Joe Verbout
/
main
opencv on mbed
Diff: opencv2/core/operations.hpp
- Revision:
- 0:ea44dc9ed014
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/opencv2/core/operations.hpp Thu Mar 31 21:16:38 2016 +0000 @@ -0,0 +1,531 @@ +/*M/////////////////////////////////////////////////////////////////////////////////////// +// +// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING. +// +// By downloading, copying, installing or using the software you agree to this license. +// If you do not agree to this license, do not download, install, +// copy or use the software. +// +// +// License Agreement +// For Open Source Computer Vision Library +// +// Copyright (C) 2000-2008, Intel Corporation, all rights reserved. +// Copyright (C) 2009, Willow Garage Inc., all rights reserved. +// Copyright (C) 2013, OpenCV Foundation, all rights reserved. +// Copyright (C) 2015, Itseez Inc., all rights reserved. +// Third party copyrights are property of their respective owners. +// +// Redistribution and use in source and binary forms, with or without modification, +// are permitted provided that the following conditions are met: +// +// * Redistribution's of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// * Redistribution's in binary form must reproduce the above copyright notice, +// this list of conditions and the following disclaimer in the documentation +// and/or other materials provided with the distribution. +// +// * The name of the copyright holders may not be used to endorse or promote products +// derived from this software without specific prior written permission. +// +// This software is provided by the copyright holders and contributors "as is" and +// any express or implied warranties, including, but not limited to, the implied +// warranties of merchantability and fitness for a particular purpose are disclaimed. +// In no event shall the Intel Corporation or contributors be liable for any direct, +// indirect, incidental, special, exemplary, or consequential damages +// (including, but not limited to, procurement of substitute goods or services; +// loss of use, data, or profits; or business interruption) however caused +// and on any theory of liability, whether in contract, strict liability, +// or tort (including negligence or otherwise) arising in any way out of +// the use of this software, even if advised of the possibility of such damage. +// +//M*/ + +#ifndef __OPENCV_CORE_OPERATIONS_HPP__ +#define __OPENCV_CORE_OPERATIONS_HPP__ + +#ifndef __cplusplus +# error operations.hpp header must be compiled as C++ +#endif + +#include <cstdio> + +//! @cond IGNORED + +namespace cv +{ + +////////////////////////////// Matx methods depending on core API ///////////////////////////// + +namespace internal +{ + +template<typename _Tp, int m> struct Matx_FastInvOp +{ + bool operator()(const Matx<_Tp, m, m>& a, Matx<_Tp, m, m>& b, int method) const + { + Matx<_Tp, m, m> temp = a; + + // assume that b is all 0's on input => make it a unity matrix + for( int i = 0; i < m; i++ ) + b(i, i) = (_Tp)1; + + if( method == DECOMP_CHOLESKY ) + return Cholesky(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m); + + return LU(temp.val, m*sizeof(_Tp), m, b.val, m*sizeof(_Tp), m) != 0; + } +}; + +template<typename _Tp> struct Matx_FastInvOp<_Tp, 2> +{ + bool operator()(const Matx<_Tp, 2, 2>& a, Matx<_Tp, 2, 2>& b, int) const + { + _Tp d = determinant(a); + if( d == 0 ) + return false; + d = 1/d; + b(1,1) = a(0,0)*d; + b(0,0) = a(1,1)*d; + b(0,1) = -a(0,1)*d; + b(1,0) = -a(1,0)*d; + return true; + } +}; + +template<typename _Tp> struct Matx_FastInvOp<_Tp, 3> +{ + bool operator()(const Matx<_Tp, 3, 3>& a, Matx<_Tp, 3, 3>& b, int) const + { + _Tp d = (_Tp)determinant(a); + if( d == 0 ) + return false; + d = 1/d; + b(0,0) = (a(1,1) * a(2,2) - a(1,2) * a(2,1)) * d; + b(0,1) = (a(0,2) * a(2,1) - a(0,1) * a(2,2)) * d; + b(0,2) = (a(0,1) * a(1,2) - a(0,2) * a(1,1)) * d; + + b(1,0) = (a(1,2) * a(2,0) - a(1,0) * a(2,2)) * d; + b(1,1) = (a(0,0) * a(2,2) - a(0,2) * a(2,0)) * d; + b(1,2) = (a(0,2) * a(1,0) - a(0,0) * a(1,2)) * d; + + b(2,0) = (a(1,0) * a(2,1) - a(1,1) * a(2,0)) * d; + b(2,1) = (a(0,1) * a(2,0) - a(0,0) * a(2,1)) * d; + b(2,2) = (a(0,0) * a(1,1) - a(0,1) * a(1,0)) * d; + return true; + } +}; + + +template<typename _Tp, int m, int n> struct Matx_FastSolveOp +{ + bool operator()(const Matx<_Tp, m, m>& a, const Matx<_Tp, m, n>& b, + Matx<_Tp, m, n>& x, int method) const + { + Matx<_Tp, m, m> temp = a; + x = b; + if( method == DECOMP_CHOLESKY ) + return Cholesky(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n); + + return LU(temp.val, m*sizeof(_Tp), m, x.val, n*sizeof(_Tp), n) != 0; + } +}; + +template<typename _Tp> struct Matx_FastSolveOp<_Tp, 2, 1> +{ + bool operator()(const Matx<_Tp, 2, 2>& a, const Matx<_Tp, 2, 1>& b, + Matx<_Tp, 2, 1>& x, int) const + { + _Tp d = determinant(a); + if( d == 0 ) + return false; + d = 1/d; + x(0) = (b(0)*a(1,1) - b(1)*a(0,1))*d; + x(1) = (b(1)*a(0,0) - b(0)*a(1,0))*d; + return true; + } +}; + +template<typename _Tp> struct Matx_FastSolveOp<_Tp, 3, 1> +{ + bool operator()(const Matx<_Tp, 3, 3>& a, const Matx<_Tp, 3, 1>& b, + Matx<_Tp, 3, 1>& x, int) const + { + _Tp d = (_Tp)determinant(a); + if( d == 0 ) + return false; + d = 1/d; + x(0) = d*(b(0)*(a(1,1)*a(2,2) - a(1,2)*a(2,1)) - + a(0,1)*(b(1)*a(2,2) - a(1,2)*b(2)) + + a(0,2)*(b(1)*a(2,1) - a(1,1)*b(2))); + + x(1) = d*(a(0,0)*(b(1)*a(2,2) - a(1,2)*b(2)) - + b(0)*(a(1,0)*a(2,2) - a(1,2)*a(2,0)) + + a(0,2)*(a(1,0)*b(2) - b(1)*a(2,0))); + + x(2) = d*(a(0,0)*(a(1,1)*b(2) - b(1)*a(2,1)) - + a(0,1)*(a(1,0)*b(2) - b(1)*a(2,0)) + + b(0)*(a(1,0)*a(2,1) - a(1,1)*a(2,0))); + return true; + } +}; + +} // internal + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::randu(_Tp a, _Tp b) +{ + Matx<_Tp,m,n> M; + cv::randu(M, Scalar(a), Scalar(b)); + return M; +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp,m,n> Matx<_Tp,m,n>::randn(_Tp a, _Tp b) +{ + Matx<_Tp,m,n> M; + cv::randn(M, Scalar(a), Scalar(b)); + return M; +} + +template<typename _Tp, int m, int n> inline +Matx<_Tp, n, m> Matx<_Tp, m, n>::inv(int method, bool *p_is_ok /*= NULL*/) const +{ + Matx<_Tp, n, m> b; + bool ok; + if( method == DECOMP_LU || method == DECOMP_CHOLESKY ) + ok = cv::internal::Matx_FastInvOp<_Tp, m>()(*this, b, method); + else + { + Mat A(*this, false), B(b, false); + ok = (invert(A, B, method) != 0); + } + if( NULL != p_is_ok ) { *p_is_ok = ok; } + return ok ? b : Matx<_Tp, n, m>::zeros(); +} + +template<typename _Tp, int m, int n> template<int l> inline +Matx<_Tp, n, l> Matx<_Tp, m, n>::solve(const Matx<_Tp, m, l>& rhs, int method) const +{ + Matx<_Tp, n, l> x; + bool ok; + if( method == DECOMP_LU || method == DECOMP_CHOLESKY ) + ok = cv::internal::Matx_FastSolveOp<_Tp, m, l>()(*this, rhs, x, method); + else + { + Mat A(*this, false), B(rhs, false), X(x, false); + ok = cv::solve(A, B, X, method); + } + + return ok ? x : Matx<_Tp, n, l>::zeros(); +} + + + +////////////////////////// Augmenting algebraic & logical operations ////////////////////////// + +#define CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \ + static inline A& operator op (A& a, const B& b) { cvop; return a; } + +#define CV_MAT_AUG_OPERATOR(op, cvop, A, B) \ + CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \ + CV_MAT_AUG_OPERATOR1(op, cvop, const A, B) + +#define CV_MAT_AUG_OPERATOR_T(op, cvop, A, B) \ + template<typename _Tp> CV_MAT_AUG_OPERATOR1(op, cvop, A, B) \ + template<typename _Tp> CV_MAT_AUG_OPERATOR1(op, cvop, const A, B) + +CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (+=, cv::add(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(+=, cv::add(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (-=, cv::subtract(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(-=, cv::subtract(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +CV_MAT_AUG_OPERATOR (*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat, Mat) +CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(*=, cv::gemm(a, b, 1, Mat(), 0, a, 0), Mat_<_Tp>, Mat_<_Tp>) +CV_MAT_AUG_OPERATOR (*=, a.convertTo(a, -1, b), Mat, double) +CV_MAT_AUG_OPERATOR_T(*=, a.convertTo(a, -1, b), Mat_<_Tp>, double) + +CV_MAT_AUG_OPERATOR (/=, cv::divide(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(/=, cv::divide(a,b,a), Mat_<_Tp>, Mat_<_Tp>) +CV_MAT_AUG_OPERATOR (/=, a.convertTo((Mat&)a, -1, 1./b), Mat, double) +CV_MAT_AUG_OPERATOR_T(/=, a.convertTo((Mat&)a, -1, 1./b), Mat_<_Tp>, double) + +CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (&=, cv::bitwise_and(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(&=, cv::bitwise_and(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (|=, cv::bitwise_or(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(|=, cv::bitwise_or(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Mat) +CV_MAT_AUG_OPERATOR (^=, cv::bitwise_xor(a,b,a), Mat, Scalar) +CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat) +CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Scalar) +CV_MAT_AUG_OPERATOR_T(^=, cv::bitwise_xor(a,b,a), Mat_<_Tp>, Mat_<_Tp>) + +#undef CV_MAT_AUG_OPERATOR_T +#undef CV_MAT_AUG_OPERATOR +#undef CV_MAT_AUG_OPERATOR1 + + + +///////////////////////////////////////////// SVD ///////////////////////////////////////////// + +inline SVD::SVD() {} +inline SVD::SVD( InputArray m, int flags ) { operator ()(m, flags); } +inline void SVD::solveZ( InputArray m, OutputArray _dst ) +{ + Mat mtx = m.getMat(); + SVD svd(mtx, (mtx.rows >= mtx.cols ? 0 : SVD::FULL_UV)); + _dst.create(svd.vt.cols, 1, svd.vt.type()); + Mat dst = _dst.getMat(); + svd.vt.row(svd.vt.rows-1).reshape(1,svd.vt.cols).copyTo(dst); +} + +template<typename _Tp, int m, int n, int nm> inline void + SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w, Matx<_Tp, m, nm>& u, Matx<_Tp, n, nm>& vt ) +{ + CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector."); + Mat _a(a, false), _u(u, false), _w(w, false), _vt(vt, false); + SVD::compute(_a, _w, _u, _vt); + CV_Assert(_w.data == (uchar*)&w.val[0] && _u.data == (uchar*)&u.val[0] && _vt.data == (uchar*)&vt.val[0]); +} + +template<typename _Tp, int m, int n, int nm> inline void +SVD::compute( const Matx<_Tp, m, n>& a, Matx<_Tp, nm, 1>& w ) +{ + CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector."); + Mat _a(a, false), _w(w, false); + SVD::compute(_a, _w); + CV_Assert(_w.data == (uchar*)&w.val[0]); +} + +template<typename _Tp, int m, int n, int nm, int nb> inline void +SVD::backSubst( const Matx<_Tp, nm, 1>& w, const Matx<_Tp, m, nm>& u, + const Matx<_Tp, n, nm>& vt, const Matx<_Tp, m, nb>& rhs, + Matx<_Tp, n, nb>& dst ) +{ + CV_StaticAssert( nm == MIN(m, n), "Invalid size of output vector."); + Mat _u(u, false), _w(w, false), _vt(vt, false), _rhs(rhs, false), _dst(dst, false); + SVD::backSubst(_w, _u, _vt, _rhs, _dst); + CV_Assert(_dst.data == (uchar*)&dst.val[0]); +} + + + +/////////////////////////////////// Multiply-with-Carry RNG /////////////////////////////////// + +inline RNG::RNG() { state = 0xffffffff; } +inline RNG::RNG(uint64 _state) { state = _state ? _state : 0xffffffff; } + +inline RNG::operator uchar() { return (uchar)next(); } +inline RNG::operator schar() { return (schar)next(); } +inline RNG::operator ushort() { return (ushort)next(); } +inline RNG::operator short() { return (short)next(); } +inline RNG::operator int() { return (int)next(); } +inline RNG::operator unsigned() { return next(); } +inline RNG::operator float() { return next()*2.3283064365386962890625e-10f; } +inline RNG::operator double() { unsigned t = next(); return (((uint64)t << 32) | next()) * 5.4210108624275221700372640043497e-20; } + +inline unsigned RNG::operator ()(unsigned N) { return (unsigned)uniform(0,N); } +inline unsigned RNG::operator ()() { return next(); } + +inline int RNG::uniform(int a, int b) { return a == b ? a : (int)(next() % (b - a) + a); } +inline float RNG::uniform(float a, float b) { return ((float)*this)*(b - a) + a; } +inline double RNG::uniform(double a, double b) { return ((double)*this)*(b - a) + a; } + +inline unsigned RNG::next() +{ + state = (uint64)(unsigned)state* /*CV_RNG_COEFF*/ 4164903690U + (unsigned)(state >> 32); + return (unsigned)state; +} + +//! returns the next unifomly-distributed random number of the specified type +template<typename _Tp> static inline _Tp randu() +{ + return (_Tp)theRNG(); +} + +///////////////////////////////// Formatted string generation ///////////////////////////////// + +CV_EXPORTS String format( const char* fmt, ... ); + +///////////////////////////////// Formatted output of cv::Mat ///////////////////////////////// + +static inline +Ptr<Formatted> format(InputArray mtx, int fmt) +{ + return Formatter::get(fmt)->format(mtx.getMat()); +} + +static inline +int print(Ptr<Formatted> fmtd, FILE* stream = stdout) +{ + int written = 0; + fmtd->reset(); + for(const char* str = fmtd->next(); str; str = fmtd->next()) + written += fputs(str, stream); + + return written; +} + +static inline +int print(const Mat& mtx, FILE* stream = stdout) +{ + return print(Formatter::get()->format(mtx), stream); +} + +static inline +int print(const UMat& mtx, FILE* stream = stdout) +{ + return print(Formatter::get()->format(mtx.getMat(ACCESS_READ)), stream); +} + +template<typename _Tp> static inline +int print(const std::vector<Point_<_Tp> >& vec, FILE* stream = stdout) +{ + return print(Formatter::get()->format(Mat(vec)), stream); +} + +template<typename _Tp> static inline +int print(const std::vector<Point3_<_Tp> >& vec, FILE* stream = stdout) +{ + return print(Formatter::get()->format(Mat(vec)), stream); +} + +template<typename _Tp, int m, int n> static inline +int print(const Matx<_Tp, m, n>& matx, FILE* stream = stdout) +{ + return print(Formatter::get()->format(cv::Mat(matx)), stream); +} + +//! @endcond + +/****************************************************************************************\ +* Auxiliary algorithms * +\****************************************************************************************/ + +/** @brief Splits an element set into equivalency classes. + +The generic function partition implements an \f$O(N^2)\f$ algorithm for splitting a set of \f$N\f$ elements +into one or more equivalency classes, as described in +<http://en.wikipedia.org/wiki/Disjoint-set_data_structure> . The function returns the number of +equivalency classes. +@param _vec Set of elements stored as a vector. +@param labels Output vector of labels. It contains as many elements as vec. Each label labels[i] is +a 0-based cluster index of `vec[i]`. +@param predicate Equivalence predicate (pointer to a boolean function of two arguments or an +instance of the class that has the method bool operator()(const _Tp& a, const _Tp& b) ). The +predicate returns true when the elements are certainly in the same class, and returns false if they +may or may not be in the same class. +@ingroup core_cluster +*/ +template<typename _Tp, class _EqPredicate> int +partition( const std::vector<_Tp>& _vec, std::vector<int>& labels, + _EqPredicate predicate=_EqPredicate()) +{ + int i, j, N = (int)_vec.size(); + const _Tp* vec = &_vec[0]; + + const int PARENT=0; + const int RANK=1; + + std::vector<int> _nodes(N*2); + int (*nodes)[2] = (int(*)[2])&_nodes[0]; + + // The first O(N) pass: create N single-vertex trees + for(i = 0; i < N; i++) + { + nodes[i][PARENT]=-1; + nodes[i][RANK] = 0; + } + + // The main O(N^2) pass: merge connected components + for( i = 0; i < N; i++ ) + { + int root = i; + + // find root + while( nodes[root][PARENT] >= 0 ) + root = nodes[root][PARENT]; + + for( j = 0; j < N; j++ ) + { + if( i == j || !predicate(vec[i], vec[j])) + continue; + int root2 = j; + + while( nodes[root2][PARENT] >= 0 ) + root2 = nodes[root2][PARENT]; + + if( root2 != root ) + { + // unite both trees + int rank = nodes[root][RANK], rank2 = nodes[root2][RANK]; + if( rank > rank2 ) + nodes[root2][PARENT] = root; + else + { + nodes[root][PARENT] = root2; + nodes[root2][RANK] += rank == rank2; + root = root2; + } + CV_Assert( nodes[root][PARENT] < 0 ); + + int k = j, parent; + + // compress the path from node2 to root + while( (parent = nodes[k][PARENT]) >= 0 ) + { + nodes[k][PARENT] = root; + k = parent; + } + + // compress the path from node to root + k = i; + while( (parent = nodes[k][PARENT]) >= 0 ) + { + nodes[k][PARENT] = root; + k = parent; + } + } + } + } + + // Final O(N) pass: enumerate classes + labels.resize(N); + int nclasses = 0; + + for( i = 0; i < N; i++ ) + { + int root = i; + while( nodes[root][PARENT] >= 0 ) + root = nodes[root][PARENT]; + // re-use the rank as the class label + if( nodes[root][RANK] >= 0 ) + nodes[root][RANK] = ~nclasses++; + labels[i] = ~nodes[root][RANK]; + } + + return nclasses; +} + +} // cv + +#endif +