John Alexander / Mbed OS VL53L3CX_Shield_1Sensor_Interrupt_MbOS6x

Dependencies:   X_NUCLEO_53L3A2

main.cpp

Committer:
johnAlexander
Date:
2021-05-07
Revision:
4:360dc34c3769
Parent:
3:42c96c9c627b
Child:
5:92a861d48253

File content as of revision 4:360dc34c3769:

/*
 * This VL53L3 Expansion board test application performs range measurements
 * using the onboard embedded centre sensor, in singleshot, polling mode.
 * Measured ranges are ouput on the Serial Port, running at 115200 baud.
 *
 * The User Blue button stops the current measurement and entire program,
 * releasing all resources.
 *
 * The Reset button can be used to restart the program.
 *
 * *** Note : 
 * Default Mbed build system settings disable print floating-point support.
 * Offline builds can enable this, again.
 * https://github.com/ARMmbed/mbed-os/blob/master/platform/source/minimal-printf/README.md
 * .\mbed-os\platform\mbed_lib.json
 *
 */
 
#include <stdio.h>
#include <time.h>

#include "mbed.h"

#include "XNucleo53L3A2.h"
#include "vl53L3_I2c.h"


#define I2C_SDA   D14 
#define I2C_SCL   D15 

#define MEASUREMENTTIMING  55 

static XNucleo53L3A2 *board=NULL;
#if (MBED_VERSION  > 60300)
    UnbufferedSerial  pc(USBTX, USBRX);
    extern "C" void wait_ms(int ms);
#else
    Serial pc(SERIAL_TX, SERIAL_RX);
#endif

static int int_centre_result = 0;
static int int_left_result = 0;
static int int_right_result = 0;


class WaitForMeasurement {
    
public:


// this class services the interrupts from the ToF sensors.
// There is a limited amount you can do in an interrupt routine; printfs,mutexes break them among other things.
// We keep things simple by only raising a flag so all the real work is done outside the interrupt.
// This is designed around MBED V2 which doesn't have the RTOS features that would make this work nicely e.g. semaphores/queues.
WaitForMeasurement(): _interrupt(A1)
{
}


    // constructor - Sensor is not used and can be removed
    WaitForMeasurement(PinName pin,VL53LX_DEV Dev) : _interrupt(pin)          // create the InterruptIn on the pin specified to Counter
    {
         Devlocal = Dev;
        _interrupt.rise(callback(this, &WaitForMeasurement::got_interrupt)); // attach increment function of this counter instance
        
    }
    
    void process_right_interrupt()
    {
          printf("processing right interrupt\n");
    }

  // function is called every time an interupt is seen. A flag is raised which allows the main routine to service the interupt.
    void got_interrupt()
    {
        _count++;

        if (Devlocal->I2cDevAddr == NEW_SENSOR_CENTRE_ADDRESS)
            int_centre_result = 1;  //flag to main that interrupt happened
        if (Devlocal->I2cDevAddr == NEW_SENSOR_LEFT_ADDRESS)
            int_left_result = 1;   //flag to main that interrupt happened
        if (Devlocal->I2cDevAddr == NEW_SENSOR_RIGHT_ADDRESS)
            int_right_result = 1;  //flag to main that interrupt happened
    }

    
    //destructor
    ~WaitForMeasurement()
    {
        printf("destruction \n");
    }

private:

    InterruptIn _interrupt;
    volatile int _count;
    VL53LX_DEV Devlocal;
    int status;    
};



VL53LX_Dev_t                   devCentre;
VL53LX_Dev_t                   devLeft;
VL53LX_Dev_t                   devRight;
VL53LX_DEV                     Dev = &devCentre;




 
/*=================================== Main ==================================
=============================================================================*/
int main()
{   
    int status;
    VL53L3 * Sensor;
    uint16_t wordData;
    uint8_t ToFSensor = 1; // 0=Left, 1=Center(default), 2=Right
  
    
    WaitForMeasurement* int2;
    WaitForMeasurement* int1;
    WaitForMeasurement* int3;

    pc.baud(115200);  // baud rate is important as printf statements take a lot of time

    printf("Hello world!\r\n");

    vl53L3_DevI2C *dev_I2C = new vl53L3_DevI2C(I2C_SDA, I2C_SCL);

    /* creates the 53L1A1 expansion board singleton obj */
    board = XNucleo53L3A2::instance(dev_I2C, A2, D8, D2);
    printf("board created!\r\n");

    /* init the 53L1A1 expansion board with default values */
    status = board->init_board();
    if (status) {
        printf("Failed to init board!\r\n");
        return 0;
    }
       
        
    printf("board initiated! - %d\r\n", status);
                                                
        for (ToFSensor=0;ToFSensor<3;ToFSensor++){
        wait_ms(15);
        switch(ToFSensor){
            case 0:
                if (board->sensor_centre== NULL ) continue;
                Dev=&devCentre;
                Sensor=board->sensor_centre;
                Dev->I2cDevAddr = NEW_SENSOR_CENTRE_ADDRESS;
                printf("configuring centre channel \n");
                break;
            case 1:
                if (board->sensor_left== NULL ) continue;
                Dev=&devLeft; 
                Sensor=board->sensor_left;
                Dev->I2cDevAddr = NEW_SENSOR_LEFT_ADDRESS;
                printf("configuring left channel \n");
                break;
            case 2:
                if (board->sensor_right== NULL ) continue;
                Dev=&devRight;  
                Sensor=board->sensor_right;
                Dev->I2cDevAddr = NEW_SENSOR_RIGHT_ADDRESS;
                printf("configuring right channel \n");
                break;      
            default:
               printf(" error in switch, invalid ToF sensor \n");
        }
        
// configure the sensors
        Dev->comms_speed_khz = 400;

        Dev->comms_type = 1;

        Sensor->VL53LX_RdWord(Dev, 0x01, &wordData);
        printf("VL53L1X: %02X   %d\n\r", wordData,Dev->I2cDevAddr);
/* Device Initialization and setting */  

        status = Sensor->VL53LX_DataInit();
        status = Sensor->VL53LX_SetDistanceMode(VL53LX_DISTANCEMODE_LONG);
        status = Sensor->VL53LX_SetMeasurementTimingBudgetMicroSeconds( MEASUREMENTTIMING * 1000);                      
        status = Sensor->VL53LX_SmudgeCorrectionEnable(VL53LX_SMUDGE_CORRECTION_SINGLE);
        status = Sensor->VL53LX_SetXTalkCompensationEnable(1);

        
        }
        
        if (board->sensor_centre!= NULL )
        {
            printf("starting interrupt centre\n");
            Sensor=board->sensor_centre;
            devCentre.I2cDevAddr = NEW_SENSOR_CENTRE_ADDRESS;
            int1 =  new WaitForMeasurement(A2,&devCentre);
            status = Sensor->VL53LX_StartMeasurement();
            printf("VL53L1_StartMeasurement %d \n",status);
            status = board->sensor_centre->VL53LX_ClearInterruptAndStartMeasurement();
        }
        

        if (board->sensor_left!= NULL )
        {
            printf("starting interrupt left\n");
            Sensor=board->sensor_left;
            devLeft.I2cDevAddr = NEW_SENSOR_LEFT_ADDRESS;
            int2 = new WaitForMeasurement(D8,&devLeft);
            status = Sensor->VL53LX_StartMeasurement();
            printf("VL53L1_StartMeasurement %d \n",status);
            status = board->sensor_left->VL53LX_ClearInterruptAndStartMeasurement();
        }

        if (board->sensor_right!= NULL )
        {
            printf("starting interrupt right\n");
            Sensor=board->sensor_right;
            devRight.I2cDevAddr = NEW_SENSOR_RIGHT_ADDRESS;
            int3 = new WaitForMeasurement(D2,&devRight);
            status = Sensor->VL53LX_StartMeasurement();
            printf("VL53L1_StartMeasurement %d \n",status);
            status = board->sensor_right->VL53LX_ClearInterruptAndStartMeasurement();
        }
        
    
       // loop waiting for interrupts to happen. This is signaled by   int_centre_result,int_left_result or int_right_result
       // being non zero. The are set back to zero when processing is completed
        while (1)
        {

            VL53LX_MultiRangingData_t MultiRangingData;
            VL53LX_MultiRangingData_t *pMultiRangingData = &MultiRangingData;   
            
            wait_ms(10);
            
            if (int_centre_result != 0)
            {
                int_centre_result = 0;
                status = board->sensor_centre->VL53LX_GetMultiRangingData( pMultiRangingData);
                int no_of_object_found=pMultiRangingData->NumberOfObjectsFound;
                if (( no_of_object_found < 10 ) && ( no_of_object_found != 0 ))
                {
                    for(int j=0;j<no_of_object_found;j++){
                        if (pMultiRangingData->RangeData[j].RangeStatus == 0) 
                        {
                            printf("centre\t status=%d, \t D=%5dmm, \t Signal=%2.2f Mcps, \t Ambient=%2.2f Mcps \n",
                                pMultiRangingData->RangeData[j].RangeStatus,
                                pMultiRangingData->RangeData[j].RangeMilliMeter,
                                (pMultiRangingData->RangeData[j].SignalRateRtnMegaCps/65535.0),
                                (pMultiRangingData->RangeData[j].AmbientRateRtnMegaCps/65535.0));
                        }
                    }
                }
                int_centre_result = 0;
                wait_ms( MEASUREMENTTIMING );
                status = board->sensor_centre->VL53LX_ClearInterruptAndStartMeasurement();
            }


            if (int_left_result != 0)
            {
                int_left_result = 0;
                status = board->sensor_left->VL53LX_GetMultiRangingData( pMultiRangingData);
                if ( status == 0)
                {
                    int no_of_object_found=pMultiRangingData->NumberOfObjectsFound;
                    if (( no_of_object_found < 10 ) && ( no_of_object_found != 0 ))
                    {
                        for(int j=0;j<no_of_object_found;j++){
                            if (pMultiRangingData->RangeData[j].RangeStatus == 0) 
                            {
                                printf("left  \t status=%d, \t D=%5dmm, \t Signal=%2.2f Mcps, \t Ambient=%2.2f Mcps \n",
                                    pMultiRangingData->RangeData[j].RangeStatus,
                                    pMultiRangingData->RangeData[j].RangeMilliMeter,
                                    (pMultiRangingData->RangeData[j].SignalRateRtnMegaCps / 65535.0),
                                    (pMultiRangingData->RangeData[j].AmbientRateRtnMegaCps / 65535.0) );
                            }
                        }
                    }
                }
                wait_ms( MEASUREMENTTIMING );
                status = board->sensor_left->VL53LX_ClearInterruptAndStartMeasurement();
            }
            
            
            if (int_right_result != 0)
            {
                // clear interrupt flag
                int_right_result = 0;
                status = board->sensor_right->VL53LX_GetMultiRangingData( pMultiRangingData);
                if ( status == 0)
                {
                    // if valid result print it
                    int no_of_object_found=pMultiRangingData->NumberOfObjectsFound;
                    if (( no_of_object_found < 10 ) && ( no_of_object_found != 0 ))
                    {
                        for(int j=0;j<no_of_object_found;j++){
                            if (pMultiRangingData->RangeData[j].RangeStatus == 0) 
                            {
                                printf("right \t status=%d, \t D=%5dmm, \t Signal=%2.2f Mcps, \t Ambient=%2.2f Mcps \n",
                                    pMultiRangingData->RangeData[j].RangeStatus,
                                    pMultiRangingData->RangeData[j].RangeMilliMeter,
                                    (pMultiRangingData->RangeData[j].SignalRateRtnMegaCps/65535.0),
                                    (pMultiRangingData->RangeData[j].AmbientRateRtnMegaCps/65535.0) );
                            }
                        }
                    }
                }
                wait_ms( MEASUREMENTTIMING );
                // clear theinterrupt and wait for another result
                status = board->sensor_right->VL53LX_ClearInterruptAndStartMeasurement();

            }
        }
        printf("terminated");
    }
  
#if (MBED_VERSION  > 60300)
extern "C" void wait_ms(int ms)
 {
    thread_sleep_for(ms);
 }
#endif