Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
main.cpp
- Committer:
- johnAlexander
- Date:
- 2021-05-07
- Revision:
- 5:92a861d48253
- Parent:
- 4:360dc34c3769
- Child:
- 6:4bc839979c55
- Child:
- 8:24ebe29a65bd
File content as of revision 5:92a861d48253:
/*
* This VL53L3 Expansion board test application performs range measurements
* using the onboard embedded centre sensor, in singleshot, polling mode.
* Measured ranges are ouput on the Serial Port, running at 115200 baud.
*
* The User Blue button stops the current measurement and entire program,
* releasing all resources.
*
* The Reset button can be used to restart the program.
*
* *** Note :
* Default Mbed build system settings disable print floating-point support.
* Offline builds can enable this, again.
* https://github.com/ARMmbed/mbed-os/blob/master/platform/source/minimal-printf/README.md
* .\mbed-os\platform\mbed_lib.json
*
*/
#include <stdio.h>
#include <time.h>
#include "mbed.h"
#include "XNucleo53L3A2.h"
#include "vl53L3_I2c.h"
#define I2C_SDA D14
#define I2C_SCL D15
#define MEASUREMENTTIMING 55
static XNucleo53L3A2 *board=NULL;
#if (MBED_VERSION > 60300)
UnbufferedSerial pc(USBTX, USBRX);
extern "C" void wait_ms(int ms);
#else
Serial pc(SERIAL_TX, SERIAL_RX);
#endif
static int int_centre_result = 0;
static int int_left_result = 0;
static int int_right_result = 0;
class WaitForMeasurement
{
public:
// this class services the interrupts from the ToF sensors.
// There is a limited amount you can do in an interrupt routine; printfs,mutexes break them among other things.
// We keep things simple by only raising a flag so all the real work is done outside the interrupt.
// This is designed around MBED V2 which doesn't have the RTOS features that would make this work nicely e.g. semaphores/queues.
WaitForMeasurement(): _interrupt(A1)
{
}
// constructor - Sensor is not used and can be removed
WaitForMeasurement(PinName pin,VL53LX_DEV Dev) : _interrupt(pin) // create the InterruptIn on the pin specified to Counter
{
Devlocal = Dev;
_interrupt.rise(callback(this, &WaitForMeasurement::got_interrupt)); // attach increment function of this counter instance
}
void process_right_interrupt()
{
printf("processing right interrupt\n");
}
// function is called every time an interupt is seen. A flag is raised which allows the main routine to service the interupt.
void got_interrupt()
{
_count++;
if (Devlocal->I2cDevAddr == NEW_SENSOR_CENTRE_ADDRESS)
int_centre_result = 1; //flag to main that interrupt happened
if (Devlocal->I2cDevAddr == NEW_SENSOR_LEFT_ADDRESS)
int_left_result = 1; //flag to main that interrupt happened
if (Devlocal->I2cDevAddr == NEW_SENSOR_RIGHT_ADDRESS)
int_right_result = 1; //flag to main that interrupt happened
}
//destructor
~WaitForMeasurement()
{
printf("destruction \n");
}
private:
InterruptIn _interrupt;
volatile int _count;
VL53LX_DEV Devlocal;
int status;
};
VL53LX_Dev_t devCentre;
VL53LX_Dev_t devLeft;
VL53LX_Dev_t devRight;
VL53LX_DEV Dev = &devCentre;
/*=================================== Main ==================================
=============================================================================*/
int main()
{
int status;
VL53L3 * Sensor;
uint16_t wordData;
uint8_t ToFSensor = 1; // 0=Left, 1=Center(default), 2=Right
WaitForMeasurement* int2;
WaitForMeasurement* int1;
WaitForMeasurement* int3;
pc.baud(115200); // baud rate is important as printf statements take a lot of time
printf("Hello world!\r\n");
vl53L3_DevI2C *dev_I2C = new vl53L3_DevI2C(I2C_SDA, I2C_SCL);
/* creates the 53L1A1 expansion board singleton obj */
board = XNucleo53L3A2::instance(dev_I2C, A2, D8, D2);
printf("board created!\r\n");
/* init the 53L1A1 expansion board with default values */
status = board->init_board();
if (status) {
printf("Failed to init board!\r\n");
return 0;
}
printf("board initiated! - %d\r\n", status);
for (ToFSensor=0; ToFSensor<3; ToFSensor++) {
wait_ms(15);
switch(ToFSensor) {
case 0:
if (board->sensor_centre== NULL ) continue;
Dev=&devCentre;
Sensor=board->sensor_centre;
Dev->I2cDevAddr = NEW_SENSOR_CENTRE_ADDRESS;
printf("configuring centre channel \n");
break;
case 1:
if (board->sensor_left== NULL ) continue;
Dev=&devLeft;
Sensor=board->sensor_left;
Dev->I2cDevAddr = NEW_SENSOR_LEFT_ADDRESS;
printf("configuring left channel \n");
break;
case 2:
if (board->sensor_right== NULL ) continue;
Dev=&devRight;
Sensor=board->sensor_right;
Dev->I2cDevAddr = NEW_SENSOR_RIGHT_ADDRESS;
printf("configuring right channel \n");
break;
default:
printf(" error in switch, invalid ToF sensor \n");
}
// configure the sensors
Dev->comms_speed_khz = 400;
Dev->comms_type = 1;
Sensor->VL53LX_RdWord(Dev, 0x01, &wordData);
printf("VL53L1X: %02X %d\n\r", wordData,Dev->I2cDevAddr);
/* Device Initialization and setting */
status = Sensor->VL53LX_DataInit();
status = Sensor->VL53LX_SetDistanceMode(VL53LX_DISTANCEMODE_LONG);
status = Sensor->VL53LX_SetMeasurementTimingBudgetMicroSeconds( MEASUREMENTTIMING * 1000);
status = Sensor->VL53LX_SmudgeCorrectionEnable(VL53LX_SMUDGE_CORRECTION_SINGLE);
status = Sensor->VL53LX_SetXTalkCompensationEnable(1);
}
if (board->sensor_centre!= NULL ) {
printf("starting interrupt centre\n");
Sensor=board->sensor_centre;
devCentre.I2cDevAddr = NEW_SENSOR_CENTRE_ADDRESS;
int1 = new WaitForMeasurement(A2,&devCentre);
status = Sensor->VL53LX_StartMeasurement();
printf("VL53L1_StartMeasurement %d \n",status);
status = board->sensor_centre->VL53LX_ClearInterruptAndStartMeasurement();
}
if (board->sensor_left!= NULL ) {
printf("starting interrupt left\n");
Sensor=board->sensor_left;
devLeft.I2cDevAddr = NEW_SENSOR_LEFT_ADDRESS;
int2 = new WaitForMeasurement(D8,&devLeft);
status = Sensor->VL53LX_StartMeasurement();
printf("VL53L1_StartMeasurement %d \n",status);
status = board->sensor_left->VL53LX_ClearInterruptAndStartMeasurement();
}
if (board->sensor_right!= NULL ) {
printf("starting interrupt right\n");
Sensor=board->sensor_right;
devRight.I2cDevAddr = NEW_SENSOR_RIGHT_ADDRESS;
int3 = new WaitForMeasurement(D2,&devRight);
status = Sensor->VL53LX_StartMeasurement();
printf("VL53L1_StartMeasurement %d \n",status);
status = board->sensor_right->VL53LX_ClearInterruptAndStartMeasurement();
}
// loop waiting for interrupts to happen. This is signaled by int_centre_result,int_left_result or int_right_result
// being non zero. The are set back to zero when processing is completed
while (1) {
VL53LX_MultiRangingData_t MultiRangingData;
VL53LX_MultiRangingData_t *pMultiRangingData = &MultiRangingData;
wait_ms(10);
if (int_centre_result != 0) {
int_centre_result = 0;
status = board->sensor_centre->VL53LX_GetMultiRangingData( pMultiRangingData);
int no_of_object_found=pMultiRangingData->NumberOfObjectsFound;
if (( no_of_object_found < 10 ) && ( no_of_object_found != 0 )) {
for(int j=0; j<no_of_object_found; j++) {
if (pMultiRangingData->RangeData[j].RangeStatus == 0) {
printf("centre\t status=%d, \t D=%5dmm, \t Signal=%2.2f Mcps, \t Ambient=%2.2f Mcps \n",
pMultiRangingData->RangeData[j].RangeStatus,
pMultiRangingData->RangeData[j].RangeMilliMeter,
(pMultiRangingData->RangeData[j].SignalRateRtnMegaCps/65535.0),
(pMultiRangingData->RangeData[j].AmbientRateRtnMegaCps/65535.0));
}
}
}
int_centre_result = 0;
wait_ms( MEASUREMENTTIMING );
status = board->sensor_centre->VL53LX_ClearInterruptAndStartMeasurement();
}
if (int_left_result != 0) {
int_left_result = 0;
status = board->sensor_left->VL53LX_GetMultiRangingData( pMultiRangingData);
if ( status == 0) {
int no_of_object_found=pMultiRangingData->NumberOfObjectsFound;
if (( no_of_object_found < 10 ) && ( no_of_object_found != 0 )) {
for(int j=0; j<no_of_object_found; j++) {
if (pMultiRangingData->RangeData[j].RangeStatus == 0) {
printf("left \t status=%d, \t D=%5dmm, \t Signal=%2.2f Mcps, \t Ambient=%2.2f Mcps \n",
pMultiRangingData->RangeData[j].RangeStatus,
pMultiRangingData->RangeData[j].RangeMilliMeter,
(pMultiRangingData->RangeData[j].SignalRateRtnMegaCps / 65535.0),
(pMultiRangingData->RangeData[j].AmbientRateRtnMegaCps / 65535.0) );
}
}
}
}
wait_ms( MEASUREMENTTIMING );
status = board->sensor_left->VL53LX_ClearInterruptAndStartMeasurement();
}
if (int_right_result != 0) {
// clear interrupt flag
int_right_result = 0;
status = board->sensor_right->VL53LX_GetMultiRangingData( pMultiRangingData);
if ( status == 0) {
// if valid result print it
int no_of_object_found=pMultiRangingData->NumberOfObjectsFound;
if (( no_of_object_found < 10 ) && ( no_of_object_found != 0 )) {
for(int j=0; j<no_of_object_found; j++) {
if (pMultiRangingData->RangeData[j].RangeStatus == 0) {
printf("right \t status=%d, \t D=%5dmm, \t Signal=%2.2f Mcps, \t Ambient=%2.2f Mcps \n",
pMultiRangingData->RangeData[j].RangeStatus,
pMultiRangingData->RangeData[j].RangeMilliMeter,
(pMultiRangingData->RangeData[j].SignalRateRtnMegaCps/65535.0),
(pMultiRangingData->RangeData[j].AmbientRateRtnMegaCps/65535.0) );
}
}
}
}
wait_ms( MEASUREMENTTIMING );
// clear theinterrupt and wait for another result
status = board->sensor_right->VL53LX_ClearInterruptAndStartMeasurement();
}
}
printf("terminated");
}
#if (MBED_VERSION > 60300)
extern "C" void wait_ms(int ms)
{
thread_sleep_for(ms);
}
#endif