Freescale Quadcopter with Freedom K64F Board
Dependencies: FXAS21000 FXLS8471Q FXOS8700Q MAG3110 MMA8652 MPL3115A2 mbed kalman mbed-dsp
Fork of Freescale_Multi-Sensor_Shield by
Quadcopter based on Freescale FRDM-K64F, Freescale FRDM-FXS-9AXIS, Hobbypower X525 V3 Quadcopter Foldable Kit with 1000KV Motors and SimonK 30A ESC
main.cpp
- Committer:
- julioefajardo
- Date:
- 2015-09-11
- Revision:
- 5:74ca8be12359
- Parent:
- 4:1bc3ca07a412
- Child:
- 6:d868495c1936
File content as of revision 5:74ca8be12359:
/* Copyright (c) 2010-2011 mbed.org, MIT License * * Permission is hereby granted, free of charge, to any person obtaining a copy of this software * and associated documentation files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in all copies or * substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING * BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include "mbed.h" #include "FXOS8700Q.h" #include "FXAS21000.h" #include "kalman.c" #define PI 3.1415926535897932384626433832795 #define Rad2Dree 57.295779513082320876798154814105 DigitalOut red(LED_RED); DigitalOut green(LED_GREEN); FXOS8700Q_acc combo_acc(A5, A4, FXOS8700CQ_SLAVE_ADDR0); FXOS8700Q_mag combo_mag(A5, A4, FXOS8700CQ_SLAVE_ADDR0); FXAS21000 gyro(A5, A4); Timer GlobalTime; Timer ProgramTimer; //PwmOut M1(PTB18); PwmOut M1(D13); PwmOut M2(D12); PwmOut M3(D11); PwmOut M4(D10); Serial pc(USBTX, USBRX); Serial bt(D1,D0); AnalogIn ultra(A0); kalman filter_pitch; kalman filter_roll; float R; double angle[3]; unsigned long timer; long loopStartTime; char i; char command = ' '; float high; float ESC1 = 0.0006f; float ESC2 = 0.0006f; float ESC3 = 0.0006f; float ESC4 = 0.0006f; void bt_callback(void); void esc_start(void); void esc_stop(void); int main() { float gyro_data[3]; MotionSensorDataUnits adata; MotionSensorDataUnits mdata; bt.attach(&bt_callback); printf("\r\nStarting\r\n\r\n"); red = 0; green= 1; GlobalTime.start(); M1.period(0.02f); //Comparten el mismo timer M1.pulsewidth(ESC1); M2.pulsewidth(ESC2); M3.pulsewidth(ESC3); M4.pulsewidth(ESC4); combo_acc.enable(); combo_mag.enable(); printf("FXOS8700 Combo = %X\r\n", combo_acc.whoAmI()); printf("FXAS21000 Gyro = %X\r\n", gyro.getWhoAmI()); kalman_init(&filter_pitch, R_matrix, Q_Gyro_matrix, Q_Accel_matrix); kalman_init(&filter_roll, R_matrix, Q_Gyro_matrix, Q_Accel_matrix); esc_start(); wait(2.0f); red = 1; green= 0; ProgramTimer.start(); loopStartTime = ProgramTimer.read_us(); timer = loopStartTime; while(1) { high = (float)(ultra.read_u16()*2.75f/512.0f)*2.54f; combo_acc.getAxis(adata); combo_mag.getAxis(mdata); gyro.ReadXYZ(gyro_data); R = sqrt(std::pow(adata.x, 2) + std::pow(adata.y, 2) + std::pow(adata.z, 2)); kalman_predict(&filter_pitch, gyro_data[0], (ProgramTimer.read_us() - timer)); kalman_update(&filter_pitch, acos(adata.x/R)); kalman_predict(&filter_roll, gyro_data[1], (ProgramTimer.read_us() - timer)); kalman_update(&filter_roll, acos(adata.y/R)); angle[0] = kalman_get_angle(&filter_pitch); angle[1] = kalman_get_angle(&filter_roll); timer = ProgramTimer.read_us(); //printf("FXOS8700 Acc: X:%6.3f Y:%6.3f Z:%6.3f\r\n", adata.x, adata.y, adata.z); //printf("FXOS8700 Mag: X:%6.2f Y:%6.2f Z:%6.2f\r\n", mdata.x, mdata.y, mdata.z); //printf("FXAS21000 Gyro: X:%6.2f Y:%6.2f Z:%6.2f\r\n", gyro_data[0], gyro_data[1], gyro_data[2]); printf("Roll Angle X: %.6f Pitch Angle Y: %.6f \r\n", Rad2Dree * angle[1], Rad2Dree * angle[0]); //printf("dist = %.2f \r\n",dist); wait(0.02f); } } void bt_callback(void) { // Note: you need to actually read from the serial to clear the RX interrupt command = bt.getc(); //if (command == 'z') bt.printf("start\n\r"); if (command == 'x') { bt.printf("stop\n\r"); esc_stop(); } else if (command == 'w') bt.printf("up\n\r"); else if (command == 's') bt.printf("down\n\r"); else if (command == 'h') bt.printf("dist = %.2f \r\n",high); else bt.printf("%c\n\r", command); } void esc_start(void) { ESC1 = 0.0006f; ESC2 = 0.0006f; ESC3 = 0.0006f; ESC4 = 0.0006f; for (i = 0; i < 4; i++){ ESC1 += 0.0001f; ESC2 += 0.0001f; ESC3 += 0.0001f; ESC4 += 0.0001f; M1.pulsewidth(ESC1); M2.pulsewidth(ESC2); M3.pulsewidth(ESC3); M4.pulsewidth(ESC4); wait_ms(1000); } } void esc_stop(void){ red = 0; green= 1; while ((ESC1 > 0.0006f)||(ESC2 > 0.0006f)||(ESC3 > 0.0006f)||(ESC4 > 0.0006f)){ ESC1 -= 0.0001f; ESC2 -= 0.0001f; ESC3 -= 0.0001f; ESC4 -= 0.0001f; M1.pulsewidth(ESC1); M2.pulsewidth(ESC2); M3.pulsewidth(ESC3); M4.pulsewidth(ESC4); wait_ms(1000); } if (ESC1 < 0.0006f) ESC1 = 0.0006f; if (ESC2 < 0.0006f) ESC2 = 0.0006f; if (ESC3 < 0.0006f) ESC3 = 0.0006f; if (ESC4 < 0.0006f) ESC4 = 0.0006f; }