Joe Verbout
/
main
opencv on mbed
opencv2/core/operations.hpp
- Committer:
- joeverbout
- Date:
- 2016-03-31
- Revision:
- 0:ea44dc9ed014
File content as of revision 0:ea44dc9ed014:
/*M/////////////////////////////////////////////////////////////////////////////////////// // // IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. // // By downloading, copying, installing or using the software you agree to this license. // If you do not agree to this license, do not download, install, // copy or use the software. // // // License Agreement // For Open Source Computer Vision Library // // Copyright (C) 2000-2008, Intel Corporation, all rights reserved. // Copyright (C) 2009, Willow Garage Inc., all rights reserved. // Copyright (C) 2013, OpenCV Foundation, all rights reserved. // Copyright (C) 2015, Itseez Inc., all rights reserved. // Third party copyrights are property of their respective owners. // // Redistribution and use in source and binary forms, with or without modification, // are permitted provided that the following conditions are met: // // * Redistribution's of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // * Redistribution's in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // // * The name of the copyright holders may not be used to endorse or promote products // derived from this software without specific prior written permission. // // This software is provided by the copyright holders and contributors "as is" and // any express or implied warranties, including, but not limited to, the implied // warranties of merchantability and fitness for a particular purpose are disclaimed. // In no event shall the Intel Corporation or contributors be liable for any direct, // indirect, incidental, special, exemplary, or consequential damages // (including, but not limited to, procurement of substitute goods or services; // loss of use, data, or profits; or business interruption) however caused // and on any theory of liability, whether in contract, strict liability, // or tort (including negligence or otherwise) arising in any way out of // the use of this software, even if advised of the possibility of such damage. // //M*/ #ifndef __OPENCV_CORE_OPERATIONS_HPP__ #define __OPENCV_CORE_OPERATIONS_HPP__ #ifndef __cplusplus # error operations.hpp header must be compiled as C++ #endif #include <cstdio> //! @cond IGNORED namespace cv { ////////////////////////////// Matx methods depending on core API ///////////////////////////// namespace internal { template<typename _Tp, int m> struct Matx_FastInvOp { bool operator()(const Matx<_Tp, m, m>& a, Matx<_Tp, m, m>& b, int method) const { Matx<_Tp, m, m> temp = a; // assume that b is all 0's on input => make it a unity matrix for( int i = 0; i < m; i++ ) b(i, i) = (_Tp)1; if( method == DECOMP_CHOLESKY ) return Cholesky(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m); return LU(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m) != 0; } }; template<typename _Tp> struct Matx_FastInvOp<_Tp, 2> { bool operator()(const Matx<_Tp, 2, 2>& a, Matx<_Tp, 2, 2>& b, int) const { _Tp d = determinant(a); if( d == 0 ) return false; d = 1/d; b(1,1) = a(0,0)*d; b(0,0) = a(1,1)*d; b(0,1) = -a(0,1)*d; b(1,0) = -a(1,0)*d; return true; } }; template<typename _Tp> struct Matx_FastInvOp<_Tp, 3> { bool operator()(const Matx<_Tp, 3, 3>& a, Matx<_Tp, 3, 3>& b, int) const { _Tp d = (_Tp)determinant(a); if( d == 0 ) return false; d = 1/d; b(0,0) = (a(1,1) * a(2,2) - a(1,2) * a(2,1)) * d; b(0,1) = (a(0,2) * a(2,1) - a(0,1) * a(2,2)) * d; b(0,2) = (a(0,1) * a(1,2) - a(0,2) * a(1,1)) * d; b(1,0) = (a(1,2) * a(2,0) - a(1,0) * a(2,2)) * d; b(1,1) = (a(0,0) * a(2,2) - a(0,2) * a(2,0)) * d; b(1,2) = (a(0,2) * a(1,0) - a(0,0) * a(1,2)) * d; b(2,0) = (a(1,0) * a(2,1) - a(1,1) * a(2,0)) * d; b(2,1) = (a(0,1) * a(2,0) - a(0,0) * a(2,1)) * d; b(2,2) = (a(0,0) * a(1,1) - a(0,1) * a(1,0)) * d; return true; } }; template<typename _Tp, int m, int n> struct Matx_FastSolveOp { bool operator()(const Matx<_Tp, m, m>& a, const Matx<_Tp, m, n>& b, Matx<_Tp, m, n>& x, int method) const { Matx<_Tp, m, m> temp = a; x = b; if( method == DECOMP_CHOLESKY ) return Cholesky(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n); return LU(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n) != 0; } }; template<typename _Tp> struct Matx_FastSolveOp<_Tp, 2, 1> { bool operator()(const Matx<_Tp, 2, 2>& a, const Matx<_Tp, 2, 1>& b, Matx<_Tp, 2, 1>& x, int) const { _Tp d = determinant(a); if( d == 0 ) return false; d = 1/d; x(0) = (b(0)*a(1,1) - b(1)*a(0,1))*d; x(1) = (b(1)*a(0,0) - b(0)*a(1,0))*d; return true; } }; template<typename _Tp> struct Matx_FastSolveOp<_Tp, 3, 1> { bool operator()(const Matx<_Tp, 3, 3>& a, const Matx<_Tp, 3, 1>& b, Matx<_Tp, 3, 1>& x, int) const { _Tp d = (_Tp)determinant(a); if( d == 0 ) return false; d = 1/d; x(0) = d*(b(0)*(a(1,1)*a(2,2) - a(1,2)*a(2,1)) - a(0,1)*(b(1)*a(2,2) - a(1,2)*b(2)) + a(0,2)*(b(1)*a(2,1) - a(1,1)*b(2))); x(1) = d*(a(0,0)*(b(1)*a(2,2) - a(1,2)*b(2)) - b(0)*(a(1,0)*a(2,2) - a(1,2)*a(2,0)) + a(0,2)*(a(1,0)*b(2) - b(1)*a(2,0))); x(2) = d*(a(0,0)*(a(1,1)*b(2) - b(1)*a(2,1)) - a(0,1)*(a(1,0)*b(2) - b(1)*a(2,0)) + b(0)*(a(1,0)*a(2,1) - a(1,1)*a(2,0))); return true; } }; } // internal template<typename _Tp, int m, int n> inline Matx<_Tp,m,n> Matx<_Tp,m,n>::randu(_Tp a, _Tp b) { Matx<_Tp,m,n> M; cv::randu(M, Scalar(a), Scalar(b)); return M; } template<typename _Tp, int m, int n> inline Matx<_Tp,m,n> Matx<_Tp,m,n>::randn(_Tp a, _Tp b) { Matx<_Tp,m,n> M; cv::randn(M, Scalar(a), Scalar(b)); return M; } template<typename _Tp, int m, int n> inline Matx<_Tp, n, m> Matx<_Tp, m, n>::inv(int method, bool *p_is_ok /*= NULL*/) const { Matx<_Tp, n, m> b; bool ok; if( method == DECOMP_LU || method == DECOMP_CHOLESKY ) ok = cv::internal::Matx_FastInvOp<_Tp, m>()(*this, b, method); else { Mat A(*this, false), B(b, false); ok = (invert(A, B, method) != 0); } if( NULL != p_is_ok ) { *p_is_ok = ok; } return ok ? b : Matx<_Tp, n, m>::zeros(); } template<typename _Tp, int m, int n> template<int l> inline Matx<_Tp, n, l> Matx<_Tp, m, n>::solve(const Matx<_Tp, m, l>& rhs, int method) const { Matx<_Tp, n, l> x; bool ok; if( method == DECOMP_LU || method == DECOMP_CHOLESKY ) ok = cv::internal::Matx_FastSolveOp<_Tp, m, l>()(*this, rhs, x, method); else { Mat A(*this, false), B(rhs, false), X(x, false); ok = cv::solve(A, B, X, method); } return ok ? x : Matx<_Tp, n, l>::zeros(); } ////////////////////////// Augmenting algebraic & logical operations ////////////////////////// #define CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \ static inline A& operator op (A& a, const B& b) { cvop; return a; } #define CV_MAT_AUG_OPERATOR(op, cvop, A, B) \ CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \ CV_MAT_AUG_OPERATOR1(op, cvop, const A, B) #define CV_MAT_AUG_OPERATOR_T(op, cvop, A, B) \ template<typename _Tp> CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \ template<typename _Tp> CV_MAT_AUG_OPERATOR1(op, cvop, const A, B) CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Mat) CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Scalar) CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Scalar) CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat_<_Tp>) CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Mat) CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Scalar) CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Scalar) CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat_<_Tp>) CV_MAT_AUG_OPERATOR (*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat, Mat) CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat_<_Tp>) CV_MAT_AUG_OPERATOR (*=, a.convertTo(a, -1, b), Mat, double) CV_MAT_AUG_OPERATOR_T(*=, a.convertTo(a, -1, b), Mat_<_Tp>, double) CV_MAT_AUG_OPERATOR (/=, cv::divide(a,b,a), Mat, Mat) CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat_<_Tp>) CV_MAT_AUG_OPERATOR (/=, a.convertTo((Mat&)a, -1, 1./b), Mat, double) CV_MAT_AUG_OPERATOR_T(/=, a.convertTo((Mat&)a, -1, 1./b), Mat_<_Tp>, double) CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Mat) CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Scalar) CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Scalar) CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat_<_Tp>) CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Mat) CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Scalar) CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Scalar) CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat_<_Tp>) CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Mat) CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Scalar) CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat) CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Scalar) CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat_<_Tp>) #undef CV_MAT_AUG_OPERATOR_T #undef CV_MAT_AUG_OPERATOR #undef CV_MAT_AUG_OPERATOR1 ///////////////////////////////////////////// SVD ///////////////////////////////////////////// inline SVD::SVD() {} inline SVD::SVD( InputArray m, int flags ) { operator ()(m, flags); } inline void SVD::solveZ( InputArray m, OutputArray _dst ) { Mat mtx = m.getMat(); SVD svd(mtx, (mtx.rows >= mtx.cols ? 0 : SVD::FULL_UV)); _dst.create(svd.vt.cols, 1, svd.vt.type()); Mat dst = _dst.getMat(); svd.vt.row(svd.vt.rows-1).reshape(1,svd.vt.cols).copyTo(dst); } template<typename _Tp, int m, int n, int nm> inline void SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt ) { CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector."); Mat _a(a, false), _u(u, false), _w(w, false), _vt(vt, false); SVD::compute(_a, _w, _u, _vt); CV_Assert(_w.data == (uchar*)&w.val[0] && _u.data == (uchar*)&u.val[0] && _vt.data == (uchar*)&vt.val[0]); } template<typename _Tp, int m, int n, int nm> inline void SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w ) { CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector."); Mat _a(a, false), _w(w, false); SVD::compute(_a, _w); CV_Assert(_w.data == (uchar*)&w.val[0]); } template<typename _Tp, int m, int n, int nm, int nb> inline void SVD::backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, Matx<_Tp, n, nb>& dst ) { CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector."); Mat _u(u, false), _w(w, false), _vt(vt, false), _rhs(rhs, false), _dst(dst, false); SVD::backSubst(_w, _u, _vt, _rhs, _dst); CV_Assert(_dst.data == (uchar*)&dst.val[0]); } /////////////////////////////////// Multiply-with-Carry RNG /////////////////////////////////// inline RNG::RNG() { state = 0xffffffff; } inline RNG::RNG(uint64 _state) { state = _state ? _state : 0xffffffff; } inline RNG::operator uchar() { return (uchar)next(); } inline RNG::operator schar() { return (schar)next(); } inline RNG::operator ushort() { return (ushort)next(); } inline RNG::operator short() { return (short)next(); } inline RNG::operator int() { return (int)next(); } inline RNG::operator unsigned() { return next(); } inline RNG::operator float() { return next()*2.3283064365386962890625e-10f; } inline RNG::operator double() { unsigned t = next(); return (((uint64)t << 32) | next()) * 5.4210108624275221700372640043497e-20; } inline unsigned RNG::operator ()(unsigned N) { return (unsigned)uniform(0,N); } inline unsigned RNG::operator ()() { return next(); } inline int RNG::uniform(int a, int b) { return a == b ? a : (int)(next() % (b - a) + a); } inline float RNG::uniform(float a, float b) { return ((float)*this)*(b - a) + a; } inline double RNG::uniform(double a, double b) { return ((double)*this)*(b - a) + a; } inline unsigned RNG::next() { state = (uint64)(unsigned)state* /*CV_RNG_COEFF*/ 4164903690U + (unsigned)(state >> 32); return (unsigned)state; } //! returns the next unifomly-distributed random number of the specified type template<typename _Tp> static inline _Tp randu() { return (_Tp)theRNG(); } ///////////////////////////////// Formatted string generation ///////////////////////////////// CV_EXPORTS String format( const char* fmt, ... ); ///////////////////////////////// Formatted output of cv::Mat ///////////////////////////////// static inline Ptr<Formatted> format(InputArray mtx, int fmt) { return Formatter::get(fmt)->format(mtx.getMat()); } static inline int print(Ptr<Formatted> fmtd, FILE* stream = stdout) { int written = 0; fmtd->reset(); for(const char* str = fmtd->next(); str; str = fmtd->next()) written += fputs(str, stream); return written; } static inline int print(const Mat& mtx, FILE* stream = stdout) { return print(Formatter::get()->format(mtx), stream); } static inline int print(const UMat& mtx, FILE* stream = stdout) { return print(Formatter::get()->format(mtx.getMat(ACCESS_READ)), stream); } template<typename _Tp> static inline int print(const std::vector<Point_<_Tp> >& vec, FILE* stream = stdout) { return print(Formatter::get()->format(Mat(vec)), stream); } template<typename _Tp> static inline int print(const std::vector<Point3_<_Tp> >& vec, FILE* stream = stdout) { return print(Formatter::get()->format(Mat(vec)), stream); } template<typename _Tp, int m, int n> static inline int print(const Matx<_Tp, m, n>& matx, FILE* stream = stdout) { return print(Formatter::get()->format(cv::Mat(matx)), stream); } //! @endcond /****************************************************************************************\ * Auxiliary algorithms * \****************************************************************************************/ /** @brief Splits an element set into equivalency classes. The generic function partition implements an \f$O(N^2)\f$ algorithm for splitting a set of \f$N\f$ elements into one or more equivalency classes, as described in <http://en.wikipedia.org/wiki/Disjoint-set_data_structure> . The function returns the number of equivalency classes. @param _vec Set of elements stored as a vector. @param labels Output vector of labels. It contains as many elements as vec. Each label labels[i] is a 0-based cluster index of `vec[i]`. @param predicate Equivalence predicate (pointer to a boolean function of two arguments or an instance of the class that has the method bool operator()(const _Tp& a, const _Tp& b) ). The predicate returns true when the elements are certainly in the same class, and returns false if they may or may not be in the same class. @ingroup core_cluster */ template<typename _Tp, class _EqPredicate> int partition( const std::vector<_Tp>& _vec, std::vector<int>& labels, _EqPredicate predicate=_EqPredicate()) { int i, j, N = (int)_vec.size(); const _Tp* vec = &_vec[0]; const int PARENT=0; const int RANK=1; std::vector<int> _nodes(N*2); int (*nodes)[2] = (int(*)[2])&_nodes[0]; // The first O(N) pass: create N single-vertex trees for(i = 0; i < N; i++) { nodes[i][PARENT]=-1; nodes[i][RANK] = 0; } // The main O(N^2) pass: merge connected components for( i = 0; i < N; i++ ) { int root = i; // find root while( nodes[root][PARENT] >= 0 ) root = nodes[root][PARENT]; for( j = 0; j < N; j++ ) { if( i == j || !predicate(vec[i], vec[j])) continue; int root2 = j; while( nodes[root2][PARENT] >= 0 ) root2 = nodes[root2][PARENT]; if( root2 != root ) { // unite both trees int rank = nodes[root][RANK], rank2 = nodes[root2][RANK]; if( rank > rank2 ) nodes[root2][PARENT] = root; else { nodes[root][PARENT] = root2; nodes[root2][RANK] += rank == rank2; root = root2; } CV_Assert( nodes[root][PARENT] < 0 ); int k = j, parent; // compress the path from node2 to root while( (parent = nodes[k][PARENT]) >= 0 ) { nodes[k][PARENT] = root; k = parent; } // compress the path from node to root k = i; while( (parent = nodes[k][PARENT]) >= 0 ) { nodes[k][PARENT] = root; k = parent; } } } } // Final O(N) pass: enumerate classes labels.resize(N); int nclasses = 0; for( i = 0; i < N; i++ ) { int root = i; while( nodes[root][PARENT] >= 0 ) root = nodes[root][PARENT]; // re-use the rank as the class label if( nodes[root][RANK] >= 0 ) nodes[root][RANK] = ~nclasses++; labels[i] = ~nodes[root][RANK]; } return nclasses; } } // cv #endif