4 directional EMG control of the XY table. Made during my bachelor end assignment.

Dependencies:   C12832_lcd HIDScope mbed-dsp mbed

main.cpp

Committer:
jessekaiser
Date:
2015-05-27
Revision:
35:b0737ee24b43
Parent:
34:025b324d15d6
Child:
36:d6e0a835bb2d

File content as of revision 35:b0737ee24b43:

#include "mbed.h"
#include "C12832_lcd.h"
#include "arm_math.h"
#include "HIDScope.h"

#define K_Gain      65      //Gain of the filtered EMG signal
#define Damp        2       //Deceleration of the motor
#define Mass        1       // Mass value
#define dt          0.002   //Sample frequency
#define MAX_emg             //Can be used for normalisation of the EMG signal
#define MIN_freq    900     //The motor turns off below this frequency

//Motor control
DigitalOut Dir(p21);
PwmOut Step(p22);

//Signal to and from computer
Serial pc(USBTX, USBRX);

DigitalOut Enable(p25);

//Microstepping
DigitalOut MS1(p27);
DigitalOut MS2(p28);
DigitalOut MS3(p29);

//Potmeter and EMG
AnalogIn Pot1(p19);
AnalogIn Pot2(p20);
AnalogIn emg0(p17);
HIDScope scope(1);
Ticker   scopeTimer;

//lcd
C12832_LCD lcd;

//Variables for motor control
float setpoint = 9000; //Frequentie
float step_freq = 1;

//EMG filter
arm_biquad_casd_df1_inst_f32 lowpass_biceps;
//lowpass filter settings biceps: Fc = 2 Hz, Fs = 500 Hz, Gain = -3 dB
float lowpass_const[] = {0.00015514839749793376, 0.00031029679499586753, 0.00015514839749793376, 1.9644602512795832, -0.9650808448695751};
arm_biquad_casd_df1_inst_f32 highnotch_biceps;
//highpass filter settings: Fc = 20 Hz, Fs = 500 Hz, notch Fc = 50, Fs = 500 Hz
float highnotch_const[] = {0.8370879899975344, -1.6741759799950688, 0.8370879899975344, 1.6474576182593796, -0.7008943417307579, 0.7063988100714527, -1.1429772843080923, 0.7063988100714527, 1.1429772843080923, -0.41279762014290533};

//state values
float lowpass_biceps_states[4];
float highnotch_biceps_states[8];
float lowpass_pot_states[4];

//global variabels
float filtered_biceps;
float speed_old;
float acc;
float force;
float speed;
float D;

void looper_emg()
{
    /*variable to store value in*/
    volatile uint16_t emg_value1;

    float emg_value1_f32;

    /*put raw emg value both in red and in emg_value*/
    emg_value1 = emg0.read_u16(); // read direct ADC result, converted to 16 bit integer (0..2^16 = 0..65536 = 0..3.3V) (KAN weg?)
    emg_value1_f32 = emg0.read();

    //process emg biceps
    arm_biquad_cascade_df1_f32(&highnotch_biceps, &emg_value1_f32, &filtered_biceps, 1 );
    filtered_biceps = fabs(filtered_biceps);
    arm_biquad_cascade_df1_f32(&lowpass_biceps, &filtered_biceps, &filtered_biceps, 1 );
 

    /*send value to PC. */
    scope.set(0,emg0.read()); //Filtered EMG signal
}

void looper_motor()
{
    Dir = 0;
    force = K_Gain*filtered_biceps;
    force = force - D;
    acc = force/Mass;
    speed = speed_old + (acc * dt);
    D = speed * Damp;
    step_freq = (setpoint*speed);
    Step.period(1.0/step_freq);
    speed_old = speed;

    if (step_freq < MIN_freq) {
        Enable = 1;
    } else {
        Enable = 0;
    }
}

int main()
{
    // Attach the HIDScope::send method from the scope object to the timer at 500Hz. Hier wordt de sample freq aangegeven.
    scopeTimer.attach_us(&scope, &HIDScope::send, 2e3);

    Ticker emgtimer;
    arm_biquad_cascade_df1_init_f32(&lowpass_biceps, 1 , lowpass_const, lowpass_biceps_states);
    arm_biquad_cascade_df1_init_f32(&highnotch_biceps, 2 , highnotch_const, highnotch_biceps_states);
    emgtimer.attach(looper_emg, 0.002);

    Ticker looptimer;
    looptimer.attach(looper_motor, 0.01); //Uitzoeken waarom deze frequentie!
    
    //Microstepping control
    MS1 = 1;
    MS2 = 0;
    MS3 = 0;
    Step.write(0.5); // Duty cycle van 50%

    while (1) {

        lcd.printf("Freq %.0f Hz \n", step_freq); //snelheid meting op lcd
        //pc.printf("%.3f \n", emg0.read()); 
        wait(0.01);
    }
}