opencv on mbed

Dependencies:   mbed

opencv2/stitching/detail/warpers_inl.hpp

Committer:
joeverbout
Date:
2016-03-31
Revision:
0:ea44dc9ed014

File content as of revision 0:ea44dc9ed014:

/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#ifndef __OPENCV_STITCHING_WARPERS_INL_HPP__
#define __OPENCV_STITCHING_WARPERS_INL_HPP__

#include "opencv2/core.hpp"
#include "warpers.hpp" // Make your IDE see declarations
#include <limits>

//! @cond IGNORED

namespace cv {
namespace detail {

template <class P>
Point2f RotationWarperBase<P>::warpPoint(const Point2f &pt, InputArray K, InputArray R)
{
    projector_.setCameraParams(K, R);
    Point2f uv;
    projector_.mapForward(pt.x, pt.y, uv.x, uv.y);
    return uv;
}


template <class P>
Rect RotationWarperBase<P>::buildMaps(Size src_size, InputArray K, InputArray R, OutputArray _xmap, OutputArray _ymap)
{
    projector_.setCameraParams(K, R);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

    _xmap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);
    _ymap.create(dst_br.y - dst_tl.y + 1, dst_br.x - dst_tl.x + 1, CV_32F);

    Mat xmap = _xmap.getMat(), ymap = _ymap.getMat();

    float x, y;
    for (int v = dst_tl.y; v <= dst_br.y; ++v)
    {
        for (int u = dst_tl.x; u <= dst_br.x; ++u)
        {
            projector_.mapBackward(static_cast<float>(u), static_cast<float>(v), x, y);
            xmap.at<float>(v - dst_tl.y, u - dst_tl.x) = x;
            ymap.at<float>(v - dst_tl.y, u - dst_tl.x) = y;
        }
    }

    return Rect(dst_tl, dst_br);
}


template <class P>
Point RotationWarperBase<P>::warp(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
                                  OutputArray dst)
{
    UMat xmap, ymap;
    Rect dst_roi = buildMaps(src.size(), K, R, xmap, ymap);

    dst.create(dst_roi.height + 1, dst_roi.width + 1, src.type());
    remap(src, dst, xmap, ymap, interp_mode, border_mode);

    return dst_roi.tl();
}


template <class P>
void RotationWarperBase<P>::warpBackward(InputArray src, InputArray K, InputArray R, int interp_mode, int border_mode,
                                         Size dst_size, OutputArray dst)
{
    projector_.setCameraParams(K, R);

    Point src_tl, src_br;
    detectResultRoi(dst_size, src_tl, src_br);

    Size size = src.size();
    CV_Assert(src_br.x - src_tl.x + 1 == size.width && src_br.y - src_tl.y + 1 == size.height);

    Mat xmap(dst_size, CV_32F);
    Mat ymap(dst_size, CV_32F);

    float u, v;
    for (int y = 0; y < dst_size.height; ++y)
    {
        for (int x = 0; x < dst_size.width; ++x)
        {
            projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
            xmap.at<float>(y, x) = u - src_tl.x;
            ymap.at<float>(y, x) = v - src_tl.y;
        }
    }

    dst.create(dst_size, src.type());
    remap(src, dst, xmap, ymap, interp_mode, border_mode);
}


template <class P>
Rect RotationWarperBase<P>::warpRoi(Size src_size, InputArray K, InputArray R)
{
    projector_.setCameraParams(K, R);

    Point dst_tl, dst_br;
    detectResultRoi(src_size, dst_tl, dst_br);

    return Rect(dst_tl, Point(dst_br.x + 1, dst_br.y + 1));
}


template <class P>
void RotationWarperBase<P>::detectResultRoi(Size src_size, Point &dst_tl, Point &dst_br)
{
    float tl_uf = std::numeric_limits<float>::max();
    float tl_vf = std::numeric_limits<float>::max();
    float br_uf = -std::numeric_limits<float>::max();
    float br_vf = -std::numeric_limits<float>::max();

    float u, v;
    for (int y = 0; y < src_size.height; ++y)
    {
        for (int x = 0; x < src_size.width; ++x)
        {
            projector_.mapForward(static_cast<float>(x), static_cast<float>(y), u, v);
            tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
            br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
        }
    }

    dst_tl.x = static_cast<int>(tl_uf);
    dst_tl.y = static_cast<int>(tl_vf);
    dst_br.x = static_cast<int>(br_uf);
    dst_br.y = static_cast<int>(br_vf);
}


template <class P>
void RotationWarperBase<P>::detectResultRoiByBorder(Size src_size, Point &dst_tl, Point &dst_br)
{
    float tl_uf = std::numeric_limits<float>::max();
    float tl_vf = std::numeric_limits<float>::max();
    float br_uf = -std::numeric_limits<float>::max();
    float br_vf = -std::numeric_limits<float>::max();

    float u, v;
    for (float x = 0; x < src_size.width; ++x)
    {
        projector_.mapForward(static_cast<float>(x), 0, u, v);
        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);

        projector_.mapForward(static_cast<float>(x), static_cast<float>(src_size.height - 1), u, v);
        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
    }
    for (int y = 0; y < src_size.height; ++y)
    {
        projector_.mapForward(0, static_cast<float>(y), u, v);
        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);

        projector_.mapForward(static_cast<float>(src_size.width - 1), static_cast<float>(y), u, v);
        tl_uf = std::min(tl_uf, u); tl_vf = std::min(tl_vf, v);
        br_uf = std::max(br_uf, u); br_vf = std::max(br_vf, v);
    }

    dst_tl.x = static_cast<int>(tl_uf);
    dst_tl.y = static_cast<int>(tl_vf);
    dst_br.x = static_cast<int>(br_uf);
    dst_br.y = static_cast<int>(br_vf);
}


inline
void PlaneProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    x_ = t[0] + x_ / z_ * (1 - t[2]);
    y_ = t[1] + y_ / z_ * (1 - t[2]);

    u = scale * x_;
    v = scale * y_;
}


inline
void PlaneProjector::mapBackward(float u, float v, float &x, float &y)
{
    u = u / scale - t[0];
    v = v / scale - t[1];

    float z;
    x = k_rinv[0] * u + k_rinv[1] * v + k_rinv[2] * (1 - t[2]);
    y = k_rinv[3] * u + k_rinv[4] * v + k_rinv[5] * (1 - t[2]);
    z = k_rinv[6] * u + k_rinv[7] * v + k_rinv[8] * (1 - t[2]);

    x /= z;
    y /= z;
}


inline
void SphericalProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    u = scale * atan2f(x_, z_);
    float w = y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_);
    v = scale * (static_cast<float>(CV_PI) - acosf(w == w ? w : 0));
}


inline
void SphericalProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float sinv = sinf(static_cast<float>(CV_PI) - v);
    float x_ = sinv * sinf(u);
    float y_ = cosf(static_cast<float>(CV_PI) - v);
    float z_ = sinv * cosf(u);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}


inline
void CylindricalProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    u = scale * atan2f(x_, z_);
    v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);
}


inline
void CylindricalProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float x_ = sinf(u);
    float y_ = v;
    float z_ = cosf(u);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void FisheyeProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    u = scale * v_ * cosf(u_);
    v = scale * v_ * sinf(u_);
}

inline
void FisheyeProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float u_ = atan2f(v, u);
    float v_ = sqrtf(u*u + v*v);

    float sinv = sinf((float)CV_PI - v_);
    float x_ = sinv * sinf(u_);
    float y_ = cosf((float)CV_PI - v_);
    float z_ = sinv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void StereographicProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = (float)CV_PI - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    float r = sinf(v_) / (1 - cosf(v_));

    u = scale * r * cos(u_);
    v = scale * r * sin(u_);
}

inline
void StereographicProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float u_ = atan2f(v, u);
    float r = sqrtf(u*u + v*v);
    float v_ = 2 * atanf(1.f / r);

    float sinv = sinf((float)CV_PI - v_);
    float x_ = sinv * sinf(u_);
    float y_ = cosf((float)CV_PI - v_);
    float z_ = sinv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void CompressedRectilinearProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    u = scale * a * tanf(u_ / a);
    v = scale * b * tanf(v_) / cosf(u_);
}

inline
void CompressedRectilinearProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float aatg = a * atanf(u / a);
    float u_ = aatg;
    float v_ = atanf(v * cosf(aatg) / b);

    float cosv = cosf(v_);
    float x_ = cosv * sinf(u_);
    float y_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void CompressedRectilinearPortraitProjector::mapForward(float x, float y, float &u, float &v)
{
    float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    u = - scale * a * tanf(u_ / a);
    v = scale * b * tanf(v_) / cosf(u_);
}

inline
void CompressedRectilinearPortraitProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= - scale;
    v /= scale;

    float aatg = a * atanf(u / a);
    float u_ = aatg;
    float v_ = atanf(v * cosf( aatg ) / b);

    float cosv = cosf(v_);
    float y_ = cosv * sinf(u_);
    float x_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void PaniniProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    float tg = a * tanf(u_ / a);
    u = scale * tg;

    float sinu = sinf(u_);
    if ( fabs(sinu) < 1E-7 )
        v = scale * b * tanf(v_);
    else
        v = scale * b * tg * tanf(v_) / sinu;
}

inline
void PaniniProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float lamda = a * atanf(u / a);
    float u_ = lamda;

    float v_;
    if ( fabs(lamda) > 1E-7)
        v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda / a)));
    else
        v_ = atanf(v / b);

    float cosv = cosf(v_);
    float x_ = cosv * sinf(u_);
    float y_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void PaniniPortraitProjector::mapForward(float x, float y, float &u, float &v)
{
    float y_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float x_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    float tg = a * tanf(u_ / a);
    u = - scale * tg;

    float sinu = sinf( u_ );
    if ( fabs(sinu) < 1E-7 )
        v = scale * b * tanf(v_);
    else
        v = scale * b * tg * tanf(v_) / sinu;
}

inline
void PaniniPortraitProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= - scale;
    v /= scale;

    float lamda = a * atanf(u / a);
    float u_ = lamda;

    float v_;
    if ( fabs(lamda) > 1E-7)
        v_ = atanf(v * sinf(lamda) / (b * a * tanf(lamda/a)));
    else
        v_ = atanf(v / b);

    float cosv = cosf(v_);
    float y_ = cosv * sinf(u_);
    float x_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void MercatorProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    u = scale * u_;
    v = scale * logf( tanf( (float)(CV_PI/4) + v_/2 ) );
}

inline
void MercatorProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float v_ = atanf( sinhf(v) );
    float u_ = u;

    float cosv = cosf(v_);
    float x_ = cosv * sinf(u_);
    float y_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void TransverseMercatorProjector::mapForward(float x, float y, float &u, float &v)
{
    float x_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float u_ = atan2f(x_, z_);
    float v_ = asinf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_));

    float B = cosf(v_) * sinf(u_);

    u = scale / 2 * logf( (1+B) / (1-B) );
    v = scale * atan2f(tanf(v_), cosf(u_));
}

inline
void TransverseMercatorProjector::mapBackward(float u, float v, float &x, float &y)
{
    u /= scale;
    v /= scale;

    float v_ = asinf( sinf(v) / coshf(u) );
    float u_ = atan2f( sinhf(u), cos(v) );

    float cosv = cosf(v_);
    float x_ = cosv * sinf(u_);
    float y_ = sinf(v_);
    float z_ = cosv * cosf(u_);

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void SphericalPortraitProjector::mapForward(float x, float y, float &u0, float &v0)
{
    float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_ = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float x_ = y0_;
    float y_ = x0_;
    float u, v;

    u = scale * atan2f(x_, z_);
    v = scale * (static_cast<float>(CV_PI) - acosf(y_ / sqrtf(x_ * x_ + y_ * y_ + z_ * z_)));

    u0 = -u;//v;
    v0 = v;//u;
}


inline
void SphericalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
{
    float u, v;
    u = -u0;//v0;
    v = v0;//u0;

    u /= scale;
    v /= scale;

    float sinv = sinf(static_cast<float>(CV_PI) - v);
    float x0_ = sinv * sinf(u);
    float y0_ = cosf(static_cast<float>(CV_PI) - v);
    float z_ = sinv * cosf(u);

    float x_ = y0_;
    float y_ = x0_;

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void CylindricalPortraitProjector::mapForward(float x, float y, float &u0, float &v0)
{
    float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_  = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float x_ = y0_;
    float y_ = x0_;
    float u, v;

    u = scale * atan2f(x_, z_);
    v = scale * y_ / sqrtf(x_ * x_ + z_ * z_);

    u0 = -u;//v;
    v0 = v;//u;
}


inline
void CylindricalPortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
{
    float u, v;
    u = -u0;//v0;
    v = v0;//u0;

    u /= scale;
    v /= scale;

    float x0_ = sinf(u);
    float y0_ = v;
    float z_  = cosf(u);

    float x_ = y0_;
    float y_ = x0_;

    float z;
    x = k_rinv[0] * x_ + k_rinv[1] * y_ + k_rinv[2] * z_;
    y = k_rinv[3] * x_ + k_rinv[4] * y_ + k_rinv[5] * z_;
    z = k_rinv[6] * x_ + k_rinv[7] * y_ + k_rinv[8] * z_;

    if (z > 0) { x /= z; y /= z; }
    else x = y = -1;
}

inline
void PlanePortraitProjector::mapForward(float x, float y, float &u0, float &v0)
{
    float x0_ = r_kinv[0] * x + r_kinv[1] * y + r_kinv[2];
    float y0_ = r_kinv[3] * x + r_kinv[4] * y + r_kinv[5];
    float z_  = r_kinv[6] * x + r_kinv[7] * y + r_kinv[8];

    float x_ = y0_;
    float y_ = x0_;

    x_ = t[0] + x_ / z_ * (1 - t[2]);
    y_ = t[1] + y_ / z_ * (1 - t[2]);

    float u,v;
    u = scale * x_;
    v = scale * y_;

    u0 = -u;
    v0 = v;
}


inline
void PlanePortraitProjector::mapBackward(float u0, float v0, float &x, float &y)
{
    float u, v;
    u = -u0;
    v = v0;

    u = u / scale - t[0];
    v = v / scale - t[1];

    float z;
    x = k_rinv[0] * v + k_rinv[1] * u + k_rinv[2] * (1 - t[2]);
    y = k_rinv[3] * v + k_rinv[4] * u + k_rinv[5] * (1 - t[2]);
    z = k_rinv[6] * v + k_rinv[7] * u + k_rinv[8] * (1 - t[2]);

    x /= z;
    y /= z;
}


} // namespace detail
} // namespace cv

//! @endcond

#endif // __OPENCV_STITCHING_WARPERS_INL_HPP__