opencv on mbed

Dependencies:   mbed

Revision:
0:ea44dc9ed014
diff -r 000000000000 -r ea44dc9ed014 opencv2/stitching/detail/warpers_inl.hpp
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/opencv2/stitching/detail/warpers_inl.hpp	Thu Mar 31 21:16:38 2016 +0000
@@ -0,0 +1,775 @@
+/*M///////////////////////////////////////////////////////////////////////////////////////
+//
+//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
+//
+//  By downloading, copying, installing or using the software you agree to this license.
+//  If you do not agree to this license, do not download, install,
+//  copy or use the software.
+//
+//
+//                          License Agreement
+//                For Open Source Computer Vision Library
+//
+// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
+// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
+// Third party copyrights are property of their respective owners.
+//
+// Redistribution and use in source and binary forms, with or without modification,
+// are permitted provided that the following conditions are met:
+//
+//   * Redistribution's of source code must retain the above copyright notice,
+//     this list of conditions and the following disclaimer.
+//
+//   * Redistribution's in binary form must reproduce the above copyright notice,
+//     this list of conditions and the following disclaimer in the documentation
+//     and/or other materials provided with the distribution.
+//
+//   * The name of the copyright holders may not be used to endorse or promote products
+//     derived from this software without specific prior written permission.
+//
+// This software is provided by the copyright holders and contributors "as is" and
+// any express or implied warranties, including, but not limited to, the implied
+// warranties of merchantability and fitness for a particular purpose are disclaimed.
+// In no event shall the Intel Corporation or contributors be liable for any direct,
+// indirect, incidental, special, exemplary, or consequential damages
+// (including, but not limited to, procurement of substitute goods or services;
+// loss of use, data, or profits; or business interruption) however caused
+// and on any theory of liability, whether in contract, strict liability,
+// or tort (including negligence or otherwise) arising in any way out of
+// the use of this software, even if advised of the possibility of such damage.
+//
+//M*/
+
+#ifndef __OPENCV_STITCHING_WARPERS_INL_HPP__
+#define __OPENCV_STITCHING_WARPERS_INL_HPP__
+
+#include "opencv2/core.hpp"
+#include "warpers.hpp" // Make your IDE see declarations
+#include <limits>
+
+//! @cond IGNORED
+
+namespace cv {
+namespace detail {
+
+template <class P>
+Point2f RotationWarperBase<P>::warpPoint(const Point2f &pt, InputArray K, InputArray R)
+{
+    projector_.setCameraParams(K, R);
+    Point2f uv;
+    projector_.mapForward(pt.x, pt.y, uv.x, uv.y);
+    return uv;
+}
+
+
+template <class P>
+Rect RotationWarperBase<P>::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray _xmap, OutputArray _ymap)
+{
+    projector_.setCameraParams(K, R);
+
+    Point dst_tl, dst_br;
+    detectResultRoi(src_size, dst_tl, dst_br);
+
+    _xmap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
+    _ymap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
+
+    Mat xmap = _xmap.getMat(), ymap = _ymap.getMat();
+
+    float x, y;
+    for (int v = dst_tl.y; v <= dst_br.y; ++v)
+    {
+        for (int u = dst_tl.x; u <= dst_br.x; ++u)
+        {
+            projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y);
+            xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x;
+            ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y;
+        }
+    }
+
+    return Rect(dst_tl, dst_br);
+}
+
+
+template <class P>
+Point RotationWarperBase<P>::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
+                                  OutputArray dst)
+{
+    UMat xmap, ymap;
+    Rect dst_roi = buildMaps(src.size(), K, R, xmap, ymap);
+
+    dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
+    remap(src, dst, xmap, ymap, interp_mode, border_mode);
+
+    return dst_roi.tl();
+}
+
+
+template <class P>
+void RotationWarperBase<P>::warpBackward(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
+                                         Size dst_size, OutputArray dst)
+{
+    projector_.setCameraParams(K, R);
+
+    Point src_tl, src_br;
+    detectResultRoi(dst_size, src_tl, src_br);
+
+    Size size = src.size();
+    CV_Assert(src_br.x - src_tl.x + 1 == size.width && src_br.y - src_tl.y + 1 == size.height);
+
+    Mat xmap(dst_size, CV_32F);
+    Mat ymap(dst_size, CV_32F);
+
+    float u, v;
+    for (int y = 0; y < dst_size.height; ++y)
+    {
+        for (int x = 0; x < dst_size.width; ++x)
+        {
+            projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
+            xmap.at<float>(y, x) = u - src_tl.x;
+            ymap.at<float>(y, x) = v - src_tl.y;
+        }
+    }
+
+    dst.create(dst_size, src.type());
+    remap(src, dst, xmap, ymap, interp_mode, border_mode);
+}
+
+
+template <class P>
+Rect RotationWarperBase<P>::warpRoi(Size src_size, InputArray K, InputArray R)
+{
+    projector_.setCameraParams(K, R);
+
+    Point dst_tl, dst_br;
+    detectResultRoi(src_size, dst_tl, dst_br);
+
+    return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1));
+}
+
+
+template <class P>
+void RotationWarperBase<P>::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
+{
+    float tl_uf = std::numeric_limits<float>::max();
+    float tl_vf = std::numeric_limits<float>::max();
+    float br_uf = -std::numeric_limits<float>::max();
+    float br_vf = -std::numeric_limits<float>::max();
+
+    float u, v;
+    for (int y = 0; y < src_size.height; ++y)
+    {
+        for (int x = 0; x < src_size.width; ++x)
+        {
+            projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
+            tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
+            br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
+        }
+    }
+
+    dst_tl.x = static_cast<int>(tl_uf);
+    dst_tl.y = static_cast<int>(tl_vf);
+    dst_br.x = static_cast<int>(br_uf);
+    dst_br.y = static_cast<int>(br_vf);
+}
+
+
+template <class P>
+void RotationWarperBase<P>::detectResultRoiByBorder(Size src_size, Point &dst_tl, Point &dst_br)
+{
+    float tl_uf = std::numeric_limits<float>::max();
+    float tl_vf = std::numeric_limits<float>::max();
+    float br_uf = -std::numeric_limits<float>::max();
+    float br_vf = -std::numeric_limits<float>::max();
+
+    float u, v;
+    for (float x = 0; x < src_size.width; ++x)
+    {
+        projector_.mapForward(static_cast<float>(x), 0, u, v);
+        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
+        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
+
+        projector_.mapForward(static_cast<float>(x), static_cast<float>(src_size.height - 1), u, v);
+        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
+        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
+    }
+    for (int y = 0; y < src_size.height; ++y)
+    {
+        projector_.mapForward(0, static_cast<float>(y), u, v);
+        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
+        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
+
+        projector_.mapForward(static_cast<float>(src_size.width - 1), static_cast<float>(y), u, v);
+        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
+        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
+    }
+
+    dst_tl.x = static_cast<int>(tl_uf);
+    dst_tl.y = static_cast<int>(tl_vf);
+    dst_br.x = static_cast<int>(br_uf);
+    dst_br.y = static_cast<int>(br_vf);
+}
+
+
+inline
+void PlaneProjector::mapForward(float x, float y, float &u, float &v)
+{
+    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    x_ = t[0] + x_ / z_ * (1 - t[2]);
+    y_ = t[1] + y_ / z_ * (1 - t[2]);
+
+    u = scale * x_;
+    v = scale * y_;
+}
+
+
+inline
+void PlaneProjector::mapBackward(float u, float v, float &x, float &y)
+{
+    u = u / scale - t[0];
+    v = v / scale - t[1];
+
+    float z;
+    x = k_rinv[0] * u + k_rinv[1] * v + k_rinv[2] * (1 - t[2]);
+    y = k_rinv[3] * u + k_rinv[4] * v + k_rinv[5] * (1 - t[2]);
+    z = k_rinv[6] * u + k_rinv[7] * v + k_rinv[8] * (1 - t[2]);
+
+    x /= z;
+    y /= z;
+}
+
+
+inline
+void SphericalProjector::mapForward(float x, float y, float &u, float &v)
+{
+    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    u = scale * atan2f(x_, z_);
+    float w = y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_);
+    v = scale * (static_cast<float>(CV_PI) - acosf(w == w ? w : 0));
+}
+
+
+inline
+void SphericalProjector::mapBackward(float u, float v, float &x, float &y)
+{
+    u /= scale;
+    v /= scale;
+
+    float sinv = sinf(static_cast<float>(CV_PI) - v);
+    float x_ = sinv * sinf(u);
+    float y_ = cosf(static_cast<float>(CV_PI) - v);
+    float z_ = sinv * cosf(u);
+
+    float z;
+    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
+    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
+    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
+
+    if (z > 0) { x /= z; y /= z; }
+    else x = y = -1;
+}
+
+
+inline
+void CylindricalProjector::mapForward(float x, float y, float &u, float &v)
+{
+    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    u = scale * atan2f(x_, z_);
+    v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);
+}
+
+
+inline
+void CylindricalProjector::mapBackward(float u, float v, float &x, float &y)
+{
+    u /= scale;
+    v /= scale;
+
+    float x_ = sinf(u);
+    float y_ = v;
+    float z_ = cosf(u);
+
+    float z;
+    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
+    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
+    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
+
+    if (z > 0) { x /= z; y /= z; }
+    else x = y = -1;
+}
+
+inline
+void FisheyeProjector::mapForward(float x, float y, float &u, float &v)
+{
+    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    float u_ = atan2f(x_, z_);
+    float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
+
+    u = scale * v_ * cosf(u_);
+    v = scale * v_ * sinf(u_);
+}
+
+inline
+void FisheyeProjector::mapBackward(float u, float v, float &x, float &y)
+{
+    u /= scale;
+    v /= scale;
+
+    float u_ = atan2f(v, u);
+    float v_ = sqrtf(u*u + v*v);
+
+    float sinv = sinf((float)CV_PI - v_);
+    float x_ = sinv * sinf(u_);
+    float y_ = cosf((float)CV_PI - v_);
+    float z_ = sinv * cosf(u_);
+
+    float z;
+    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
+    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
+    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
+
+    if (z > 0) { x /= z; y /= z; }
+    else x = y = -1;
+}
+
+inline
+void StereographicProjector::mapForward(float x, float y, float &u, float &v)
+{
+    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    float u_ = atan2f(x_, z_);
+    float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
+
+    float r = sinf(v_) / (1 - cosf(v_));
+
+    u = scale * r * cos(u_);
+    v = scale * r * sin(u_);
+}
+
+inline
+void StereographicProjector::mapBackward(float u, float v, float &x, float &y)
+{
+    u /= scale;
+    v /= scale;
+
+    float u_ = atan2f(v, u);
+    float r = sqrtf(u*u + v*v);
+    float v_ = 2 * atanf(1.f / r);
+
+    float sinv = sinf((float)CV_PI - v_);
+    float x_ = sinv * sinf(u_);
+    float y_ = cosf((float)CV_PI - v_);
+    float z_ = sinv * cosf(u_);
+
+    float z;
+    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
+    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
+    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
+
+    if (z > 0) { x /= z; y /= z; }
+    else x = y = -1;
+}
+
+inline
+void CompressedRectilinearProjector::mapForward(float x, float y, float &u, float &v)
+{
+    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    float u_ = atan2f(x_, z_);
+    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
+
+    u = scale * a * tanf(u_ / a);
+    v = scale * b * tanf(v_) / cosf(u_);
+}
+
+inline
+void CompressedRectilinearProjector::mapBackward(float u, float v, float &x, float &y)
+{
+    u /= scale;
+    v /= scale;
+
+    float aatg = a * atanf(u / a);
+    float u_ = aatg;
+    float v_ = atanf(v * cosf(aatg) / b);
+
+    float cosv = cosf(v_);
+    float x_ = cosv * sinf(u_);
+    float y_ = sinf(v_);
+    float z_ = cosv * cosf(u_);
+
+    float z;
+    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
+    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
+    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
+
+    if (z > 0) { x /= z; y /= z; }
+    else x = y = -1;
+}
+
+inline
+void CompressedRectilinearPortraitProjector::mapForward(float x, float y, float &u, float &v)
+{
+    float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    float u_ = atan2f(x_, z_);
+    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
+
+    u = - scale * a * tanf(u_ / a);
+    v = scale * b * tanf(v_) / cosf(u_);
+}
+
+inline
+void CompressedRectilinearPortraitProjector::mapBackward(float u, float v, float &x, float &y)
+{
+    u /= - scale;
+    v /= scale;
+
+    float aatg = a * atanf(u / a);
+    float u_ = aatg;
+    float v_ = atanf(v * cosf( aatg ) / b);
+
+    float cosv = cosf(v_);
+    float y_ = cosv * sinf(u_);
+    float x_ = sinf(v_);
+    float z_ = cosv * cosf(u_);
+
+    float z;
+    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
+    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
+    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
+
+    if (z > 0) { x /= z; y /= z; }
+    else x = y = -1;
+}
+
+inline
+void PaniniProjector::mapForward(float x, float y, float &u, float &v)
+{
+    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    float u_ = atan2f(x_, z_);
+    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
+
+    float tg = a * tanf(u_ / a);
+    u = scale * tg;
+
+    float sinu = sinf(u_);
+    if ( fabs(sinu) < 1E-7 )
+        v = scale * b * tanf(v_);
+    else
+        v = scale * b * tg * tanf(v_) / sinu;
+}
+
+inline
+void PaniniProjector::mapBackward(float u, float v, float &x, float &y)
+{
+    u /= scale;
+    v /= scale;
+
+    float lamda = a * atanf(u / a);
+    float u_ = lamda;
+
+    float v_;
+    if ( fabs(lamda) > 1E-7)
+        v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda / a)));
+    else
+        v_ = atanf(v / b);
+
+    float cosv = cosf(v_);
+    float x_ = cosv * sinf(u_);
+    float y_ = sinf(v_);
+    float z_ = cosv * cosf(u_);
+
+    float z;
+    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
+    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
+    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
+
+    if (z > 0) { x /= z; y /= z; }
+    else x = y = -1;
+}
+
+inline
+void PaniniPortraitProjector::mapForward(float x, float y, float &u, float &v)
+{
+    float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    float u_ = atan2f(x_, z_);
+    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
+
+    float tg = a * tanf(u_ / a);
+    u = - scale * tg;
+
+    float sinu = sinf( u_ );
+    if ( fabs(sinu) < 1E-7 )
+        v = scale * b * tanf(v_);
+    else
+        v = scale * b * tg * tanf(v_) / sinu;
+}
+
+inline
+void PaniniPortraitProjector::mapBackward(float u, float v, float &x, float &y)
+{
+    u /= - scale;
+    v /= scale;
+
+    float lamda = a * atanf(u / a);
+    float u_ = lamda;
+
+    float v_;
+    if ( fabs(lamda) > 1E-7)
+        v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda/a)));
+    else
+        v_ = atanf(v / b);
+
+    float cosv = cosf(v_);
+    float y_ = cosv * sinf(u_);
+    float x_ = sinf(v_);
+    float z_ = cosv * cosf(u_);
+
+    float z;
+    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
+    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
+    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
+
+    if (z > 0) { x /= z; y /= z; }
+    else x = y = -1;
+}
+
+inline
+void MercatorProjector::mapForward(float x, float y, float &u, float &v)
+{
+    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    float u_ = atan2f(x_, z_);
+    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
+
+    u = scale * u_;
+    v = scale * logf( tanf( (float)(CV_PI/4) + v_/2 ) );
+}
+
+inline
+void MercatorProjector::mapBackward(float u, float v, float &x, float &y)
+{
+    u /= scale;
+    v /= scale;
+
+    float v_ = atanf( sinhf(v) );
+    float u_ = u;
+
+    float cosv = cosf(v_);
+    float x_ = cosv * sinf(u_);
+    float y_ = sinf(v_);
+    float z_ = cosv * cosf(u_);
+
+    float z;
+    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
+    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
+    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
+
+    if (z > 0) { x /= z; y /= z; }
+    else x = y = -1;
+}
+
+inline
+void TransverseMercatorProjector::mapForward(float x, float y, float &u, float &v)
+{
+    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    float u_ = atan2f(x_, z_);
+    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));
+
+    float B = cosf(v_) * sinf(u_);
+
+    u = scale / 2 * logf( (1+B) / (1-B) );
+    v = scale * atan2f(tanf(v_), cosf(u_));
+}
+
+inline
+void TransverseMercatorProjector::mapBackward(float u, float v, float &x, float &y)
+{
+    u /= scale;
+    v /= scale;
+
+    float v_ = asinf( sinf(v) / coshf(u) );
+    float u_ = atan2f( sinhf(u), cos(v) );
+
+    float cosv = cosf(v_);
+    float x_ = cosv * sinf(u_);
+    float y_ = sinf(v_);
+    float z_ = cosv * cosf(u_);
+
+    float z;
+    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
+    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
+    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
+
+    if (z > 0) { x /= z; y /= z; }
+    else x = y = -1;
+}
+
+inline
+void SphericalPortraitProjector::mapForward(float x, float y, float &u0, float &v0)
+{
+    float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    float x_ = y0_;
+    float y_ = x0_;
+    float u, v;
+
+    u = scale * atan2f(x_, z_);
+    v = scale * (static_cast<float>(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)));
+
+    u0 = -u;//v;
+    v0 = v;//u;
+}
+
+
+inline
+void SphericalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
+{
+    float u, v;
+    u = -u0;//v0;
+    v = v0;//u0;
+
+    u /= scale;
+    v /= scale;
+
+    float sinv = sinf(static_cast<float>(CV_PI) - v);
+    float x0_ = sinv * sinf(u);
+    float y0_ = cosf(static_cast<float>(CV_PI) - v);
+    float z_ = sinv * cosf(u);
+
+    float x_ = y0_;
+    float y_ = x0_;
+
+    float z;
+    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
+    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
+    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
+
+    if (z > 0) { x /= z; y /= z; }
+    else x = y = -1;
+}
+
+inline
+void CylindricalPortraitProjector::mapForward(float x, float y, float &u0, float &v0)
+{
+    float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_  = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    float x_ = y0_;
+    float y_ = x0_;
+    float u, v;
+
+    u = scale * atan2f(x_, z_);
+    v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);
+
+    u0 = -u;//v;
+    v0 = v;//u;
+}
+
+
+inline
+void CylindricalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
+{
+    float u, v;
+    u = -u0;//v0;
+    v = v0;//u0;
+
+    u /= scale;
+    v /= scale;
+
+    float x0_ = sinf(u);
+    float y0_ = v;
+    float z_  = cosf(u);
+
+    float x_ = y0_;
+    float y_ = x0_;
+
+    float z;
+    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
+    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
+    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;
+
+    if (z > 0) { x /= z; y /= z; }
+    else x = y = -1;
+}
+
+inline
+void PlanePortraitProjector::mapForward(float x, float y, float &u0, float &v0)
+{
+    float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
+    float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
+    float z_  = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];
+
+    float x_ = y0_;
+    float y_ = x0_;
+
+    x_ = t[0] + x_ / z_ * (1 - t[2]);
+    y_ = t[1] + y_ / z_ * (1 - t[2]);
+
+    float u,v;
+    u = scale * x_;
+    v = scale * y_;
+
+    u0 = -u;
+    v0 = v;
+}
+
+
+inline
+void PlanePortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
+{
+    float u, v;
+    u = -u0;
+    v = v0;
+
+    u = u / scale - t[0];
+    v = v / scale - t[1];
+
+    float z;
+    x = k_rinv[0] * v + k_rinv[1] * u + k_rinv[2] * (1 - t[2]);
+    y = k_rinv[3] * v + k_rinv[4] * u + k_rinv[5] * (1 - t[2]);
+    z = k_rinv[6] * v + k_rinv[7] * u + k_rinv[8] * (1 - t[2]);
+
+    x /= z;
+    y /= z;
+}
+
+
+} // namespace detail
+} // namespace cv
+
+//! @endcond
+
+#endif // __OPENCV_STITCHING_WARPERS_INL_HPP__
+