API init functions
* @ingroup api_hl
* @{
*/
/**
* @brief Wait for device booted after chip enable (hardware standby)
* @par Function Description
* After Chip enable Application you can also simply wait at least 1ms to ensure device is ready
* @warning After device chip enable (_gpio0) de-asserted user must wait gpio1 to get asserted (hardware standby).
* or wait at least 400usec prior to do any low level access or api call .
*
* This function implements polling for standby but you must ensure 400usec from chip enable passed\n
* @warning if device get prepared @a VL6180X_Prepare() re-using these function can hold indefinitely\n
*
* @param void
* @return 0 on success
*/
int wait_device_booted()
{
return VL6180X_WaitDeviceBooted(_device);
}
/**
*
* @brief One time device initialization
*
* To be called once and only once after device is brought out of reset (Chip enable) and booted see @a VL6180X_WaitDeviceBooted()
*
* @par Function Description
* When not used after a fresh device "power up" or reset, it may return @a #CALIBRATION_WARNING
* meaning wrong calibration data may have been fetched from device that can result in ranging offset error\n
* If application cannot execute device reset or need to run VL6180X_InitData multiple time
* then it must ensure proper offset calibration saving and restore on its own
* by using @a VL6180X_GetOffsetCalibrationData() on first power up and then @a VL6180X_SetOffsetCalibrationData() all all subsequent init
*
* @param void
* @return 0 on success, @a #CALIBRATION_WARNING if failed
*/
virtual int init(void * NewAddr)
{
int status;
off();
on();
status=VL6180X_WaitDeviceBooted(_device);
if(status) {
VL6180X_ErrLog("WaitDeviceBooted fail\n\r");
}
status=IsPresent();
if(!status) {
_device->Present=1;
VL6180X_InitData(_device);
if(status) {
printf("Failed to init VL6180X sensor!\n\r");
return status;
}
status=prepare();
if(status) {
printf("Failed to prepare VL6180X!\n\r");
return status;
}
if(*(uint8_t*)NewAddr!=DEFAULT_DEVICE_ADDRESS) {
status=set_i2c_address(*(uint8_t*)NewAddr);
if(status) {
printf("Failed to change I2C address!\n\r");
return status;
}
}
_device->Ready=1;
}
return status;
}
/**
* @brief Configure GPIO1 function and set polarity.
* @par Function Description
* To be used prior to arm single shot measure or start continuous mode.
*
* The function uses @a VL6180X_SetupGPIOx() for setting gpio 1.
* @warning changing polarity can generate a spurious interrupt on pins.
* It sets an interrupt flags condition that must be cleared to avoid polling hangs. \n
* It is safe to run VL6180X_ClearAllInterrupt() just after.
*
* @param IntFunction The interrupt functionality to use one of :\n
* @a #GPIOx_SELECT_OFF \n
* @a #GPIOx_SELECT_GPIO_INTERRUPT_OUTPUT
* @param ActiveHigh The interrupt line polarity see ::IntrPol_e
* use @a #INTR_POL_LOW (falling edge) or @a #INTR_POL_HIGH (rising edge)
* @return 0 on success
*/
int setup_gpio_1(uint8_t InitFunction, int ActiveHigh)
{
return VL6180X_SetupGPIO1(_device, InitFunction, ActiveHigh);
}
/**
* @brief Prepare device for operation
* @par Function Description
* Does static initialization and reprogram common default settings \n
* _device is prepared for new measure, ready single shot ranging or ALS typical polling operation\n
* After prepare user can : \n
* @li Call other API function to set other settings\n
* @li Configure the interrupt pins, etc... \n
* @li Then start ranging or ALS operations in single shot or continuous mode
*
* @param void
* @return 0 on success
*/
int prepare()
{
return VL6180X_Prepare(_device);
}
/**
* @brief Start continuous ranging mode
*
* @details End user should ensure device is in idle state and not already running
* @return 0 on success
*/
int range_start_continuous_mode()
{
return VL6180X_RangeStartContinuousMode(_device);
}
/**
* @brief Start single shot ranging measure
*
* @details End user should ensure device is in idle state and not already running
* @return 0 on success
*/
int range_start_single_shot()
{
return VL6180X_RangeStartSingleShot(_device);
}
/**
* @brief Set maximum convergence time
*
* @par Function Description
* Setting a low convergence time can impact maximal detectable distance.
* Refer to VL6180X Datasheet Table 7 : Typical range convergence time.
* A typical value for up to x3 scaling is 50 ms
*
* @param MaxConTime_msec
* @return 0 on success. <0 on error. >0 for calibration warning status
*/
int range_set_max_convergence_time(uint8_t MaxConTime_msec)
{
return VL6180X_RangeSetMaxConvergenceTime(_device, MaxConTime_msec);
}
/**
* @brief Single shot Range measurement in polling mode.
*
* @par Function Description
* Kick off a new single shot range then wait for ready to retrieve it by polling interrupt status \n
* Ranging must be prepared by a first call to @a VL6180X_Prepare() and it is safer to clear very first poll call \n
* This function reference VL6180X_PollDelay(dev) porting macro/call on each polling loop,
* but PollDelay(dev) may never be called if measure in ready on first poll loop \n
* Should not be use in continuous mode operation as it will stop it and cause stop/start misbehaviour \n
* \n This function clears Range Interrupt status , but not error one. For that uses @a VL6180X_ClearErrorInterrupt() \n
* This range error is not related VL6180X_RangeData_t::errorStatus that refer measure status \n
*
* @param pRangeData Will be populated with the result ranging data @a VL6180X_RangeData_t
* @return 0 on success , @a #RANGE_ERROR if device reports an error case in it status (not cleared) use
*
* \sa ::VL6180X_RangeData_t
*/
int range_poll_measurement(VL6180X_RangeData_t *pRangeData)
{
return VL6180X_RangePollMeasurement(_device, pRangeData);
}
/**
* @brief Check for measure readiness and get it if ready
*
* @par Function Description
* Using this function is an alternative to @a VL6180X_RangePollMeasurement() to avoid polling operation. This is suitable for applications
* where host CPU is triggered on a interrupt (not from VL6180X) to perform ranging operation. In this scenario, we assume that the very first ranging
* operation is triggered by a call to @a VL6180X_RangeStartSingleShot(). Then, host CPU regularly calls @a VL6180X_RangeGetMeasurementIfReady() to
* get a distance measure if ready. In case the distance is not ready, host may get it at the next call.\n
*
* @warning
* This function does not re-start a new measurement : this is up to the host CPU to do it.\n
* This function clears Range Interrupt for measure ready , but not error interrupts. For that, uses @a VL6180X_ClearErrorInterrupt() \n
*
* @param pRangeData Will be populated with the result ranging data if available
* @return 0 when measure is ready pRange data is updated (untouched when not ready), >0 for warning and @a #NOT_READY if measurement not yet ready, <0 for error @a #RANGE_ERROR if device report an error,
*/
int _range_get_measurement_if_ready(VL6180X_RangeData_t *pRangeData)
{
return VL6180X_RangeGetMeasurementIfReady(_device, pRangeData);
}
/**
* @brief Retrieve range measurements set from device
*
* @par Function Description
* The measurement is made of range_mm status and error code @a VL6180X_RangeData_t \n
* Based on configuration selected extra measures are included.
*
* @warning should not be used in continuous if wrap around filter is active \n
* Does not perform any wait nor check for result availability or validity.
*\sa VL6180X_RangeGetResult for "range only" measurement
*
* @param pRangeData Pointer to the data structure to fill up
* @return 0 on success
*/
int range_get_measurement(VL6180X_RangeData_t *pRangeData)
{
return VL6180X_RangeGetMeasurement(_device, pRangeData);
}
/**
* @brief Get a single distance measure result
*
* @par Function Description
* It can be called after having initialized a component. It start a single
* distance measure in polling mode and wait until the measure is finisched.
* The function block until the measure is finished, it can blocks indefinitely
* in case the measure never ends for any reason \n
*
* @param pi_data Pointer to distance
* @return 0 on success
*/
virtual int get_distance(uint32_t *pi_data)
{
int status=0;
LOG_FUNCTION_START("");
status=start_measurement(range_single_shot_polling, NULL, NULL, NULL);
if (!status) {
range_wait_device_ready(2000);
for (status=1; status!=0; status=VL6180X_RangeGetResult(_device, pi_data));
}
stop_measurement(range_single_shot_polling);
range_wait_device_ready(2000);
LOG_FUNCTION_END(status);
return status;
}
/**
* @brief Configure ranging interrupt reported to application
*
* @param ConfigGpioInt Select ranging report\n select one (and only one) of:\n
* @a #CONFIG_GPIO_INTERRUPT_DISABLED \n
* @a #CONFIG_GPIO_INTERRUPT_LEVEL_LOW \n
* @a #CONFIG_GPIO_INTERRUPT_LEVEL_HIGH \n
* @a #CONFIG_GPIO_INTERRUPT_OUT_OF_WINDOW \n
* @a #CONFIG_GPIO_INTERRUPT_NEW_SAMPLE_READY
* @return 0 on success
*/
int range_config_interrupt(uint8_t ConfigGpioInt)
{
return VL6180X_RangeConfigInterrupt(_device, ConfigGpioInt);
}
/**
* @brief Return ranging error interrupt status
*
* @par Function Description
* Appropriate Interrupt report must have been selected first by @a VL6180X_RangeConfigInterrupt() or @a VL6180X_Prepare() \n
*
* Can be used in polling loop to wait for a given ranging event or in interrupt to read the trigger \n
* Events triggers are : \n
* @a #RES_INT_STAT_GPIO_LOW_LEVEL_THRESHOLD \n
* @a #RES_INT_STAT_GPIO_HIGH_LEVEL_THRESHOLD \n
* @a #RES_INT_STAT_GPIO_OUT_OF_WINDOW \n (RES_INT_STAT_GPIO_LOW_LEVEL_THRESHOLD|RES_INT_STAT_GPIO_HIGH_LEVEL_THRESHOLD)
* @a #RES_INT_STAT_GPIO_NEW_SAMPLE_READY \n
*
* @sa IntrStatus_t
* @param pIntStatus Pointer to status variable to update
* @return 0 on success
*/
int range_get_interrupt_status(uint8_t *pIntStatus)
{
return VL6180X_RangeGetInterruptStatus(_device, pIntStatus);
}
/**
* @brief Run a single ALS measurement in single shot polling mode
*
* @par Function Description
* Kick off a new single shot ALS then wait new measurement ready to retrieve it ( polling system interrupt status register for als) \n
* ALS must be prepared by a first call to @a VL6180X_Prepare() \n
* \n Should not be used in continuous or interrupt mode it will break it and create hazard in start/stop \n
*
* @param dev The device
* @param pAlsData Als data structure to fill up @a VL6180X_AlsData_t
* @return 0 on success
*/
int als_poll_measurement(VL6180X_AlsData_t *pAlsData)
{
return VL6180X_AlsPollMeasurement(_device, pAlsData);
}
/**
* @brief Get actual ALS measurement
*
* @par Function Description
* Can be called after success status polling or in interrupt mode to retrieve ALS measurement from device \n
* This function doesn't perform any data ready check !
*
* @param pAlsData Pointer to measurement struct @a VL6180X_AlsData_t
* @return 0 on success
*/
int als_get_measurement(VL6180X_AlsData_t *pAlsData)
{
return VL6180X_AlsGetMeasurement(_device, pAlsData);
}
/**
* @brief Configure ALS interrupts provide to application
*
* @param ConfigGpioInt Select one (and only one) of : \n
* @a #CONFIG_GPIO_INTERRUPT_DISABLED \n
* @a #CONFIG_GPIO_INTERRUPT_LEVEL_LOW \n
* @a #CONFIG_GPIO_INTERRUPT_LEVEL_HIGH \n
* @a #CONFIG_GPIO_INTERRUPT_OUT_OF_WINDOW \n
* @a #CONFIG_GPIO_INTERRUPT_NEW_SAMPLE_READY
* @return 0 on success may return #INVALID_PARAMS for invalid mode
*/
int als_config_interrupt(uint8_t ConfigGpioInt)
{
return VL6180X_AlsConfigInterrupt(_device, ConfigGpioInt);
}
/**
* @brief Set ALS integration period
*
* @param period_ms Integration period in msec. Value in between 50 to 100 msec is recommended\n
* @return 0 on success
*/
int als_set_integration_period(uint16_t period_ms)
{
return VL6180X_AlsSetIntegrationPeriod(_device, period_ms);
}
/**
* @brief Set ALS "inter-measurement period"
*
* @par Function Description
* The so call data-sheet "inter measurement period" is actually an extra inter-measurement delay
*
* @param intermeasurement_period_ms Inter measurement time in milli second\n
* @warning applied value is clipped to 2550 ms\n
* @return 0 on success if value is
*/
int als_set_inter_measurement_period(uint16_t intermeasurement_period_ms)
{
return VL6180X_AlsSetInterMeasurementPeriod(_device, intermeasurement_period_ms);
}
/**
* @brief Set ALS analog gain code
*
* @par Function Description
* ALS gain code value programmed in @a SYSALS_ANALOGUE_GAIN .
* @param gain Gain code see datasheet or AlsGainLookUp for real value. Value is clipped to 7.
* @return 0 on success
*/
int als_set_analogue_gain(uint8_t gain)
{
return VL6180X_AlsSetAnalogueGain(_device, gain);
}
/**
* @brief Set thresholds for ALS continuous mode
* @warning Threshold are raw device value not lux!
*
* @par Function Description
* Basically value programmed in @a SYSALS_THRESH_LOW and @a SYSALS_THRESH_HIGH registers
* @param low ALS low raw threshold for @a SYSALS_THRESH_LOW
* @param high ALS high raw threshold for @a SYSALS_THRESH_HIGH
* @return 0 on success
*/
int als_set_thresholds(uint16_t lux_threshold_low, uint16_t lux_threshold_high);
/**
* Read ALS interrupt status
* @param pIntStatus Pointer to status
* @return 0 on success
*/
int als_get_interrupt_status(uint8_t *pIntStatus)
{
return VL6180X_AlsGetInterruptStatus(_device, pIntStatus);
}
/**
* @brief Low level ranging and ALS register static settings (you should call @a VL6180X_Prepare() function instead)
*
* @return 0 on success
*/
int static_init()
{
return VL6180X_StaticInit(_device);
}
/**
* @brief Wait for device to be ready (before a new ranging command can be issued by application)
* @param MaxLoop Max Number of i2c polling loop see @a #msec_2_i2cloop
* @return 0 on success. <0 when fail \n
* @ref VL6180X_ErrCode_t::TIME_OUT for time out \n
* @ref VL6180X_ErrCode_t::INVALID_PARAMS if MaxLop<1
*/
int range_wait_device_ready(int MaxLoop)
{
return VL6180X_RangeWaitDeviceReady(_device, MaxLoop);
}
/**
* @brief Program Inter measurement period (used only in continuous mode)
*
* @par Function Description
* When trying to set too long time, it returns #INVALID_PARAMS
*
* @param InterMeasTime_msec Requires inter-measurement time in msec
* @return 0 on success
*/
int range_set_inter_meas_period(uint32_t InterMeasTime_msec)
{
return VL6180X_RangeSetInterMeasPeriod(_device, InterMeasTime_msec);
}
/**
* @brief Set device ranging scaling factor
*
* @par Function Description
* The ranging scaling factor is applied on the raw distance measured by the device to increase operating ranging at the price of the precision.
* Changing the scaling factor when device is not in f/w standby state (free running) is not safe.
* It can be source of spurious interrupt, wrongly scaled range etc ...
* @warning __This function doesns't update high/low threshold and other programmed settings linked to scaling factor__.
* To ensure proper operation, threshold and scaling changes should be done following this procedure: \n
* @li Set Group hold : @a VL6180X_SetGroupParamHold() \n
* @li Get Threshold @a VL6180X_RangeGetThresholds() \n
* @li Change scaling : @a VL6180X_UpscaleSetScaling() \n
* @li Set Threshold : @a VL6180X_RangeSetThresholds() \n
* @li Unset Group Hold : @a VL6180X_SetGroupParamHold()
*
* @param scaling Scaling factor to apply (1,2 or 3)
* @return 0 on success when up-scale support is not configured it fail for any
* scaling than the one statically configured.
*/
int upscale_set_scaling(uint8_t scaling)
{
return VL6180X_UpscaleSetScaling(_device, scaling);
}
/**
* @brief Get current ranging scaling factor
*
* @return The current scaling factor
*/
int upscale_get_scaling()
{
return VL6180X_UpscaleGetScaling(_device);
}
/**
* @brief Get the maximal distance for actual scaling
* @par Function Description
* Do not use prior to @a VL6180X_Prepare() or at least @a VL6180X_InitData()
*
* Any range value more than the value returned by this function is to be considered as "no target detected"
* or "no target in detectable range" \n
* @warning The maximal distance depends on the scaling
*
* @return The maximal range limit for actual mode and scaling
*/
uint16_t get_upper_limit()
{
return VL6180X_GetUpperLimit(_device);
}
/**
* @brief Apply low and high ranging thresholds that are considered only in continuous mode
*
* @par Function Description
* This function programs low and high ranging thresholds that are considered in continuous mode :
* interrupt will be raised only when an object is detected at a distance inside this [low:high] range.
* The function takes care of applying current scaling factor if any.\n
* To be safe, in continuous operation, thresholds must be changed under "group parameter hold" cover.
* Group hold can be activated/deactivated directly in the function or externally (then set 0)
* using /a VL6180X_SetGroupParamHold() function.
*
* @param low Low threshold in mm
* @param high High threshold in mm
* @param SafeHold Use of group parameters hold to surround threshold programming.
* @return 0 On success
*/
int range_set_thresholds(uint16_t low, uint16_t high, int SafeHold)
{
return VL6180X_RangeSetThresholds(_device, low, high, SafeHold);
}
/**
* @brief Get scaled high and low threshold from device
*
* @par Function Description
* Due to scaling factor, the returned value may be different from what has been programmed first (precision lost).
* For instance VL6180X_RangeSetThresholds(dev,11,22) with scale 3
* will read back 9 ((11/3)x3) and 21 ((22/3)x3).
*
* @param low scaled low Threshold ptr can be NULL if not needed
* @param high scaled High Threshold ptr can be NULL if not needed
* @return 0 on success, return value is undefined if both low and high are NULL
* @warning return value is undefined if both low and high are NULL
*/
int range_get_thresholds(uint16_t *low, uint16_t *high)
{
return VL6180X_RangeGetThresholds(_device, low, high);
}
/**
* @brief Set ranging raw thresholds (scaling not considered so not recommended to use it)
*
* @param low raw low threshold set to raw register
* @param high raw high threshold set to raw register
* @return 0 on success
*/
int range_set_raw_thresholds(uint8_t low, uint8_t high)
{
return VL6180X_RangeSetRawThresholds(_device, low, high);
}
/**
* @brief Set Early Convergence Estimate ratio
* @par Function Description
* For more information on ECE check datasheet
* @warning May return a calibration warning in some use cases
*
* @param FactorM ECE factor M in M/D
* @param FactorD ECE factor D in M/D
* @return 0 on success. <0 on error. >0 on warning
*/
int range_set_ece_factor(uint16_t FactorM, uint16_t FactorD)
{
return VL6180X_RangeSetEceFactor(_device, FactorM, FactorD);
}
/**
* @brief Set Early Convergence Estimate state (See #SYSRANGE_RANGE_CHECK_ENABLES register)
* @param enable State to be set 0=disabled, otherwise enabled
* @return 0 on success
*/
int range_set_ece_state(int enable)
{
return VL6180X_RangeSetEceState(_device, enable);
}
/**
* @brief Set activation state of the wrap around filter
* @param state New activation state (0=off, otherwise on)
* @return 0 on success
*/
int flter_set_state(int state)
{
return VL6180X_FilterSetState(_device, state);
}
/**
* Get activation state of the wrap around filter
* @return Filter enabled or not, when filter is not supported it always returns 0S
*/
int filter_get_state()
{
return VL6180X_FilterGetState(_device);
}
/**
* @brief Set activation state of DMax computation
* @param state New activation state (0=off, otherwise on)
* @return 0 on success
*/
int d_max_set_state(int state)
{
return VL6180X_DMaxSetState(_device, state);
}
/**
* Get activation state of DMax computation
* @return Filter enabled or not, when filter is not supported it always returns 0S
*/
int d_max_get_state()
{
return VL6180X_DMaxGetState(_device);
}
/**
* @brief Set ranging mode and start/stop measure (use high level functions instead : @a VL6180X_RangeStartSingleShot() or @a VL6180X_RangeStartContinuousMode())
*
* @par Function Description
* When used outside scope of known polling single shot stopped state, \n
* user must ensure the device state is "idle" before to issue a new command.
*
* @param mode A combination of working mode (#MODE_SINGLESHOT or #MODE_CONTINUOUS) and start/stop condition (#MODE_START_STOP) \n
* @return 0 on success
*/
int range_set_system_mode(uint8_t mode)
{
return VL6180X_RangeSetSystemMode(_device, mode);
}
/** @} */
/** @defgroup api_ll_range_calibration Ranging calibration functions
* @brief Ranging calibration functions
* @ingroup api_ll
* @{
*/
/**
* @brief Get part to part calibration offset
*
* @par Function Description
* Should only be used after a successful call to @a VL6180X_InitData to backup device nvm value
*
* @return part to part calibration offset from device
*/
int8_t get_offset_calibration_data()
{
return VL6180X_GetOffsetCalibrationData(_device);
}
/**
* Set or over-write part to part calibration offset
* \sa VL6180X_InitData(), VL6180X_GetOffsetCalibrationData()
* @param offset Offset
*/
void set_offset_calibration_data(int8_t offset)
{
return VL6180X_SetOffsetCalibrationData(_device, offset);
}
/**
* @brief Set Cross talk compensation rate
*
* @par Function Description
* It programs register @a #SYSRANGE_CROSSTALK_COMPENSATION_RATE
*
* @param Rate Compensation rate (9.7 fix point) see datasheet for details
* @return 0 on success
*/
int set_x_talk_compensation_rate(FixPoint97_t Rate)
{
return VL6180X_SetXTalkCompensationRate(_device, Rate);
}
/** @} */
/** @defgroup api_ll_als ALS functions
* @brief ALS functions
* @ingroup api_ll
* @{
*/
/**
* @brief Wait for device to be ready for new als operation or max pollign loop (time out)
* @param MaxLoop Max Number of i2c polling loop see @a #msec_2_i2cloop
* @return 0 on success. <0 when @a VL6180X_ErrCode_t::TIME_OUT if timed out
*/
int als_wait_device_ready(int MaxLoop)
{
return VL6180X_AlsWaitDeviceReady(_device, MaxLoop);
}
/**
* @brief Set ALS system mode and start/stop measure
*
* @warning When used outside after single shot polling, \n
* User must ensure the device state is ready before issuing a new command (using @a VL6180X_AlsWaitDeviceReady()). \n
* Non respect of this, can cause loss of interrupt or device hanging.
*
* @param mode A combination of working mode (#MODE_SINGLESHOT or #MODE_CONTINUOUS) and start condition (#MODE_START_STOP) \n
* @return 0 on success
*/
int als_set_system_mode(uint8_t mode)
{
return VL6180X_AlsSetSystemMode(_device, mode);
}
/** @defgroup api_ll_misc Misc functions
* @brief Misc functions
* @ingroup api_ll
* @{
*/
/**
* Set Group parameter Hold state
*
* @par Function Description
* Group parameter holds @a #SYSTEM_GROUPED_PARAMETER_HOLD enable safe update (non atomic across multiple measure) by host
* \n The critical register group is composed of: \n
* #SYSTEM_INTERRUPT_CONFIG_GPIO \n
* #SYSRANGE_THRESH_HIGH \n
* #SYSRANGE_THRESH_LOW \n
* #SYSALS_INTEGRATION_PERIOD \n
* #SYSALS_ANALOGUE_GAIN \n
* #SYSALS_THRESH_HIGH \n
* #SYSALS_THRESH_LOW
*
*
* @param Hold Group parameter Hold state to be set (on/off)
* @return 0 on success
*/
int set_group_param_hold(int Hold)
{
return VL6180X_SetGroupParamHold(_device, Hold);
}
/**
* @brief Set new device i2c address
*
* After completion the device will answer to the new address programmed.
*
* @sa AN4478: Using multiple VL6180X's in a single design
* @param NewAddr The new i2c address (7bit)
* @return 0 on success
*/
int set_i2c_address(int NewAddr)
{
int status;
status=VL6180X_SetI2CAddress(_device, NewAddr);
if (!status) {
_device->I2cAddr=NewAddr;
}
return status;
}
/**
* @brief Fully configure gpio 0/1 pin : polarity and functionality
*
* @param pin gpio pin 0 or 1
* @param IntFunction Pin functionality : either #GPIOx_SELECT_OFF or #GPIOx_SELECT_GPIO_INTERRUPT_OUTPUT (refer to #SYSTEM_MODE_GPIO1 register definition)
* @param ActiveHigh Set active high polarity, or active low see @a ::IntrPol_e
* @return 0 on success
*/
int setup_gpio_x(int pin, uint8_t IntFunction, int ActiveHigh)
{
return VL6180X_SetupGPIOx(_device, pin, IntFunction, ActiveHigh);
}
/**
* @brief Set interrupt pin polarity for the given GPIO
*
* @param pin Pin 0 or 1
* @param active_high select active high or low polarity using @ref IntrPol_e
* @return 0 on success
*/
int set_gpio_x_polarity(int pin, int active_high)
{
return VL6180X_SetGPIOxPolarity(_device, pin, active_high);
}
/**
* Select interrupt functionality for the given GPIO
*
* @par Function Description
* Functionality refer to @a SYSTEM_MODE_GPIO0
*
* @param pin Pin to configure 0 or 1 (_gpio0 or gpio1)\nNote that _gpio0 is chip enable at power up !
* @param functionality Pin functionality : either #GPIOx_SELECT_OFF or #GPIOx_SELECT_GPIO_INTERRUPT_OUTPUT (refer to #SYSTEM_MODE_GPIO1 register definition)
* @return 0 on success
*/
int set_gpio_x_functionality(int pin, uint8_t functionality)
{
return VL6180X_SetGPIOxFunctionality(_device, pin, functionality);
}
/**
* #brief Disable and turn to Hi-Z gpio output pin
*
* @param pin The pin number to disable 0 or 1
* @return 0 on success
*/
int disable_gpio_x_out(int pin)
{
return VL6180X_DisableGPIOxOut(_device, pin);
}
/** @} */
/** @defgroup api_ll_intr Interrupts management functions
* @brief Interrupts management functions
* @ingroup api_ll
* @{
*/
/**
* @brief Get all interrupts cause
*
* @param status Ptr to interrupt status. You can use @a IntrStatus_t::val
* @return 0 on success
*/
int get_interrupt_status(uint8_t *status)
{
return VL6180X_GetInterruptStatus(_device, status);
}
/**
* @brief Clear given system interrupt condition
*
* @par Function Description
* Clear given interrupt cause by writing into register #SYSTEM_INTERRUPT_CLEAR register.
* @param dev The device
* @param IntClear Which interrupt source to clear. Use any combinations of #INTERRUPT_CLEAR_RANGING , #INTERRUPT_CLEAR_ALS , #INTERRUPT_CLEAR_ERROR.
* @return 0 On success
*/
int clear_interrupt(uint8_t IntClear)
{
return VL6180X_ClearInterrupt(_device, IntClear );
}
/** @} */
/**
* @brief Get a single light (in Lux) measure result
*
* @par Function Description
* It can be called after having initialized a component. It start a single
* light measure in polling mode and wait until the measure is finisched.
* The function block until the measure is finished, it can blocks indefinitely
* in case the measure never ends for any reason \n
*/
virtual int get_lux(uint32_t *pi_data)
{
int status=0;
LOG_FUNCTION_START("");
status = start_measurement(als_single_shot_polling, NULL, NULL, NULL);
if (!status) {
als_wait_device_ready(2000);
for (status=1; status!=0; status=VL6180X_AlsGetLux(_device, pi_data));
}
stop_measurement(als_single_shot_polling);
als_wait_device_ready(2000);
LOG_FUNCTION_END(status);
return status;
}
/**
* @brief Start the ALS (light) measure in continous mode
*
* @par Function Description
* Start the ALS (light) measure in continous mode
* @return 0 On success
*/
int als_start_continuous_mode()
{
return VL6180X_AlsSetSystemMode(_device, MODE_START_STOP|MODE_CONTINUOUS);
}
/**
* @brief Start the ALS (light) measure in single shot mode
*
* @par Function Description
* Start the ALS (light) measure in single shot mode
* @return 0 On success
*/
int als_start_single_shot()
{
return VL6180X_AlsSetSystemMode(_device, MODE_START_STOP|MODE_SINGLESHOT);
}
private:
/* api.h functions */
int VL6180X_WaitDeviceBooted(VL6180XDev_t dev);
int VL6180X_InitData(VL6180XDev_t dev );
int VL6180X_SetupGPIO1(VL6180XDev_t dev, uint8_t IntFunction, int ActiveHigh);
int VL6180X_Prepare(VL6180XDev_t dev);
int VL6180X_RangeStartContinuousMode(VL6180XDev_t dev);
int VL6180X_RangeStartSingleShot(VL6180XDev_t dev);
int VL6180X_RangeSetMaxConvergenceTime(VL6180XDev_t dev, uint8_t MaxConTime_msec);
int VL6180X_RangePollMeasurement(VL6180XDev_t dev, VL6180X_RangeData_t *pRangeData);
int VL6180X_RangeGetMeasurementIfReady(VL6180XDev_t dev, VL6180X_RangeData_t *pRangeData);
int VL6180X_RangeGetMeasurement(VL6180XDev_t dev, VL6180X_RangeData_t *pRangeData);
int VL6180X_RangeGetResult(VL6180XDev_t dev, uint32_t *pRange_mm);
int VL6180X_RangeConfigInterrupt(VL6180XDev_t dev, uint8_t ConfigGpioInt);
int VL6180X_RangeGetInterruptStatus(VL6180XDev_t dev, uint8_t *pIntStatus);
int VL6180X_AlsPollMeasurement(VL6180XDev_t dev, VL6180X_AlsData_t *pAlsData);
int VL6180X_AlsGetMeasurement(VL6180XDev_t dev, VL6180X_AlsData_t *pAlsData);
int VL6180X_AlsConfigInterrupt(VL6180XDev_t dev, uint8_t ConfigGpioInt);
int VL6180X_AlsSetIntegrationPeriod(VL6180XDev_t dev, uint16_t period_ms);
int VL6180X_AlsSetInterMeasurementPeriod(VL6180XDev_t dev, uint16_t intermeasurement_period_ms);
int VL6180X_AlsSetAnalogueGain(VL6180XDev_t dev, uint8_t gain);
int VL6180X_AlsSetThresholds(VL6180XDev_t dev, uint16_t low, uint16_t high);
int VL6180X_AlsGetInterruptStatus(VL6180XDev_t dev, uint8_t *pIntStatus);
int VL6180X_StaticInit(VL6180XDev_t dev);
int VL6180X_RangeWaitDeviceReady(VL6180XDev_t dev, int MaxLoop );
int VL6180X_RangeSetInterMeasPeriod(VL6180XDev_t dev, uint32_t InterMeasTime_msec);
int VL6180X_UpscaleSetScaling(VL6180XDev_t dev, uint8_t scaling);
int VL6180X_UpscaleGetScaling(VL6180XDev_t dev);
uint16_t VL6180X_GetUpperLimit(VL6180XDev_t dev);
int VL6180X_RangeSetThresholds(VL6180XDev_t dev, uint16_t low, uint16_t high, int SafeHold);
int VL6180X_RangeGetThresholds(VL6180XDev_t dev, uint16_t *low, uint16_t *high);
int VL6180X_RangeSetRawThresholds(VL6180XDev_t dev, uint8_t low, uint8_t high);
int VL6180X_RangeSetEceFactor(VL6180XDev_t dev, uint16_t FactorM, uint16_t FactorD);
int VL6180X_RangeSetEceState(VL6180XDev_t dev, int enable );
int VL6180X_FilterSetState(VL6180XDev_t dev, int state);
int VL6180X_FilterGetState(VL6180XDev_t dev);
int VL6180X_DMaxSetState(VL6180XDev_t dev, int state);
int VL6180X_DMaxGetState(VL6180XDev_t dev);
int VL6180X_RangeSetSystemMode(VL6180XDev_t dev, uint8_t mode);
int8_t VL6180X_GetOffsetCalibrationData(VL6180XDev_t dev);
void VL6180X_SetOffsetCalibrationData(VL6180XDev_t dev, int8_t offset);
int VL6180X_SetXTalkCompensationRate(VL6180XDev_t dev, FixPoint97_t Rate);
int VL6180X_AlsWaitDeviceReady(VL6180XDev_t dev, int MaxLoop );
int VL6180X_AlsSetSystemMode(VL6180XDev_t dev, uint8_t mode);
int VL6180X_SetGroupParamHold(VL6180XDev_t dev, int Hold);
int VL6180X_SetI2CAddress(VL6180XDev_t dev, uint8_t NewAddr);
int VL6180X_SetupGPIOx(VL6180XDev_t dev, int pin, uint8_t IntFunction, int ActiveHigh);
int VL6180X_SetGPIOxPolarity(VL6180XDev_t dev, int pin, int active_high);
int VL6180X_SetGPIOxFunctionality(VL6180XDev_t dev, int pin, uint8_t functionality);
int VL6180X_DisableGPIOxOut(VL6180XDev_t dev, int pin);
int VL6180X_GetInterruptStatus(VL6180XDev_t dev, uint8_t *status);
int VL6180X_ClearInterrupt(VL6180XDev_t dev, uint8_t IntClear );
/* Other functions defined in api.c */
int VL6180X_RangeStaticInit(VL6180XDev_t dev);
int VL6180X_UpscaleRegInit(VL6180XDev_t dev);
int VL6180X_UpscaleStaticInit(VL6180XDev_t dev);
int VL6180X_AlsGetLux(VL6180XDev_t dev, lux_t *pLux);
int _UpscaleInitPatch0(VL6180XDev_t dev);
int VL6180X_RangeGetDeviceReady(VL6180XDev_t dev, int * Ready);
int VL6180X_RangeSetEarlyConvergenceEestimateThreshold(VL6180XDev_t dev);
int32_t _GetAveTotalTime(VL6180XDev_t dev);
int32_t _filter_Start(VL6180XDev_t dev, uint16_t m_trueRange_mm, uint16_t m_rawRange_mm, uint32_t m_rtnSignalRate, uint32_t m_rtnAmbientRate, uint16_t errorCode);
int _filter_GetResult(VL6180XDev_t dev, VL6180X_RangeData_t *pRangeData);
int _GetRateResult(VL6180XDev_t dev, VL6180X_RangeData_t *pRangeData);
int _DMax_InitData(VL6180XDev_t dev);
/* Read function of the ID device */
virtual int read_id(uint8_t *id);
/* Write and read functions from I2C */
int VL6180X_WrByte(VL6180XDev_t dev, uint16_t index, uint8_t data);
int VL6180X_WrWord(VL6180XDev_t dev, uint16_t index, uint16_t data);
int VL6180X_WrDWord(VL6180XDev_t dev, uint16_t index, uint32_t data);
int VL6180X_RdByte(VL6180XDev_t dev, uint16_t index, uint8_t *data);
int VL6180X_RdWord(VL6180XDev_t dev, uint16_t index, uint16_t *data);
int VL6180X_RdDWord(VL6180XDev_t dev, uint16_t index, uint32_t *data);
int VL6180X_UpdateByte(VL6180XDev_t dev, uint16_t index, uint8_t AndData, uint8_t OrData);
int VL6180X_I2CWrite(uint8_t DeviceAddr, uint16_t RegisterAddr, uint8_t *pBuffer, uint16_t NumByteToWrite);
int VL6180X_I2CRead(uint8_t DeviceAddr, uint16_t RegisterAddr, uint8_t *pBuffer, uint16_t NumByteToRead);
int IsPresent();
int StopRangeMeasurement(operating_mode_t operating_mode);
int StopAlsMeasurement(operating_mode_t operating_mode);
int GetRangeMeas(operating_mode_t operating_mode, measure_data_t *Data);
int GetAlsMeas(operating_mode_t operating_mode, measure_data_t *Data);
int GetRangeAlsMeas(measure_data_t *Data);
int RangeSetLowThreshold(uint16_t threshold);
int RangeSetHighThreshold(uint16_t threshold);
int AlsSetLowThreshold(uint16_t threshold);
int AlsSetHighThreshold(uint16_t threshold);
int GetRangeError(measure_data_t *Data, VL6180X_RangeData_t RangeData);
int GetAlsError(measure_data_t *Data, VL6180X_AlsData_t AlsData);
int RangeMeasPollSingleShot();
int AlsMeasPollSingleShot();
int RangeMeasPollContinuousMode();
int AlsMeasPollContinuousMode();
int AlsGetMeasurementIfReady(VL6180XDev_t dev, VL6180X_AlsData_t *pAlsData);
int RangeMeasIntContinuousMode(void (*fptr)(void));
int AlsMeasIntContinuousMode(void (*fptr)(void));
int InterleavedMode(void (*fptr)(void));
int StartInterleavedMode();
int AlsGetThresholds(VL6180XDev_t dev, lux_t *low, lux_t *high);
/* IO _device */
DevI2C *_dev_i2c;
/* Digital out pin */
DigitalOut *_gpio0;
/* GPIO expander */
STMPE1600DigiOut *_expgpio0;
/* Measure detection IRQ */
InterruptIn *_gpio1Int;
/* _device data */
MyVL6180Dev_t _my_device;
VL6180XDev_t _device;
};
#endif // __VL6180X_CLASS_H
