4 directional EMG control of the XY table. Made during my bachelor end assignment.

Dependencies:   C12832_lcd HIDScope mbed-dsp mbed

Revision:
56:6ea03cce1175
Parent:
55:fa6d5ee5c854
Child:
57:0a278c60d28b
diff -r fa6d5ee5c854 -r 6ea03cce1175 main.cpp
--- a/main.cpp	Thu Jun 11 09:22:32 2015 +0000
+++ b/main.cpp	Thu Jun 11 10:07:53 2015 +0000
@@ -1,45 +1,279 @@
+/*Code by Jesse Kaiser, s1355783 for control of the 2DOF Planar Table
+Some variables are also numbered at the end. The numbers stands for the muscle that controls it.
+Biceps =            1
+Triceps =           2
+Pectoralis Major =  3
+Deltoid =           4
+The "x" and "y" at the end of variables stand for the X-Spindle or Y-Spindle respectivly.
+*/
+
 #include "mbed.h"
 #include "C12832_lcd.h"
+#include "arm_math.h"
+#include "HIDScope.h"
 
-#define P_GAIN 0.995
+#define K_Gain      14      //Gain of the filtered EMG signal
+#define Damp        5       //Deceleration of the motor
+#define Mass        1       // Mass value
+#define dt          0.002   //Sample frequency
+#define MAX_bi      0.04    //Can be used for normalisation of the EMG signal of the biceps
+#define MAX_tri     0.04
+#define MAX_pect    0.04
+#define MAX_delt    0.04
+#define MIN_freq    500     //The motor turns off below this frequency
+#define EMG_tresh   0.01
 
-DigitalOut Dir(p23);
-PwmOut Step(p24);
-AnalogIn Pos1(p17); 
-AnalogIn Pos2(p18); 
-DigitalOut Enable(p25);
+//Motor control
+DigitalOut Dirx(p21);
+PwmOut Stepx(p22);
+DigitalOut Diry(p23);
+PwmOut Stepy(p24);
+
+//Signal to and from computer
+Serial pc(USBTX, USBRX);
+
+//Position sensors
+AnalogIn Posx(p19);
+AnalogIn Posy(p20); 
+DigitalOut Enablex(p25); //Connected to green led
+DigitalOut Enabley(p26); //Connected to blue led
+
+//Microstepping
 DigitalOut MS1(p27);
 DigitalOut MS2(p28);
 DigitalOut MS3(p29);
-AnalogIn Pot1(p19);
-AnalogIn Pot2(p20);
+
+//Potmeter and EMG
+
+
+AnalogIn emg1(p15); //EMG bordje bovenop, biceps
+AnalogIn emg2(p16); //triceps
+AnalogIn emg3(p17);
+AnalogIn emg4(p18);
+
+HIDScope scope(4);
+Ticker   scopeTimer;
+
+//lcd
 C12832_LCD lcd;
 
-Serial pc(USBTX, USBRX);
+//Variables for motor control
+float setpoint = 1000; //Frequentie setpint
+float step_freq1 = 1;
+float step_freq2 = 1;
+float step_freq3 = 1;
+float step_freq4 = 1;
+
+//EMG filter
+arm_biquad_casd_df1_inst_f32 lowpass_biceps;
+arm_biquad_casd_df1_inst_f32 lowpass_triceps;
+arm_biquad_casd_df1_inst_f32 lowpass_pect;
+arm_biquad_casd_df1_inst_f32 lowpass_deltoid;
+//lowpass filter settings: Fc = 2 Hz, Fs = 500 Hz, Gain = -3 dB
+float lowpass_const[] = {0.00015514839749793376, 0.00031029679499586753, 0.00015514839749793376, 1.9644602512795832, -0.9650808448695751};
+arm_biquad_casd_df1_inst_f32 highnotch_biceps;
+arm_biquad_casd_df1_inst_f32 highnotch_triceps;
+arm_biquad_casd_df1_inst_f32 highnotch_pect;
+arm_biquad_casd_df1_inst_f32 highnotch_deltoid;
+//highpass filter settings: Fc = 20 Hz, Fs = 500 Hz, notch Fc = 50, Fs = 500 Hz
+float highnotch_const[] = {0.8370879899975344, -1.6741759799950688, 0.8370879899975344, 1.6474576182593796, -0.7008943417307579, 0.7063988100714527, -1.1429772843080923, 0.7063988100714527, 1.1429772843080923, -0.41279762014290533};
+
+//state values
+float lowpass_biceps_states[4];
+float highnotch_biceps_states[8];
+float lowpass_triceps_states[4];
+float highnotch_triceps_states[8];
+float lowpass_pect_states[4];
+float highnotch_pect_states[8];
+float lowpass_deltoid_states[4];
+float highnotch_deltoid_states[8];
+
+//global variabels
+float filtered_biceps, filtered_triceps, filtered_pect, filtered_deltoid;
+float speed_old1, speed_old2, speed_old3, speed_old4;
+float acc1, acc2, acc3, acc4;
+float force1, force2, force3, force4;
+float speed1, speed2, speed3, speed4;
+float damping1, damping2, damping3, damping4;
+
+void looper_emg()
+{
+    float emg_value1_f32, emg_value2_f32, emg_value3_f32, emg_value4_f32;
+    emg_value1_f32 = emg1.read();
+    emg_value2_f32 = emg2.read();
+    emg_value3_f32 = emg3.read();
+    emg_value4_f32 = emg4.read();
+
+    //process emg biceps
+    arm_biquad_cascade_df1_f32(&highnotch_biceps, &emg_value1_f32, &filtered_biceps, 1 );   //High pass and notch filter
+    filtered_biceps = fabs(filtered_biceps);                                                //Rectifier
+    arm_biquad_cascade_df1_f32(&lowpass_biceps, &filtered_biceps, &filtered_biceps, 1 );    //low pass filter
+
+    //process emg triceps
+    arm_biquad_cascade_df1_f32(&highnotch_triceps, &emg_value2_f32, &filtered_triceps, 1 );
+    filtered_triceps = fabs(filtered_triceps);
+    arm_biquad_cascade_df1_f32(&lowpass_triceps, &filtered_triceps, &filtered_triceps, 1 );
+
+    //process emg pectoralis major
+    arm_biquad_cascade_df1_f32(&highnotch_pect, &emg_value3_f32, &filtered_pect, 1 );
+    filtered_pect = fabs(filtered_pect);
+    arm_biquad_cascade_df1_f32(&lowpass_pect, &filtered_pect, &filtered_pect, 1 );
+
+    //process emg deltoid
+    arm_biquad_cascade_df1_f32(&highnotch_deltoid, &emg_value4_f32, &filtered_deltoid, 1 );
+    filtered_deltoid = fabs(filtered_deltoid);
+    arm_biquad_cascade_df1_f32(&lowpass_deltoid, &filtered_deltoid, &filtered_deltoid, 1 );
+
+    /*send value to PC. */
+    scope.set(0,filtered_biceps); //Filtered EMG signal
+    scope.set(1,filtered_triceps);
+    scope.set(2,filtered_pect);
+    scope.set(3,filtered_deltoid);
+}
+
+void looper_motory()
+{
+    //Forward
+    force1 = K_Gain*(filtered_biceps/MAX_bi);
+    force1 = force1 - damping1;
+    acc1 = force1/Mass;
+    speed1 = speed_old1 + (acc1 * dt);
+    damping1 = speed1 * Damp;
+    step_freq1 = (setpoint*speed1);
+    speed_old1 = speed1;
 
+    //Achteruit triceps
+    force2 = K_Gain*(filtered_triceps/MAX_tri);
+    force2 = force2 - damping2;
+    acc2 = force2/Mass;
+    speed2 = speed_old2 + (acc2 * dt);
+    damping2 = speed2 * Damp;
+    step_freq2 = (setpoint*speed2);
+    speed_old2 = speed2;
+    if (force1 > force2) {
+        Diry = 1;
+        speed2 = 0.01;
+        speed_old2 = 0.01;
+        Stepy.period(1.0/step_freq1);
+    }
+    if (force2 > force1) {
+        Diry = 0;
+        speed1 = 0.01;
+        speed_old1 = 0.01;
+        Stepy.period(1.0/step_freq2);
+    }
+    //Speed limit
+    if (speed1 > 1) {
+        speed1 = 1;
+        step_freq1 = setpoint;
+    }
+    if (speed2 > 1) {
+        speed2 = 1;
+        step_freq2 = setpoint;
+    }
+    //EMG treshold
+    if (filtered_biceps < EMG_tresh && filtered_triceps < EMG_tresh) {
+        Enabley = 1; //Enable = 1 turns the motor off.
+        speed1 = 0.01;
+        speed_old1 = 0.01;
+        speed2 = 0.01;
+        speed_old2 = 0.01;
+    } else {
+        Enabley = 0;
+    }
+
+}
+
+void looper_motorx()
+{
+    //To the left
+    force3 = K_Gain*(filtered_pect/MAX_pect);
+    force3 = force3 - damping3;
+    acc3 = force3/Mass;
+    speed3 = speed_old3 + (acc3 * dt);
+    damping3 = speed3 * Damp;
+    step_freq3 = (setpoint*speed3);
+    speed_old3 = speed3;
+
+    //To the right
+    force4 = K_Gain*(filtered_deltoid/MAX_delt);
+    force4 = force4 - damping4;
+    acc4 = force4/Mass;
+    speed4 = speed_old4 + (acc4 * dt);
+    damping4 = speed4 * Damp;
+    step_freq4 = (setpoint*speed4);
+    speed_old4 = speed4;
+    
+    if (force3 > force4) {
+        Dirx = 0;
+        speed4 = 0.01;
+        speed_old4 = 0.01;
+        Stepx.period(1.0/step_freq3);
+    }
+    if (force4 > force3) {
+        Dirx = 1;
+        speed3 = 0.01;
+        speed_old3 = 0.01;
+        Stepx.period(1.0/step_freq4);
+    }
+    //Speed limit
+    if (speed3 > 1) {
+        speed3 = 1;
+        step_freq3 = setpoint;
+    }
+    if (speed4 > 1) {
+        speed4 = 1;
+        step_freq4 = setpoint;
+    }
+    //EMG treshold
+    if (filtered_pect < EMG_tresh && filtered_deltoid < EMG_tresh) {
+        Enablex = 1; //Enable = 1 turns the motor off.
+        speed3 = 0.01;
+        speed_old3 = 0.01;
+        speed4 = 0.01;
+        speed_old4 = 0.01;
+    } else {
+        Enablex = 0;
+    }
+
+}
 int main()
 {
-    
-    float setpoint = 6500; //Frequentie 
-    float step_freq = 1;
+    // Attach the HIDScope::send method from the scope object to the timer at 500Hz. Hier wordt de sample freq aangegeven.
+    scopeTimer.attach_us(&scope, &HIDScope::send, 2e3);
+
+    Ticker emgtimer;    //biceps
+    arm_biquad_cascade_df1_init_f32(&lowpass_biceps, 1 , lowpass_const, lowpass_biceps_states);
+    arm_biquad_cascade_df1_init_f32(&highnotch_biceps, 2 , highnotch_const, highnotch_biceps_states);
+    //triceps
+    arm_biquad_cascade_df1_init_f32(&lowpass_triceps, 1 , lowpass_const, lowpass_triceps_states);
+    arm_biquad_cascade_df1_init_f32(&highnotch_triceps, 2 , highnotch_const, highnotch_triceps_states);
+    //pectoralis major
+    arm_biquad_cascade_df1_init_f32(&lowpass_pect, 1 , lowpass_const, lowpass_pect_states);
+    arm_biquad_cascade_df1_init_f32(&highnotch_pect, 2 , highnotch_const, highnotch_pect_states);
+    //deltoid
+    arm_biquad_cascade_df1_init_f32(&lowpass_deltoid, 1 , lowpass_const, lowpass_deltoid_states);
+    arm_biquad_cascade_df1_init_f32(&highnotch_deltoid, 2 , highnotch_const, highnotch_deltoid_states);
+    emgtimer.attach(looper_emg, 0.01);
+
+    Ticker looptimer1;
+    looptimer1.attach(looper_motorx, 0.01); //X-Spindle motor, why this freq?
+
+    Ticker looptimer2;
+    looptimer2.attach(looper_motory, 0.01); //Y-Spindle motor
+
+    //Microstepping control, now configured as half stepping (MS1=1,MS2=0,MS3=0)
     MS1 = 1;
     MS2 = 0;
     MS3 = 0;
-    
-    Step.period(1./step_freq); // 1 kHz, vanaf 2,5 kHz doet de motor het niet meer.
-    Step.write(0.5); // Duty cycle van 50%
+    Stepx.write(0.5); // Duty cycle of 50%
+    Stepy.write(0.5);
 
     while (1) {
-        Dir = 1;
-        float rpm;
-        float new_step_freq;
-        new_step_freq = ((1-P_GAIN)*setpoint) + (P_GAIN*step_freq);
-        step_freq = new_step_freq;
-        Step.period(1.0/step_freq);
-        rpm = (step_freq/400)*60;
         
-        pc.printf("%.2f %.0f \n", Pos1.read(), rpm);
-        wait(0.01); //Hier nog ticker inbouwen
-
+        lcd.printf("x %.2f, y %.2f \n", Posx.read(), Posy.read());
+        //lcd.printf("%.2f, %.2f \n", filtered_biceps, filtered_triceps); //Filtered EMG values
+        //lcd.printf("1 %.0f, 2 %.0f, 3 %.0f, 4 %.0f \n", step_freq1, step_freq2, step_freq3, step_freq4); //step_freq value of every EMG sensor
+        wait(0.01);
     }
-}
\ No newline at end of file
+}