Justin Gensel
/
LSM9DS1_Library_cal2
Added Soft Iron Calibration
Fork of LSM9DS1_Library_cal by
Diff: LSM9DS1.cpp
- Revision:
- 2:36abf8e18ade
- Parent:
- 1:87d535bf8c53
- Child:
- 3:f5be1e31a464
--- a/LSM9DS1.cpp Mon Oct 26 16:14:04 2015 +0000 +++ b/LSM9DS1.cpp Wed Feb 03 18:45:40 2016 +0000 @@ -99,7 +99,7 @@ // 2 = 50 Hz 5 = 476 Hz // 3 = 119 Hz 6 = 952 Hz settings.accel.sampleRate = 6; - // Accel cutoff freqeuncy can be any value between -1 - 3. + // Accel cutoff freqeuncy can be any value between -1 - 3. // -1 = bandwidth determined by sample rate // 0 = 408 Hz 2 = 105 Hz // 1 = 211 Hz 3 = 50 Hz @@ -134,8 +134,7 @@ settings.mag.operatingMode = 0; settings.temp.enabled = true; - for (int i=0; i<3; i++) - { + for (int i=0; i<3; i++) { gBias[i] = 0; aBias[i] = 0; mBias[i] = 0; @@ -152,36 +151,36 @@ //! Todo: don't use _xgAddress or _mAddress, duplicating memory _xgAddress = settings.device.agAddress; _mAddress = settings.device.mAddress; - + constrainScales(); // Once we have the scale values, we can calculate the resolution // of each sensor. That's what these functions are for. One for each sensor calcgRes(); // Calculate DPS / ADC tick, stored in gRes variable calcmRes(); // Calculate Gs / ADC tick, stored in mRes variable calcaRes(); // Calculate g / ADC tick, stored in aRes variable - + // Now, initialize our hardware interface. if (settings.device.commInterface == IMU_MODE_I2C) // If we're using I2C initI2C(); // Initialize I2C else if (settings.device.commInterface == IMU_MODE_SPI) // else, if we're using SPI initSPI(); // Initialize SPI - + // To verify communication, we can read from the WHO_AM_I register of // each device. Store those in a variable so we can return them. uint8_t mTest = mReadByte(WHO_AM_I_M); // Read the gyro WHO_AM_I uint8_t xgTest = xgReadByte(WHO_AM_I_XG); // Read the accel/mag WHO_AM_I pc.printf("%x, %x, %x, %x\n\r", mTest, xgTest, _xgAddress, _mAddress); uint16_t whoAmICombined = (xgTest << 8) | mTest; - + if (whoAmICombined != ((WHO_AM_I_AG_RSP << 8) | WHO_AM_I_M_RSP)) return 0; - + // Gyro initialization stuff: initGyro(); // This will "turn on" the gyro. Setting up interrupts, etc. - + // Accelerometer initialization stuff: initAccel(); // "Turn on" all axes of the accel. Set up interrupts, etc. - + // Magnetometer initialization stuff: initMag(); // "Turn on" all axes of the mag. Set up interrupts, etc. @@ -192,50 +191,47 @@ void LSM9DS1::initGyro() { uint8_t tempRegValue = 0; - + // CTRL_REG1_G (Default value: 0x00) // [ODR_G2][ODR_G1][ODR_G0][FS_G1][FS_G0][0][BW_G1][BW_G0] // ODR_G[2:0] - Output data rate selection // FS_G[1:0] - Gyroscope full-scale selection // BW_G[1:0] - Gyroscope bandwidth selection - + // To disable gyro, set sample rate bits to 0. We'll only set sample // rate if the gyro is enabled. - if (settings.gyro.enabled) - { + if (settings.gyro.enabled) { tempRegValue = (settings.gyro.sampleRate & 0x07) << 5; } - switch (settings.gyro.scale) - { + switch (settings.gyro.scale) { case 500: tempRegValue |= (0x1 << 3); break; case 2000: tempRegValue |= (0x3 << 3); break; - // Otherwise we'll set it to 245 dps (0x0 << 4) + // Otherwise we'll set it to 245 dps (0x0 << 4) } tempRegValue |= (settings.gyro.bandwidth & 0x3); xgWriteByte(CTRL_REG1_G, tempRegValue); - + // CTRL_REG2_G (Default value: 0x00) // [0][0][0][0][INT_SEL1][INT_SEL0][OUT_SEL1][OUT_SEL0] // INT_SEL[1:0] - INT selection configuration // OUT_SEL[1:0] - Out selection configuration - xgWriteByte(CTRL_REG2_G, 0x00); - + xgWriteByte(CTRL_REG2_G, 0x00); + // CTRL_REG3_G (Default value: 0x00) // [LP_mode][HP_EN][0][0][HPCF3_G][HPCF2_G][HPCF1_G][HPCF0_G] // LP_mode - Low-power mode enable (0: disabled, 1: enabled) // HP_EN - HPF enable (0:disabled, 1: enabled) // HPCF_G[3:0] - HPF cutoff frequency tempRegValue = settings.gyro.lowPowerEnable ? (1<<7) : 0; - if (settings.gyro.HPFEnable) - { + if (settings.gyro.HPFEnable) { tempRegValue |= (1<<6) | (settings.gyro.HPFCutoff & 0x0F); } xgWriteByte(CTRL_REG3_G, tempRegValue); - + // CTRL_REG4 (Default value: 0x38) // [0][0][Zen_G][Yen_G][Xen_G][0][LIR_XL1][4D_XL1] // Zen_G - Z-axis output enable (0:disable, 1:enable) @@ -249,7 +245,7 @@ if (settings.gyro.enableX) tempRegValue |= (1<<3); if (settings.gyro.latchInterrupt) tempRegValue |= (1<<1); xgWriteByte(CTRL_REG4, tempRegValue); - + // ORIENT_CFG_G (Default value: 0x00) // [0][0][SignX_G][SignY_G][SignZ_G][Orient_2][Orient_1][Orient_0] // SignX_G - Pitch axis (X) angular rate sign (0: positive, 1: negative) @@ -264,7 +260,7 @@ void LSM9DS1::initAccel() { uint8_t tempRegValue = 0; - + // CTRL_REG5_XL (0x1F) (Default value: 0x38) // [DEC_1][DEC_0][Zen_XL][Yen_XL][Zen_XL][0][0][0] // DEC[0:1] - Decimation of accel data on OUT REG and FIFO. @@ -275,9 +271,9 @@ if (settings.accel.enableZ) tempRegValue |= (1<<5); if (settings.accel.enableY) tempRegValue |= (1<<4); if (settings.accel.enableX) tempRegValue |= (1<<3); - + xgWriteByte(CTRL_REG5_XL, tempRegValue); - + // CTRL_REG6_XL (0x20) (Default value: 0x00) // [ODR_XL2][ODR_XL1][ODR_XL0][FS1_XL][FS0_XL][BW_SCAL_ODR][BW_XL1][BW_XL0] // ODR_XL[2:0] - Output data rate & power mode selection @@ -286,12 +282,10 @@ // BW_XL[1:0] - Anti-aliasing filter bandwidth selection tempRegValue = 0; // To disable the accel, set the sampleRate bits to 0. - if (settings.accel.enabled) - { + if (settings.accel.enabled) { tempRegValue |= (settings.accel.sampleRate & 0x07) << 5; } - switch (settings.accel.scale) - { + switch (settings.accel.scale) { case 4: tempRegValue |= (0x2 << 3); break; @@ -301,15 +295,14 @@ case 16: tempRegValue |= (0x1 << 3); break; - // Otherwise it'll be set to 2g (0x0 << 3) + // Otherwise it'll be set to 2g (0x0 << 3) } - if (settings.accel.bandwidth >= 0) - { + if (settings.accel.bandwidth >= 0) { tempRegValue |= (1<<2); // Set BW_SCAL_ODR tempRegValue |= (settings.accel.bandwidth & 0x03); } xgWriteByte(CTRL_REG6_XL, tempRegValue); - + // CTRL_REG7_XL (0x21) (Default value: 0x00) // [HR][DCF1][DCF0][0][0][FDS][0][HPIS1] // HR - High resolution mode (0: disable, 1: enable) @@ -317,8 +310,7 @@ // FDS - Filtered data selection // HPIS1 - HPF enabled for interrupt function tempRegValue = 0; - if (settings.accel.highResEnable) - { + if (settings.accel.highResEnable) { tempRegValue |= (1<<7); // Set HR bit tempRegValue |= (settings.accel.highResBandwidth & 0x3) << 5; } @@ -333,22 +325,22 @@ // remove errors due to imprecise or varying initial placement. Calibration of sensor data in this manner // is good practice. void LSM9DS1::calibrate(bool autoCalc) -{ +{ uint8_t data[6] = {0, 0, 0, 0, 0, 0}; uint8_t samples = 0; int ii; int32_t aBiasRawTemp[3] = {0, 0, 0}; int32_t gBiasRawTemp[3] = {0, 0, 0}; - + pc.printf("\n\rPlace IMU on level surface and do not move it for gyro and accel calibration.\n\r"); + wait(1); // Turn on FIFO and set threshold to 32 samples enableFIFO(true); setFIFO(FIFO_THS, 0x1F); - while (samples < 0x1F) - { + while (samples < 0x1F) { samples = (xgReadByte(FIFO_SRC) & 0x3F); // Read number of stored samples } - for(ii = 0; ii < samples ; ii++) - { // Read the gyro data stored in the FIFO + for(ii = 0; ii < samples ; ii++) { + // Read the gyro data stored in the FIFO readGyro(); gBiasRawTemp[0] += gx; gBiasRawTemp[1] += gy; @@ -357,18 +349,17 @@ aBiasRawTemp[0] += ax; aBiasRawTemp[1] += ay; aBiasRawTemp[2] += az - (int16_t)(1./aRes); // Assumes sensor facing up! - } - for (ii = 0; ii < 3; ii++) - { + } + for (ii = 0; ii < 3; ii++) { gBiasRaw[ii] = gBiasRawTemp[ii] / samples; gBias[ii] = calcGyro(gBiasRaw[ii]); aBiasRaw[ii] = aBiasRawTemp[ii] / samples; aBias[ii] = calcAccel(aBiasRaw[ii]); } - + enableFIFO(false); setFIFO(FIFO_OFF, 0x00); - + if (autoCalc) _autoCalc = true; } @@ -377,30 +368,28 @@ int i, j; int16_t magMin[3] = {0, 0, 0}; int16_t magMax[3] = {0, 0, 0}; // The road warrior - - for (i=0; i<128; i++) - { - while (!magAvailable()) - ; + pc.printf("\n\n\r Rotate IMU device at least 360 in horizontal plane for magnetometer calibration\n\r"); + wait(0.5); + for (i=0; i<1000; i++) { + while (!magAvailable(ALL_AXIS)); readMag(); int16_t magTemp[3] = {0, 0, 0}; - magTemp[0] = mx; + magTemp[0] = mx; magTemp[1] = my; magTemp[2] = mz; - for (j = 0; j < 3; j++) - { + for (j = 0; j < 3; j++) { if (magTemp[j] > magMax[j]) magMax[j] = magTemp[j]; if (magTemp[j] < magMin[j]) magMin[j] = magTemp[j]; } } - for (j = 0; j < 3; j++) - { + for (j = 0; j < 3; j++) { mBiasRaw[j] = (magMax[j] + magMin[j]) / 2; mBias[j] = calcMag(mBiasRaw[j]); + pc.printf("%f ",mBias[j]); if (loadIn) magOffset(j, mBiasRaw[j]); } - + pc.printf("\n\rMAG calibration done\n\r"); } void LSM9DS1::magOffset(uint8_t axis, int16_t offset) { @@ -416,7 +405,7 @@ void LSM9DS1::initMag() { uint8_t tempRegValue = 0; - + // CTRL_REG1_M (Default value: 0x10) // [TEMP_COMP][OM1][OM0][DO2][DO1][DO0][0][ST] // TEMP_COMP - Temperature compensation @@ -429,28 +418,27 @@ tempRegValue |= (settings.mag.XYPerformance & 0x3) << 5; tempRegValue |= (settings.mag.sampleRate & 0x7) << 2; mWriteByte(CTRL_REG1_M, tempRegValue); - + // CTRL_REG2_M (Default value 0x00) // [0][FS1][FS0][0][REBOOT][SOFT_RST][0][0] // FS[1:0] - Full-scale configuration // REBOOT - Reboot memory content (0:normal, 1:reboot) // SOFT_RST - Reset config and user registers (0:default, 1:reset) tempRegValue = 0; - switch (settings.mag.scale) - { - case 8: - tempRegValue |= (0x1 << 5); - break; - case 12: - tempRegValue |= (0x2 << 5); - break; - case 16: - tempRegValue |= (0x3 << 5); - break; - // Otherwise we'll default to 4 gauss (00) + switch (settings.mag.scale) { + case 8: + tempRegValue |= (0x1 << 5); + break; + case 12: + tempRegValue |= (0x2 << 5); + break; + case 16: + tempRegValue |= (0x3 << 5); + break; + // Otherwise we'll default to 4 gauss (00) } mWriteByte(CTRL_REG2_M, tempRegValue); // +/-4Gauss - + // CTRL_REG3_M (Default value: 0x03) // [I2C_DISABLE][0][LP][0][0][SIM][MD1][MD0] // I2C_DISABLE - Disable I2C interace (0:enable, 1:disable) @@ -463,7 +451,7 @@ if (settings.mag.lowPowerEnable) tempRegValue |= (1<<5); tempRegValue |= (settings.mag.operatingMode & 0x3); mWriteByte(CTRL_REG3_M, tempRegValue); // Continuous conversion mode - + // CTRL_REG4_M (Default value: 0x00) // [0][0][0][0][OMZ1][OMZ0][BLE][0] // OMZ[1:0] - Z-axis operative mode selection @@ -473,7 +461,7 @@ tempRegValue = 0; tempRegValue = (settings.mag.ZPerformance & 0x3) << 2; mWriteByte(CTRL_REG4_M, tempRegValue); - + // CTRL_REG5_M (Default value: 0x00) // [0][BDU][0][0][0][0][0][0] // BDU - Block data update for magnetic data @@ -485,21 +473,21 @@ uint8_t LSM9DS1::accelAvailable() { uint8_t status = xgReadByte(STATUS_REG_1); - + return (status & (1<<0)); } uint8_t LSM9DS1::gyroAvailable() { uint8_t status = xgReadByte(STATUS_REG_1); - + return ((status & (1<<1)) >> 1); } uint8_t LSM9DS1::tempAvailable() { uint8_t status = xgReadByte(STATUS_REG_1); - + return ((status & (1<<2)) >> 2); } @@ -507,19 +495,18 @@ { uint8_t status; status = mReadByte(STATUS_REG_M); - + return ((status & (1<<axis)) >> axis); } void LSM9DS1::readAccel() { - uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp + uint8_t temp[6]; // We'll read six bytes from the accelerometer into temp xgReadBytes(OUT_X_L_XL, temp, 6); // Read 6 bytes, beginning at OUT_X_L_XL ax = (temp[1] << 8) | temp[0]; // Store x-axis values into ax ay = (temp[3] << 8) | temp[2]; // Store y-axis values into ay az = (temp[5] << 8) | temp[4]; // Store z-axis values into az - if (_autoCalc) - { + if (_autoCalc) { ax -= aBiasRaw[X_AXIS]; ay -= aBiasRaw[Y_AXIS]; az -= aBiasRaw[Z_AXIS]; @@ -532,20 +519,23 @@ int16_t value; xgReadBytes(OUT_X_L_XL + (2 * axis), temp, 2); value = (temp[1] << 8) | temp[0]; - + if (_autoCalc) value -= aBiasRaw[axis]; - + return value; } void LSM9DS1::readMag() { - uint8_t temp[6]; // We'll read six bytes from the mag into temp + uint8_t temp[6]; // We'll read six bytes from the mag into temp mReadBytes(OUT_X_L_M, temp, 6); // Read 6 bytes, beginning at OUT_X_L_M mx = (temp[1] << 8) | temp[0]; // Store x-axis values into mx my = (temp[3] << 8) | temp[2]; // Store y-axis values into my mz = (temp[5] << 8) | temp[4]; // Store z-axis values into mz + mx = mx - mBiasRaw[0]; + my = my - mBiasRaw[1]; + mz = mz - mBiasRaw[2]; } int16_t LSM9DS1::readMag(lsm9ds1_axis axis) @@ -557,9 +547,9 @@ void LSM9DS1::readTemp() { - uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp + uint8_t temp[2]; // We'll read two bytes from the temperature sensor into temp xgReadBytes(OUT_TEMP_L, temp, 2); // Read 2 bytes, beginning at OUT_TEMP_L - temperature = ((int16_t)temp[1] << 8) | temp[0]; + temperature = (int16_t)((temp[1] << 8) | temp[0]); } void LSM9DS1::readGyro() @@ -569,8 +559,7 @@ gx = (temp[1] << 8) | temp[0]; // Store x-axis values into gx gy = (temp[3] << 8) | temp[2]; // Store y-axis values into gy gz = (temp[5] << 8) | temp[4]; // Store z-axis values into gz - if (_autoCalc) - { + if (_autoCalc) { gx -= gBiasRaw[X_AXIS]; gy -= gBiasRaw[Y_AXIS]; gz -= gBiasRaw[Z_AXIS]; @@ -581,21 +570,21 @@ { uint8_t temp[2]; int16_t value; - + xgReadBytes(OUT_X_L_G + (2 * axis), temp, 2); - + value = (temp[1] << 8) | temp[0]; - + if (_autoCalc) value -= gBiasRaw[axis]; - + return value; } float LSM9DS1::calcGyro(int16_t gyro) { // Return the gyro raw reading times our pre-calculated DPS / (ADC tick): - return gRes * gyro; + return gRes * gyro; } float LSM9DS1::calcAccel(int16_t accel) @@ -616,8 +605,7 @@ uint8_t ctrl1RegValue = xgReadByte(CTRL_REG1_G); // Mask out scale bits (3 & 4): ctrl1RegValue &= 0xE7; - switch (gScl) - { + switch (gScl) { case 500: ctrl1RegValue |= (0x1 << 3); settings.gyro.scale = 500; @@ -631,8 +619,8 @@ break; } xgWriteByte(CTRL_REG1_G, ctrl1RegValue); - - calcgRes(); + + calcgRes(); } void LSM9DS1::setAccelScale(uint8_t aScl) @@ -641,9 +629,8 @@ uint8_t tempRegValue = xgReadByte(CTRL_REG6_XL); // Mask out accel scale bits: tempRegValue &= 0xE7; - - switch (aScl) - { + + switch (aScl) { case 4: tempRegValue |= (0x2 << 3); settings.accel.scale = 4; @@ -661,7 +648,7 @@ break; } xgWriteByte(CTRL_REG6_XL, tempRegValue); - + // Then calculate a new aRes, which relies on aScale being set correctly: calcaRes(); } @@ -672,29 +659,28 @@ uint8_t temp = mReadByte(CTRL_REG2_M); // Then mask out the mag scale bits: temp &= 0xFF^(0x3 << 5); - - switch (mScl) - { - case 8: - temp |= (0x1 << 5); - settings.mag.scale = 8; - break; - case 12: - temp |= (0x2 << 5); - settings.mag.scale = 12; - break; - case 16: - temp |= (0x3 << 5); - settings.mag.scale = 16; - break; - default: // Otherwise we'll default to 4 gauss (00) - settings.mag.scale = 4; - break; - } - + + switch (mScl) { + case 8: + temp |= (0x1 << 5); + settings.mag.scale = 8; + break; + case 12: + temp |= (0x2 << 5); + settings.mag.scale = 12; + break; + case 16: + temp |= (0x3 << 5); + settings.mag.scale = 16; + break; + default: // Otherwise we'll default to 4 gauss (00) + settings.mag.scale = 4; + break; + } + // And write the new register value back into CTRL_REG6_XM: mWriteByte(CTRL_REG2_M, temp); - + // We've updated the sensor, but we also need to update our class variables // First update mScale: //mScale = mScl; @@ -705,8 +691,7 @@ void LSM9DS1::setGyroODR(uint8_t gRate) { // Only do this if gRate is not 0 (which would disable the gyro) - if ((gRate & 0x07) != 0) - { + if ((gRate & 0x07) != 0) { // We need to preserve the other bytes in CTRL_REG1_G. So, first read it: uint8_t temp = xgReadByte(CTRL_REG1_G); // Then mask out the gyro ODR bits: @@ -722,8 +707,7 @@ void LSM9DS1::setAccelODR(uint8_t aRate) { // Only do this if aRate is not 0 (which would disable the accel) - if ((aRate & 0x07) != 0) - { + if ((aRate & 0x07) != 0) { // We need to preserve the other bytes in CTRL_REG1_XM. So, first read it: uint8_t temp = xgReadByte(CTRL_REG6_XL); // Then mask out the accel ODR bits: @@ -762,53 +746,52 @@ void LSM9DS1::calcmRes() { //mRes = ((float) settings.mag.scale) / 32768.0; - switch (settings.mag.scale) - { - case 4: - mRes = magSensitivity[0]; - break; - case 8: - mRes = magSensitivity[1]; - break; - case 12: - mRes = magSensitivity[2]; - break; - case 16: - mRes = magSensitivity[3]; - break; + switch (settings.mag.scale) { + case 4: + mRes = magSensitivity[0]; + break; + case 8: + mRes = magSensitivity[1]; + break; + case 12: + mRes = magSensitivity[2]; + break; + case 16: + mRes = magSensitivity[3]; + break; } - + } void LSM9DS1::configInt(interrupt_select interrupt, uint8_t generator, - h_lactive activeLow, pp_od pushPull) + h_lactive activeLow, pp_od pushPull) { // Write to INT1_CTRL or INT2_CTRL. [interupt] should already be one of // those two values. // [generator] should be an OR'd list of values from the interrupt_generators enum xgWriteByte(interrupt, generator); - + // Configure CTRL_REG8 uint8_t temp; temp = xgReadByte(CTRL_REG8); - + if (activeLow) temp |= (1<<5); else temp &= ~(1<<5); - + if (pushPull) temp &= ~(1<<4); else temp |= (1<<4); - + xgWriteByte(CTRL_REG8, temp); } void LSM9DS1::configInactivity(uint8_t duration, uint8_t threshold, bool sleepOn) { uint8_t temp = 0; - + temp = threshold & 0x7F; if (sleepOn) temp |= (1<<7); xgWriteByte(ACT_THS, temp); - + xgWriteByte(ACT_DUR, duration); } @@ -833,7 +816,7 @@ // Write threshold value to INT_GEN_THS_?_XL. // axis will be 0, 1, or 2 (x, y, z respectively) xgWriteByte(INT_GEN_THS_X_XL + axis, threshold); - + // Write duration and wait to INT_GEN_DUR_XL uint8_t temp; temp = (duration & 0x7F); @@ -844,13 +827,12 @@ uint8_t LSM9DS1::getAccelIntSrc() { uint8_t intSrc = xgReadByte(INT_GEN_SRC_XL); - + // Check if the IA_XL (interrupt active) bit is set - if (intSrc & (1<<6)) - { + if (intSrc & (1<<6)) { return (intSrc & 0x3F); } - + return 0; } @@ -873,7 +855,7 @@ // axis will be 0, 1, or 2 (x, y, z respectively) xgWriteByte(INT_GEN_THS_XH_G + (axis * 2), buffer[0]); xgWriteByte(INT_GEN_THS_XH_G + 1 + (axis * 2), buffer[1]); - + // Write duration and wait to INT_GEN_DUR_XL uint8_t temp; temp = (duration & 0x7F); @@ -884,27 +866,26 @@ uint8_t LSM9DS1::getGyroIntSrc() { uint8_t intSrc = xgReadByte(INT_GEN_SRC_G); - + // Check if the IA_G (interrupt active) bit is set - if (intSrc & (1<<6)) - { + if (intSrc & (1<<6)) { return (intSrc & 0x3F); } - + return 0; } void LSM9DS1::configMagInt(uint8_t generator, h_lactive activeLow, bool latch) { // Mask out non-generator bits (0-4) - uint8_t config = (generator & 0xE0); + uint8_t config = (generator & 0xE0); // IEA bit is 0 for active-low, 1 for active-high. if (activeLow == INT_ACTIVE_HIGH) config |= (1<<2); // IEL bit is 0 for latched, 1 for not-latched if (!latch) config |= (1<<1); // As long as we have at least 1 generator, enable the interrupt if (generator != 0) config |= (1<<0); - + mWriteByte(INT_CFG_M, config); } @@ -919,13 +900,12 @@ uint8_t LSM9DS1::getMagIntSrc() { uint8_t intSrc = mReadByte(INT_SRC_M); - + // Check if the INT (interrupt active) bit is set - if (intSrc & (1<<0)) - { + if (intSrc & (1<<0)) { return (intSrc & 0xFE); } - + return 0; } @@ -960,21 +940,18 @@ void LSM9DS1::constrainScales() { - if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) && - (settings.gyro.scale != 2000)) - { + if ((settings.gyro.scale != 245) && (settings.gyro.scale != 500) && + (settings.gyro.scale != 2000)) { settings.gyro.scale = 245; } - + if ((settings.accel.scale != 2) && (settings.accel.scale != 4) && - (settings.accel.scale != 8) && (settings.accel.scale != 16)) - { + (settings.accel.scale != 8) && (settings.accel.scale != 16)) { settings.accel.scale = 2; } - + if ((settings.mag.scale != 4) && (settings.mag.scale != 8) && - (settings.mag.scale != 12) && (settings.mag.scale != 16)) - { + (settings.mag.scale != 12) && (settings.mag.scale != 16)) { settings.mag.scale = 4; } } @@ -984,7 +961,7 @@ // Whether we're using I2C or SPI, write a byte using the // gyro-specific I2C address or SPI CS pin. if (settings.device.commInterface == IMU_MODE_I2C) { - printf("yo"); + pc.printf("yo"); I2CwriteByte(_xgAddress, subAddress, data); } else if (settings.device.commInterface == IMU_MODE_SPI) { SPIwriteByte(_xgAddress, subAddress, data); @@ -995,9 +972,10 @@ { // Whether we're using I2C or SPI, write a byte using the // accelerometer-specific I2C address or SPI CS pin. - if (settings.device.commInterface == IMU_MODE_I2C) + if (settings.device.commInterface == IMU_MODE_I2C) { + pc.printf("mo"); return I2CwriteByte(_mAddress, subAddress, data); - else if (settings.device.commInterface == IMU_MODE_SPI) + } else if (settings.device.commInterface == IMU_MODE_SPI) return SPIwriteByte(_mAddress, subAddress, data); } @@ -1044,12 +1022,12 @@ void LSM9DS1::initSPI() { - /* + /* pinMode(_xgAddress, OUTPUT); digitalWrite(_xgAddress, HIGH); pinMode(_mAddress, OUTPUT); digitalWrite(_mAddress, HIGH); - + SPI.begin(); // Maximum SPI frequency is 10MHz, could divide by 2 here: SPI.setClockDivider(SPI_CLOCK_DIV2); @@ -1065,12 +1043,12 @@ { /* digitalWrite(csPin, LOW); // Initiate communication - + // If write, bit 0 (MSB) should be 0 // If single write, bit 1 should be 0 SPI.transfer(subAddress & 0x3F); // Send Address SPI.transfer(data); // Send data - + digitalWrite(csPin, HIGH); // Close communication */ } @@ -1078,23 +1056,23 @@ uint8_t LSM9DS1::SPIreadByte(uint8_t csPin, uint8_t subAddress) { uint8_t temp; - // Use the multiple read function to read 1 byte. + // Use the multiple read function to read 1 byte. // Value is returned to `temp`. SPIreadBytes(csPin, subAddress, &temp, 1); return temp; } void LSM9DS1::SPIreadBytes(uint8_t csPin, uint8_t subAddress, - uint8_t * dest, uint8_t count) + uint8_t * dest, uint8_t count) { // To indicate a read, set bit 0 (msb) of first byte to 1 uint8_t rAddress = 0x80 | (subAddress & 0x3F); - // Mag SPI port is different. If we're reading multiple bytes, + // Mag SPI port is different. If we're reading multiple bytes, // set bit 1 to 1. The remaining six bytes are the address to be read if ((csPin == _mAddress) && count > 1) rAddress |= 0x40; - - /* + + /* digitalWrite(csPin, LOW); // Initiate communication SPI.transfer(rAddress); for (int i=0; i<count; i++) @@ -1107,17 +1085,17 @@ void LSM9DS1::initI2C() { - /* + /* Wire.begin(); // Initialize I2C library */ - + //already initialized in constructor! } // Wire.h read and write protocols void LSM9DS1::I2CwriteByte(uint8_t address, uint8_t subAddress, uint8_t data) { - /* + /* Wire.beginTransmission(address); // Initialize the Tx buffer Wire.write(subAddress); // Put slave register address in Tx buffer Wire.write(data); // Put data in Tx buffer @@ -1129,26 +1107,26 @@ uint8_t LSM9DS1::I2CreadByte(uint8_t address, uint8_t subAddress) { - /* + /* int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; - uint8_t data; // `data` will store the register data - + uint8_t data; // `data` will store the register data + Wire.beginTransmission(address); // Initialize the Tx buffer Wire.write(subAddress); // Put slave register address in Tx buffer Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive - Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address + Wire.requestFrom(address, (uint8_t) 1); // Read one byte from slave register address while ((Wire.available() < 1) && (timeout-- > 0)) delay(1); - + if (timeout <= 0) return 255; //! Bad! 255 will be misinterpreted as a good value. - + data = Wire.read(); // Fill Rx buffer with result return data; // Return data read from slave register */ char data; - char temp[1] = {subAddress}; - + char temp[2] = {subAddress}; + i2c.write(address, temp, 1); //i2c.write(address & 0xFE); temp[1] = 0x00; @@ -1159,8 +1137,8 @@ } uint8_t LSM9DS1::I2CreadBytes(uint8_t address, uint8_t subAddress, uint8_t * dest, uint8_t count) -{ - /* +{ + /* int timeout = LSM9DS1_COMMUNICATION_TIMEOUT; Wire.beginTransmission(address); // Initialize the Tx buffer // Next send the register to be read. OR with 0x80 to indicate multi-read. @@ -1168,12 +1146,12 @@ Wire.endTransmission(true); // Send the Tx buffer, but send a restart to keep connection alive uint8_t i = 0; - Wire.requestFrom(address, count); // Read bytes from slave register address + Wire.requestFrom(address, count); // Read bytes from slave register address while ((Wire.available() < count) && (timeout-- > 0)) delay(1); if (timeout <= 0) return -1; - + for (int i=0; i<count;) { if (Wire.available()) @@ -1188,10 +1166,10 @@ char temp[1] = {subAddress}; i2c.write(address, temp, 1); i2c.read(address, temp_dest, count); - + //i2c doesn't take uint8_ts, but rather chars so do this nasty af conversion for (i=0; i < count; i++) { - dest[i] = temp_dest[i]; + dest[i] = temp_dest[i]; } return count; }