Joaquin Verastegui / jro

Dependents:   JRO_CR2 frdm_test

Fork of jro by Miguel Urco

dds.cpp

Committer:
miguelcordero191
Date:
2014-12-04
Revision:
1:7c424a3e12ea
Parent:
0:b444ea725ba7

File content as of revision 1:7c424a3e12ea:

#include "dds.h"

static char controlRegister[4];
static char read_spi_data[6];

static char* ko_msg = "KO";
static char* ok_msg = "OK";

DDS::DDS(SPI *spi_dev, DigitalOut *mreset, DigitalOut *outramp, DigitalOut *spmode, DigitalOut *cs, DigitalOut *ioreset, DigitalInOut *updclk){
    
    spi_device      = spi_dev;
    
    dds_mreset      = mreset;
    dds_outramp     = outramp;
    dds_sp_mode     = spmode;
    dds_cs          = cs;
    dds_io_reset    = ioreset;
    dds_updclk      = updclk;
    
    dds_updclk->input();
    *dds_sp_mode = 0;
    *dds_cs = 1;
    *dds_outramp = 0;
    
    cmd_answer = NULL;
    cmd_answer_len = 0;
    
    spi_device->format(SPI_BITS, SPI_MODE);
    spi_device->frequency(SPI_FREQ);
    
    this->isConfig = false;
    
}
    
int DDS::__writeData(char addr, char ndata, const char* data){
    
    // I/O reset
    *dds_updclk = 0;
    *dds_io_reset = 1;
    wait_us(10);
    *dds_io_reset = 0;
    wait_us(10);
    
    *dds_cs = 0;
    
    //Sending serial address
    printf("\r\nWriting Addr = %d", addr);
    spi_device->write(addr & 0x0F);
    
    for(char i = 0; i < ndata; i++)
    {
        wait_us(150);
        spi_device->write(data[i]);
    }
       
    *dds_cs = 1;
    
    for(char i = 0; i < ndata; i++)
    {
        printf("\r\nData[%d] = 0x%x", i, data[i]);
    }
    
    
    wait_us(10);
    *dds_updclk = 1;
    wait_us(10);
    *dds_updclk = 0;
    wait_us(10);
    
    return 1;
}


char* DDS::__readData(char addr, char ndata){
    
    // I/O reset
    *dds_io_reset = 1;
    wait_us(10);
    *dds_io_reset = 0;
    wait_us(10);
    
    *dds_cs = 0;
    
    //Sending serial address
    printf("\r\nReading Addr = %d", addr);
    spi_device->write((addr & 0x0F) | 0x80);
    
    for(char i = 0; i < ndata; i++)
    {
        wait_us(150);
        read_spi_data[i] = spi_device->write(0x00);
    }
    
    *dds_cs = 1;
    
    for(char i = 0; i < ndata; i++)
    {
        printf("\r\nData[%d] = 0x%x", i, read_spi_data[i]);
    } 
    
    
    wait_us(10);
    
    return read_spi_data;
    }

int DDS::__writeDataAndVerify(char addr, char ndata, const char* wr_spi_data){
    
    bool            success;
    char*  rd_spi_data;
    
    this->__writeData(addr, ndata, wr_spi_data);
    rd_spi_data = this->__readData(addr, ndata);
    
    success = true;
    
    for(char i = 0; i < ndata; i++)
    {
        
        if (wr_spi_data[i] != rd_spi_data[i])
        {
            success = false;
            break;
        }
        
    }
    
    printf("\r\nSuccessful writting = %d\r\n", success);
    
    return success;
}

char* DDS::__getControlRegister(){
    
    bool pll_range = 0;
    bool pll_bypass = 1;
    
    if (cr_multiplier >= 4){
        pll_bypass = 0;
    }

    if (frequency >= 200){
        pll_range = 1;
    }
       
    controlRegister[0] = 0x10 + cr_qdac_pwdn*4;
    controlRegister[1] = pll_range*64 + pll_bypass*32 + (cr_multiplier & 0x1F);
    controlRegister[2] = (cr_mode & 0x07)*2 + cr_ioupdclk;
    controlRegister[3] = cr_inv_sinc*64 + cr_osk_en*32 + cr_osk_int*16 + cr_msb_lsb*2 + cr_sdo;
    
    return controlRegister;
    
    }
    
int DDS::__writeControlRegister(){
    
    bool            success;
    char*  wr_spi_data;
    char*  rd_spi_data;
    char   addr = 0x07, ndata = 4;
    
    wr_spi_data = this->__getControlRegister();
    
    success = this->__writeData(addr, ndata, wr_spi_data);
    
    //printf("\r\nChanging UPD_CLK as an OUTPUT ...");
    dds_updclk->output();
    
    wait_us(100);
    *dds_updclk = 1;
    wait_us(10);
    *dds_updclk = 0;
    wait_us(10);
    
    rd_spi_data = this->__readData(addr, ndata);
    
    success = true;
    
    for(char i = 0; i < ndata; i++)
    {
        if (wr_spi_data[i] != rd_spi_data[i])
        {
            success = false;
            break;
        }
    }
    
    return success;
}   

                    
int DDS::reset(){
    
    // Master reset
    //Set as a input, temporary
    //printf("\r\nChange updclk direction as an INPUT ...\r\n");
    dds_updclk->input();
    dds_updclk->mode(PullDown);
    
    //printf("\r\nReseting DDS ...\r\n");
    *dds_mreset = 1;
    wait_ms(1);
    *dds_mreset = 0;
    wait_ms(1);
    return 0;
    }
    
int DDS::scanIOUpdate(){
    
    unsigned int cont = 0;
    
    this->reset();
    
    printf("\r\nWaiting a upd_clk ...\r\n");
    while(true){
        if (*dds_updclk == 1)
            break;
        
        cont += 1;
        if (cont > 10000)
            break;
            
        wait_us(1);
    }
    
    if (cont > 10000){
        printf("\r\nA upd_clk was not found\r\n");
        return 0;
    }
    
    printf("\r\nA upd_clk was found ...\r\n");
    
    return 1;
    }
    
int DDS::find(){
    /*
    char phase[];
    
    phase[0] = 0x0A;
    phase[1] = 0x55;
    
    this->__writeDataAndVerify(0x00, 5, phase);
    */
    this->__readData(0x05, 4);
    this->__readData(0x0A, 1);
    return 1;
    
    }
    
    
int DDS::init(){
    
    //printf("\r\nSetting default parameters in CR ...\r\n");
    
    //Serial mode enabled
    this->frequency = 200.0;        // Work frequency in MHz
    this->cr_multiplier = 4;        // Multiplier 4- 20
    this->cr_mode = 0;              // Single, FSK, Ramped FSK, Chirp, BPSK
    this->cr_qdac_pwdn = 0;         // QDAC power down enabled: 0 -> disable
    this->cr_ioupdclk = 0;          // IO Update clock direction: 0 -> input,  1 -> output
    this->cr_inv_sinc  = 0;         // Sinc inverser filter enable: 0 -> enable
    this->cr_osk_en = 1;            // Enable Amplitude multiplier: 0 -> disabled
    this->cr_osk_int = 0;           // register/counter output shaped control: 0 -> register, 1 -> counter
    this->cr_msb_lsb = 0;           // msb/lsb bit first: 0 -> MSB, 1 -> LSB
    this->cr_sdo = 1;               // SDO pin active: 0 -> inactive

    //printf("\r\nSetting in serial mode ...\r\n");
    *dds_sp_mode = 0;
    *dds_cs = 1;
     
    this->reset();
    
    //printf("\r\nWritting CR ...\r\n");
    
    if (not this->__writeControlRegister()){
        printf("\r\nUnsuccessful DDS initialization");
        this->isConfig = false;
        return false;
        }
        
    printf("\r\nSuccessfull DDS initialization");
    
    this->isConfig = true;
    
    return true;
}

char* DDS::rdMode(){
    
    char* rd_data;
    char mode;
    
    rd_data = this->__readData(0x07, 4);
    mode = (rd_data[2] & 0x0E) >> 1;
    
    rd_data[0] = mode;
    
    return rd_data;
    }
    
char* DDS::rdMultiplier(){
    
    char* rd_data;
    char mult;
    
    rd_data = this->__readData(0x07, 4);
    mult = (rd_data[1] & 0x1F);
    
    rd_data[0] = mult;
    rd_data[1] = ((int)clock >> 8) & 0xff; 
    rd_data[2] = (int)clock & 0xff; 
    
    return rd_data;    
    }
char* DDS::rdPhase1(){

    char* rd_data;
    
    rd_data = this->__readData(0x00, 2);
    
    return rd_data;
    
    }
char* DDS::rdPhase2(){

    char* rd_data;
    
    rd_data = this->__readData(0x01, 2);
    
    return rd_data;
    }
char* DDS::rdFrequency1(){

    char* rd_data;
    
    rd_data = this->__readData(0x02, 6);
    
    return rd_data;
    
    }
char* DDS::rdFrequency2(){

    char* rd_data;
    
    rd_data = this->__readData(0x03, 6);
    
    return rd_data;
    }
char* DDS::rdAmplitudeI(){

    char* rd_data;
    
    rd_data = this->__readData(0x08, 2);
    
    return rd_data;
    }
char* DDS::rdAmplitudeQ(){

    char* rd_data;
    
    rd_data = this->__readData(0x09, 2);
    
    return rd_data;
    }
    
int DDS::wrMode(char mode){
    
    this->cr_mode = mode & 0x07;
    
    return this->__writeControlRegister();
    }

int DDS::wrMultiplier(char multiplier, float clock){
    
    this->cr_multiplier = multiplier & 0x1F;
    this->frequency = clock;
    
    printf("\r\n mult = %d, clock = %f", multiplier, clock);
    printf("\r\n cr_mult = %d", cr_multiplier);
    
    return this->__writeControlRegister();
    }
        
int DDS::wrPhase1(char* phase){
    
    return this->__writeDataAndVerify(0x00, 2, phase);
    
    }
    
int DDS::wrPhase2(char* phase){
    
    return this->__writeDataAndVerify(0x01, 2, phase);
    
    }
    
int DDS::wrFrequency1(char* freq){
    
    return this->__writeDataAndVerify(0x02, 6, freq);
    
    }
int DDS::wrFrequency2(char* freq){
    
    return this->__writeDataAndVerify(0x03, 6, freq);
    
    }

int DDS::wrAmplitudeI(char* amplitude){
    
    amplitudeI[0] = amplitude[0];
    amplitudeI[1] = amplitude[1];
    
    return this->__writeDataAndVerify(0x08, 2, amplitude);
    
    }

int DDS::wrAmplitudeQ(char* amplitude){
    
    amplitudeQ[0] = amplitude[0];
    amplitudeQ[1] = amplitude[1];
     
    return this->__writeDataAndVerify(0x09, 2, amplitude);
    
    }

int DDS::enableRF(){
    
    this->rf_enabled = true;
    
    this->wrAmplitudeI(this->amplitudeI);
    
    return this->wrAmplitudeQ(this->amplitudeQ);
    }

int DDS::disableRF(){
    
    this->rf_enabled = false;
    
    this->wrAmplitudeI("\x00\x00");
    
    return this->wrAmplitudeQ("\x00\x00");
    }
       
int DDS::defaultSettings(){
    
    this->wrMultiplier(20, 200.0);
    this->wrAmplitudeI("\x0F\xC0");                        //0xFC0 produces best SFDR than 0xFFF
    this->wrAmplitudeQ("\x0F\xC0");                        //0xFC0 produces best SFDR than 0xFFF    
    this->wrFrequency1("\x00\x00\x00\x00\x00\x00");        // 49.92 <> 0x3f 0xe5 0xc9 0x1d 0x14 0xe3 <> 49.92/clock*(2**48) \x3f\xe5\xc9\x1d\x14\xe3
    this->wrFrequency2("\x00\x00\x00\x00\x00\x00");
    this->wrPhase1("\x00\x00");                            //0 grados
    this->wrPhase2("\x20\x00");                            //180 grados <> 0x20 0x00 <> 180/360*(2**14)
    return this->wrMode(4);                                //BPSK mode
    
    }
    
char* DDS::newCommand(unsigned short cmd, char* payload, unsigned long payload_len){
    
    bool success = false;    
    char* tx_msg;
    unsigned long tx_msg_len;
    
    tx_msg = ko_msg;
    tx_msg_len = 2;
    
    printf("cmd = %d, payload_len = %d", cmd, payload_len);

    printf("\r\nPayload = ");
    for(unsigned long i=0; i< payload_len; i++)
        printf("0x%x ", payload[i]);
        
    switch ( cmd )
      {
        case 0x01:
            success = this->init();
            break;
            
        case 0x02:
            if (payload_len == 1){
                if (payload[0] == 0)
                    success = this->disableRF();
                else
                    success = this->enableRF();
            }
            break;
            
        case 0x10:
            if (payload_len == 3){
                unsigned short clock = payload[1]*256 + payload[2];
                success = this->wrMultiplier(payload[0], (float)clock);
            }
            break;
            
        case 0x11:
            if (payload_len == 1){
                success = this->wrMode(payload[0]);
            }
            break;
            
        case 0x12:
            if (payload_len == 6){
                success = this->wrFrequency1(payload);
            }
            break;
            
        case 0x13:
            if (payload_len == 6){
                success = this->wrFrequency2(payload);
            }
            break;
            
        case 0x14:
            if (payload_len == 2){
                success = this->wrPhase1(payload);
            }
            break;
            
        case 0x15:
            if (payload_len == 2){
                success = this->wrPhase2(payload);
            }
            break;

        case 0x16:
            if (payload_len == 2){
                success = this->wrAmplitudeI(payload);
            }
            break;

        case 0x17:
            if (payload_len == 2){
                success = this->wrAmplitudeQ(payload);
            }
            break;

        case 0x8002:
            if (rf_enabled == 1)
                tx_msg = "\x01";
            else
                tx_msg = "\x00";
                
            tx_msg_len = 1;
            
            break;
            
        case 0x8010:
            tx_msg = this->rdMultiplier();
            tx_msg_len = 3;
            break;
            
        case 0x8011:
            tx_msg = this->rdMode();
            tx_msg_len = 1;
            break;
            
        case 0x8012:
            tx_msg = this->rdFrequency1();
            tx_msg_len = 6;
            break;
            
        case 0x8013:
            tx_msg = this->rdFrequency2();
            tx_msg_len = 6;
            break;
            
        case 0x8014:
            tx_msg = this->rdPhase1();
            tx_msg_len = 2;
            break;
            
        case 0x8015:
            tx_msg = this->rdPhase2();
            tx_msg_len = 2;
            break;

        case 0x8016:
            tx_msg = this->rdAmplitudeI();
            tx_msg_len = 2;
            break;

        case 0x8017:
            tx_msg = this->rdAmplitudeQ();
            tx_msg_len = 2;
            break;
            
        default:
            success = false;
        
      }
    
    if (success){
        tx_msg = ok_msg;
        tx_msg_len = 2;
        }
    
    this->cmd_answer = tx_msg;
    this->cmd_answer_len = tx_msg_len;
    
    return tx_msg;
}

char* DDS::getCmdAnswer(){
    
    return this->cmd_answer;
    
    }
    
unsigned long DDS::getCmdAnswerLen(){
    
    return this->cmd_answer_len;
    
    }