takashi kadono
/
Nucleo446_SSD1331
Color Oled(SSD1331) connect to STMicroelectronics Nucleo-F466
mbed-os/targets/TARGET_STM/serial_api.c
- Committer:
- kadonotakashi
- Date:
- 2018-10-11
- Revision:
- 3:f3764f852aa8
- Parent:
- 0:8fdf9a60065b
File content as of revision 3:f3764f852aa8:
/* mbed Microcontroller Library ******************************************************************************* * Copyright (c) 2017, STMicroelectronics * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * 3. Neither the name of STMicroelectronics nor the names of its contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ******************************************************************************* */ #if DEVICE_SERIAL #include "serial_api_hal.h" // Possible choices of the LPUART_CLOCK_SOURCE configuration set in json file #define USE_LPUART_CLK_LSE 0x01 #define USE_LPUART_CLK_PCLK1 0x02 #define USE_LPUART_CLK_HSI 0x04 int stdio_uart_inited = 0; // used in platform/mbed_board.c and platform/mbed_retarget.cpp serial_t stdio_uart; extern UART_HandleTypeDef uart_handlers[]; extern uint32_t serial_irq_ids[]; // Utility functions HAL_StatusTypeDef init_uart(serial_t *obj); int8_t get_uart_index(UARTName uart_name); void serial_init(serial_t *obj, PinName tx, PinName rx) { struct serial_s *obj_s = SERIAL_S(obj); uint8_t stdio_config = 0; // Determine the UART to use (UART_1, UART_2, ...) UARTName uart_tx = (UARTName)pinmap_peripheral(tx, PinMap_UART_TX); UARTName uart_rx = (UARTName)pinmap_peripheral(rx, PinMap_UART_RX); // Get the peripheral name (UART_1, UART_2, ...) from the pin and assign it to the object obj_s->uart = (UARTName)pinmap_merge(uart_tx, uart_rx); MBED_ASSERT(obj_s->uart != (UARTName)NC); if ((tx == STDIO_UART_TX) || (rx == STDIO_UART_RX)) { stdio_config = 1; } else { if (uart_tx == pinmap_peripheral(STDIO_UART_TX, PinMap_UART_TX)) { error("Error: new serial object is using same UART as STDIO"); } } // Reset and enable clock #if defined(USART1_BASE) if (obj_s->uart == UART_1) { __HAL_RCC_USART1_CLK_ENABLE(); } #endif #if defined (USART2_BASE) if (obj_s->uart == UART_2) { __HAL_RCC_USART2_CLK_ENABLE(); } #endif #if defined(USART3_BASE) if (obj_s->uart == UART_3) { __HAL_RCC_USART3_CLK_ENABLE(); } #endif #if defined(UART4_BASE) if (obj_s->uart == UART_4) { __HAL_RCC_UART4_CLK_ENABLE(); } #endif #if defined(USART4_BASE) if (obj_s->uart == UART_4) { __HAL_RCC_USART4_CLK_ENABLE(); } #endif #if defined(UART5_BASE) if (obj_s->uart == UART_5) { __HAL_RCC_UART5_CLK_ENABLE(); } #endif #if defined(USART5_BASE) if (obj_s->uart == UART_5) { __HAL_RCC_USART5_CLK_ENABLE(); } #endif #if defined(USART6_BASE) if (obj_s->uart == UART_6) { __HAL_RCC_USART6_CLK_ENABLE(); } #endif #if defined(UART7_BASE) if (obj_s->uart == UART_7) { __HAL_RCC_UART7_CLK_ENABLE(); } #endif #if defined(USART7_BASE) if (obj_s->uart == UART_7) { __HAL_RCC_USART7_CLK_ENABLE(); } #endif #if defined(UART8_BASE) if (obj_s->uart == UART_8) { __HAL_RCC_UART8_CLK_ENABLE(); } #endif #if defined(USART8_BASE) if (obj_s->uart == UART_8) { __HAL_RCC_USART8_CLK_ENABLE(); } #endif #if defined(UART9_BASE) if (obj_s->uart == UART_9) { __HAL_RCC_UART9_CLK_ENABLE(); } #endif #if defined(UART10_BASE) if (obj_s->uart == UART_10) { __HAL_RCC_UART10_CLK_ENABLE(); } #endif #if defined(LPUART1_BASE) if (obj_s->uart == LPUART_1) { __HAL_RCC_LPUART1_CLK_ENABLE(); } #endif // Assign serial object index obj_s->index = get_uart_index(obj_s->uart); MBED_ASSERT(obj_s->index >= 0); // Configure UART pins pinmap_pinout(tx, PinMap_UART_TX); pinmap_pinout(rx, PinMap_UART_RX); if (tx != NC) { pin_mode(tx, PullUp); } if (rx != NC) { pin_mode(rx, PullUp); } // Configure UART obj_s->baudrate = 9600; // baudrate default value if (stdio_config) { #if MBED_CONF_PLATFORM_STDIO_BAUD_RATE obj_s->baudrate = MBED_CONF_PLATFORM_STDIO_BAUD_RATE; // baudrate takes value from platform/mbed_lib.json #endif /* MBED_CONF_PLATFORM_STDIO_BAUD_RATE */ } else { #if MBED_CONF_PLATFORM_DEFAULT_SERIAL_BAUD_RATE obj_s->baudrate = MBED_CONF_PLATFORM_DEFAULT_SERIAL_BAUD_RATE; // baudrate takes value from platform/mbed_lib.json #endif /* MBED_CONF_PLATFORM_DEFAULT_SERIAL_BAUD_RATE */ } obj_s->databits = UART_WORDLENGTH_8B; obj_s->stopbits = UART_STOPBITS_1; obj_s->parity = UART_PARITY_NONE; #if DEVICE_SERIAL_FC obj_s->hw_flow_ctl = UART_HWCONTROL_NONE; #endif obj_s->pin_tx = tx; obj_s->pin_rx = rx; init_uart(obj); /* init_uart will be called again in serial_baud function, so don't worry if init_uart returns HAL_ERROR */ // For stdio management in platform/mbed_board.c and platform/mbed_retarget.cpp if (stdio_config) { stdio_uart_inited = 1; memcpy(&stdio_uart, obj, sizeof(serial_t)); } } void serial_free(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); // Reset UART and disable clock #if defined(USART1_BASE) if (obj_s->uart == UART_1) { __HAL_RCC_USART1_FORCE_RESET(); __HAL_RCC_USART1_RELEASE_RESET(); __HAL_RCC_USART1_CLK_DISABLE(); } #endif #if defined(USART2_BASE) if (obj_s->uart == UART_2) { __HAL_RCC_USART2_FORCE_RESET(); __HAL_RCC_USART2_RELEASE_RESET(); __HAL_RCC_USART2_CLK_DISABLE(); } #endif #if defined(USART3_BASE) if (obj_s->uart == UART_3) { __HAL_RCC_USART3_FORCE_RESET(); __HAL_RCC_USART3_RELEASE_RESET(); __HAL_RCC_USART3_CLK_DISABLE(); } #endif #if defined(UART4_BASE) if (obj_s->uart == UART_4) { __HAL_RCC_UART4_FORCE_RESET(); __HAL_RCC_UART4_RELEASE_RESET(); __HAL_RCC_UART4_CLK_DISABLE(); } #endif #if defined(USART4_BASE) if (obj_s->uart == UART_4) { __HAL_RCC_USART4_FORCE_RESET(); __HAL_RCC_USART4_RELEASE_RESET(); __HAL_RCC_USART4_CLK_DISABLE(); } #endif #if defined(UART5_BASE) if (obj_s->uart == UART_5) { __HAL_RCC_UART5_FORCE_RESET(); __HAL_RCC_UART5_RELEASE_RESET(); __HAL_RCC_UART5_CLK_DISABLE(); } #endif #if defined(USART5_BASE) if (obj_s->uart == UART_5) { __HAL_RCC_USART5_FORCE_RESET(); __HAL_RCC_USART5_RELEASE_RESET(); __HAL_RCC_USART5_CLK_DISABLE(); } #endif #if defined(USART6_BASE) if (obj_s->uart == UART_6) { __HAL_RCC_USART6_FORCE_RESET(); __HAL_RCC_USART6_RELEASE_RESET(); __HAL_RCC_USART6_CLK_DISABLE(); } #endif #if defined(UART7_BASE) if (obj_s->uart == UART_7) { __HAL_RCC_UART7_FORCE_RESET(); __HAL_RCC_UART7_RELEASE_RESET(); __HAL_RCC_UART7_CLK_DISABLE(); } #endif #if defined(USART7_BASE) if (obj_s->uart == UART_7) { __HAL_RCC_USART7_FORCE_RESET(); __HAL_RCC_USART7_RELEASE_RESET(); __HAL_RCC_USART7_CLK_DISABLE(); } #endif #if defined(UART8_BASE) if (obj_s->uart == UART_8) { __HAL_RCC_UART8_FORCE_RESET(); __HAL_RCC_UART8_RELEASE_RESET(); __HAL_RCC_UART8_CLK_DISABLE(); } #endif #if defined(USART8_BASE) if (obj_s->uart == UART_8) { __HAL_RCC_USART8_FORCE_RESET(); __HAL_RCC_USART8_RELEASE_RESET(); __HAL_RCC_USART8_CLK_DISABLE(); } #endif #if defined(UART9_BASE) if (obj_s->uart == UART_9) { __HAL_RCC_UART9_FORCE_RESET(); __HAL_RCC_UART9_RELEASE_RESET(); __HAL_RCC_UART9_CLK_DISABLE(); } #endif #if defined(UART10_BASE) if (obj_s->uart == UART_10) { __HAL_RCC_UART10_FORCE_RESET(); __HAL_RCC_UART10_RELEASE_RESET(); __HAL_RCC_UART10_CLK_DISABLE(); } #endif #if defined(LPUART1_BASE) if (obj_s->uart == LPUART_1) { __HAL_RCC_LPUART1_FORCE_RESET(); __HAL_RCC_LPUART1_RELEASE_RESET(); __HAL_RCC_LPUART1_CLK_DISABLE(); } #endif // Configure GPIOs pin_function(obj_s->pin_tx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); pin_function(obj_s->pin_rx, STM_PIN_DATA(STM_MODE_INPUT, GPIO_NOPULL, 0)); serial_irq_ids[obj_s->index] = 0; } void serial_baud(serial_t *obj, int baudrate) { struct serial_s *obj_s = SERIAL_S(obj); obj_s->baudrate = baudrate; #if defined(LPUART1_BASE) /* Note that LPUART clock source must be in the range [3 x baud rate, 4096 x baud rate], check Ref Manual */ if (obj_s->uart == LPUART_1) { RCC_PeriphCLKInitTypeDef PeriphClkInitStruct = {0}; PeriphClkInitStruct.PeriphClockSelection = RCC_PERIPHCLK_LPUART1; #if ((MBED_CONF_TARGET_LPUART_CLOCK_SOURCE) & USE_LPUART_CLK_LSE) if (baudrate <= 9600) { // Enable LSE in case it is not already done if (!__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY)) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_LSE; RCC_OscInitStruct.LSEState = RCC_LSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_OFF; HAL_RCC_OscConfig(&RCC_OscInitStruct); } // Keep it to verify if HAL_RCC_OscConfig didn't exit with a timeout if (__HAL_RCC_GET_FLAG(RCC_FLAG_LSERDY)) { PeriphClkInitStruct.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_LSE; HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct); if (init_uart(obj) == HAL_OK) { return; } } } #endif #if ((MBED_CONF_TARGET_LPUART_CLOCK_SOURCE) & USE_LPUART_CLK_PCLK1) PeriphClkInitStruct.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_PCLK1; HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct); if (init_uart(obj) == HAL_OK) { return; } #endif #if ((MBED_CONF_TARGET_LPUART_CLOCK_SOURCE) & USE_LPUART_CLK_HSI) // Enable HSI in case it is not already done if (!__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY)) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSI; RCC_OscInitStruct.HSIState = RCC_HSI_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_OFF; RCC_OscInitStruct.HSICalibrationValue = RCC_HSICALIBRATION_DEFAULT; HAL_RCC_OscConfig(&RCC_OscInitStruct); } // Keep it to verify if HAL_RCC_OscConfig didn't exit with a timeout if (__HAL_RCC_GET_FLAG(RCC_FLAG_HSIRDY)) { PeriphClkInitStruct.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_HSI; HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct); if (init_uart(obj) == HAL_OK) { return; } } #endif // Last chance using SYSCLK PeriphClkInitStruct.Lpuart1ClockSelection = RCC_LPUART1CLKSOURCE_SYSCLK; HAL_RCCEx_PeriphCLKConfig(&PeriphClkInitStruct); } #endif /* LPUART1_BASE */ if (init_uart(obj) != HAL_OK) { debug("Cannot initialize UART with baud rate %u\n", baudrate); } } void serial_format(serial_t *obj, int data_bits, SerialParity parity, int stop_bits) { struct serial_s *obj_s = SERIAL_S(obj); switch (parity) { case ParityOdd: obj_s->parity = UART_PARITY_ODD; break; case ParityEven: obj_s->parity = UART_PARITY_EVEN; break; default: // ParityNone case ParityForced0: // unsupported! case ParityForced1: // unsupported! obj_s->parity = UART_PARITY_NONE; break; } switch (data_bits) { case 7: if (parity != UART_PARITY_NONE) { obj_s->databits = UART_WORDLENGTH_8B; } else { #if defined UART_WORDLENGTH_7B obj_s->databits = UART_WORDLENGTH_7B; #else error("7-bit data format without parity is not supported"); #endif } break; case 8: if (parity != UART_PARITY_NONE) { obj_s->databits = UART_WORDLENGTH_9B; } else { obj_s->databits = UART_WORDLENGTH_8B; } break; case 9: if (parity != UART_PARITY_NONE) { error("Parity is not supported with 9-bit data format"); } else { obj_s->databits = UART_WORDLENGTH_9B; } break; default: error("Only 7, 8 or 9-bit data formats are supported"); break; } if (stop_bits == 2) { obj_s->stopbits = UART_STOPBITS_2; } else { obj_s->stopbits = UART_STOPBITS_1; } init_uart(obj); } /****************************************************************************** * READ/WRITE ******************************************************************************/ int serial_readable(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; /* To avoid a target blocking case, let's check for * possible OVERRUN error and discard it */ if (__HAL_UART_GET_FLAG(huart, UART_FLAG_ORE)) { __HAL_UART_CLEAR_OREFLAG(huart); } // Check if data is received return (__HAL_UART_GET_FLAG(huart, UART_FLAG_RXNE) != RESET) ? 1 : 0; } int serial_writable(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; // Check if data is transmitted return (__HAL_UART_GET_FLAG(huart, UART_FLAG_TXE) != RESET) ? 1 : 0; } void serial_pinout_tx(PinName tx) { pinmap_pinout(tx, PinMap_UART_TX); } void serial_break_clear(serial_t *obj) { (void)obj; } /****************************************************************************** * UTILITY FUNCTIONS ******************************************************************************/ HAL_StatusTypeDef init_uart(serial_t *obj) { struct serial_s *obj_s = SERIAL_S(obj); UART_HandleTypeDef *huart = &uart_handlers[obj_s->index]; huart->Instance = (USART_TypeDef *)(obj_s->uart); huart->Init.BaudRate = obj_s->baudrate; huart->Init.WordLength = obj_s->databits; huart->Init.StopBits = obj_s->stopbits; huart->Init.Parity = obj_s->parity; #if DEVICE_SERIAL_FC huart->Init.HwFlowCtl = obj_s->hw_flow_ctl; #else huart->Init.HwFlowCtl = UART_HWCONTROL_NONE; #endif huart->Init.OverSampling = UART_OVERSAMPLING_16; huart->TxXferCount = 0; huart->TxXferSize = 0; huart->RxXferCount = 0; huart->RxXferSize = 0; if (obj_s->pin_rx == NC) { huart->Init.Mode = UART_MODE_TX; } else if (obj_s->pin_tx == NC) { huart->Init.Mode = UART_MODE_RX; } else { huart->Init.Mode = UART_MODE_TX_RX; } #if defined(LPUART1_BASE) if (huart->Instance == LPUART1) { if (obj_s->baudrate <= 9600) { HAL_UARTEx_EnableClockStopMode(huart); HAL_UARTEx_EnableStopMode(huart); } else { HAL_UARTEx_DisableClockStopMode(huart); HAL_UARTEx_DisableStopMode(huart); } } #endif return HAL_UART_Init(huart); } int8_t get_uart_index(UARTName uart_name) { uint8_t index = 0; #if defined(USART1_BASE) if (uart_name == UART_1) { return index; } index++; #endif #if defined(USART2_BASE) if (uart_name == UART_2) { return index; } index++; #endif #if defined(USART3_BASE) if (uart_name == UART_3) { return index; } index++; #endif #if defined(UART4_BASE) if (uart_name == UART_4) { return index; } index++; #endif #if defined(USART4_BASE) if (uart_name == UART_4) { return index; } index++; #endif #if defined(UART5_BASE) if (uart_name == UART_5) { return index; } index++; #endif #if defined(USART5_BASE) if (uart_name == UART_5) { return index; } index++; #endif #if defined(USART6_BASE) if (uart_name == UART_6) { return index; } index++; #endif #if defined(UART7_BASE) if (uart_name == UART_7) { return index; } index++; #endif #if defined(USART7_BASE) if (uart_name == UART_7) { return index; } index++; #endif #if defined(UART8_BASE) if (uart_name == UART_8) { return index; } index++; #endif #if defined(USART8_BASE) if (uart_name == UART_8) { return index; } index++; #endif #if defined(UART9_BASE) if (uart_name == UART_9) { return index; } index++; #endif #if defined(UART10_BASE) if (uart_name == UART_10) { return index; } index++; #endif #if defined(LPUART1_BASE) if (uart_name == LPUART_1) { return index; } index++; #endif return -1; } /* Function to protect deep sleep while a seral Tx is ongoing on not complete * yet. Returns 1 if there is at least 1 serial instance with ongoing ransfer * 0 otherwise. */ int serial_is_tx_ongoing(void) { int TxOngoing = 0; #if defined(USART1_BASE) if (LL_USART_IsEnabled(USART1) && !LL_USART_IsActiveFlag_TC(USART1)) { TxOngoing |= 1; } #endif #if defined(USART2_BASE) if (LL_USART_IsEnabled(USART2) && !LL_USART_IsActiveFlag_TC(USART2)) { TxOngoing |= 1; } #endif #if defined(USART3_BASE) if (LL_USART_IsEnabled(USART3) && !LL_USART_IsActiveFlag_TC(USART3)) { TxOngoing |= 1; } #endif #if defined(UART4_BASE) if (LL_USART_IsEnabled(UART4) && !LL_USART_IsActiveFlag_TC(UART4)) { TxOngoing |= 1; } #endif #if defined(USART4_BASE) if (LL_USART_IsEnabled(USART4) && !LL_USART_IsActiveFlag_TC(USART4)) { TxOngoing |= 1; } #endif #if defined(UART5_BASE) if (LL_USART_IsEnabled(UART5) && !LL_USART_IsActiveFlag_TC(UART5)) { TxOngoing |= 1; } #endif #if defined(USART5_BASE) if (LL_USART_IsEnabled(USART5) && !LL_USART_IsActiveFlag_TC(USART5)) { TxOngoing |= 1; } #endif #if defined(USART6_BASE) if (LL_USART_IsEnabled(USART6) && !LL_USART_IsActiveFlag_TC(USART6)) { TxOngoing |= 1; } #endif #if defined(UART7_BASE) if (LL_USART_IsEnabled(UART7) && !LL_USART_IsActiveFlag_TC(UART7)) { TxOngoing |= 1; } #endif #if defined(USART7_BASE) if (LL_USART_IsEnabled(USART7) && !LL_USART_IsActiveFlag_TC(USART7)) { TxOngoing |= 1; } #endif #if defined(UART8_BASE) if (LL_USART_IsEnabled(UART8) && !LL_USART_IsActiveFlag_TC(UART8)) { TxOngoing |= 1; } #endif #if defined(USART8_BASE) if (LL_USART_IsEnabled(USART8) && !LL_USART_IsActiveFlag_TC(USART8)) { TxOngoing |= 1; } #endif #if defined(UART9_BASE) if (LL_USART_IsEnabled(UART9) && !LL_USART_IsActiveFlag_TC(UART9)) { TxOngoing |= 1; } #endif #if defined(UART10_BASE) if (LL_USART_IsEnabled(UART10) && !LL_USART_IsActiveFlag_TC(UART10)) { TxOngoing |= 1; } #endif #if defined(LPUART1_BASE) if (LL_USART_IsEnabled(LPUART1) && !LL_USART_IsActiveFlag_TC(LPUART1)) { TxOngoing |= 1; } #endif /* If Tx is ongoing, then transfer is */ return TxOngoing; } #endif /* DEVICE_SERIAL */