4 directional EMG control of the XY table. Made during my bachelor end assignment.

Dependencies:   C12832_lcd HIDScope mbed-dsp mbed

main.cpp

Committer:
jessekaiser
Date:
2015-06-22
Revision:
74:a9281e4ae9bb
Parent:
73:8cc2826ab1c4
Child:
75:9fa809932adf

File content as of revision 74:a9281e4ae9bb:

/*Code by Jesse Kaiser, s1355783 for control of the 2DOF Planar Table
Some variables are also numbered at the end. The numbers stands for the muscle that controls it.
Biceps =            1
Triceps =           2
Pectoralis Major =  3
Deltoid =           4
The "x" and "y" at the end of variables stand for the X-Spindle or Y-Spindle respectivly.
*/

#include "mbed.h"
#include "C12832_lcd.h"
#include "arm_math.h"
//#include "HIDScope.h"

#define P_Gain      0.99
#define K_Gain      150     //Gain of the filtered EMG signal
#define Damp        5       //Deceleration of the motor
#define Mass        1       // Mass value
#define dt          0.01    //Sample frequency
#define EMG_tresh1   0.01
#define EMG_tresh2   0.01
#define EMG_tresh3   0.01
#define EMG_tresh4   0.01
#define H_Gain  3.5
#define Pt_x    0.50
#define Pt_y    0.50
#define error_tresh 0.01

//Motor control
DigitalOut Dirx(p21);
PwmOut Stepx(p22);

//Signal to and from computer
Serial pc(USBTX, USBRX);

//Position sensors
AnalogIn Posx(p19);
DigitalOut Enablex(p25);

//Microstepping
DigitalOut MS1(p27);
DigitalOut MS2(p28);
DigitalOut MS3(p29);

//EMG inputs
AnalogIn emg1(p15);
AnalogIn emg2(p16);

//HIDScope scope(4);
//Ticker   scopeTimer;

//lcd screen
C12832_LCD lcd;

//Variables for motor control
float setpoint = 2000; //Frequentie setpoint
float step_freq2 = 1;


//EMG filter
arm_biquad_casd_df1_inst_f32 lowpass_biceps;
arm_biquad_casd_df1_inst_f32 lowpass_triceps;
//lowpass filter settings: Fc = 2 Hz, Fs = 500 Hz
float lowpass_const[] = {0.00015514839749793376, 0.00031029679499586753, 0.00015514839749793376, 1.9644602512795832, -0.9650808448695751};
arm_biquad_casd_df1_inst_f32 highnotch_biceps;
arm_biquad_casd_df1_inst_f32 highnotch_triceps;
//highpass filter settings: Fc = 20 Hz, Fs = 500 Hz, notch Fc = 50, Fs = 500 Hz
float highnotch_const[] = {0.8370879899975344, -1.6741759799950688, 0.8370879899975344, 1.6474576182593796, -0.7008943417307579, 0.7063988100714527, -1.1429772843080923, 0.7063988100714527, 1.1429772843080923, -0.41279762014290533};

//state values
float lowpass_biceps_states[4];
float highnotch_biceps_states[8];
float lowpass_triceps_states[4];
float highnotch_triceps_states[8];

//global variabels
float filtered_biceps, filtered_triceps;
float speed_old1, speed_old2;
float acc1, acc2;
float force1, force2;
float speed1, speed2;
float damping1, damping2;
float emg_x, emg_y;
float cx = 0;
float cy = 0;
float errorx = 0.2;
float errory = 0.2;
float Ps_x = 0;
float Ps_y = 0;
float hstep_freqx = 1;
float hstep_freqy = 1;
float emg_y_abs = 0;
float emg_x_abs = 0;

void looper_emg()
{
    float emg_value1_f32, emg_value2_f32;
    emg_value1_f32 = emg1.read();
    emg_value2_f32 = emg2.read();

    //process emg biceps
    arm_biquad_cascade_df1_f32(&highnotch_biceps, &emg_value1_f32, &filtered_biceps, 1 );   //High pass and notch filter
    filtered_biceps = fabs(filtered_biceps);                                                //Rectifier, The Gain is already implemented.
    arm_biquad_cascade_df1_f32(&lowpass_biceps, &filtered_biceps, &filtered_biceps, 1 );    //low pass filter

    //process emg triceps
    arm_biquad_cascade_df1_f32(&highnotch_triceps, &emg_value2_f32, &filtered_triceps, 1 );
    filtered_triceps = fabs(filtered_triceps);
    arm_biquad_cascade_df1_f32(&lowpass_triceps, &filtered_triceps, &filtered_triceps, 1 );

    /*send value to PC.
    scope.set(0,filtered_biceps); //Filtered EMG signal
    scope.set(1,filtered_triceps);
    scope.set(2,filtered_pect);
    scope.set(3,filtered_deltoid);*/
}


void looper_motorx()
{

    emg_x = (filtered_biceps - filtered_triceps);
    emg_x_abs = fabs(emg_x);
    force2 = emg_x_abs*K_Gain;
    force2 = force2 - damping2;
    acc2 = force2/Mass;
    speed2 = speed_old2 + (acc2 * dt);
    damping2 = speed2 * Damp;
    step_freq2 = setpoint * speed2;
    Stepx.period(1.0/step_freq2);
    speed_old2 = speed2;

    if (emg_x > 0) {
        Dirx = 0;
    }
    if (emg_x < 0) {
        Dirx = 1;
    }
    //Speed limit
    if (speed2 > 1) {
        speed2 = 1;
        step_freq2 = setpoint;
    }
    //EMG treshold
    if (filtered_biceps < EMG_tresh1 && filtered_triceps < EMG_tresh2) {
        Enablex = 1; //Enable = 1 turns the motor off.
    } else {
        Enablex = 0;
    }

}

int main()
{
    // Attach the HIDScope::send method from the scope object to the timer at 500Hz. Hier wordt de sample freq aangegeven.
    // scopeTimer.attach_us(&scope, &HIDScope::send, 2e3);
    
        MS1 = 1;
        MS2 = 0;
        MS3 = 0;

        Stepx.write(0.5); // Duty cycle of 50%
 
        Enablex = 1;
        wait(1);
        lcd.printf("Start homing");
        wait(2);
        lcd.cls();
        wait(1);
        Enablex = 0;
 
        //Homing of the motor, so you start from the same position every time.
        while(errorx > error_tresh) {

            Ps_x = Posx.read();
            errorx = fabs(Pt_x - Ps_x);
            lcd.printf("%.2f  \n", Stepx.read());


            if (Ps_x < 0.50 && errorx > error_tresh) {
                Dirx = 0;
                cx = errorx * H_Gain;
                float hnew_step_freqx;
                hnew_step_freqx = ((1-P_Gain)*setpoint*cx) + (P_Gain*hstep_freqx);
                hstep_freqx = hnew_step_freqx;
                Stepx.period(1.0/hstep_freqx);
                wait(0.01);
            }

            if (Ps_x > 0.50 && errorx > error_tresh) {
                Dirx = 1;
                cx = errorx * H_Gain;
                float hnew_step_freqx;
                hnew_step_freqx = ((1-P_Gain)*setpoint*cx) + (P_Gain*hstep_freqx);
                hstep_freqx = hnew_step_freqx;
                Stepx.period(1.0/hstep_freqx);
                wait(0.01);
            }
        }
        lcd.printf("Done");
        wait(5);
        lcd.cls();
        wait(1);
        Enablex = 1;
        wait(3);
        lcd.printf("Start EMG Control");
        wait(2);
        lcd.cls();
        wait(1);
        Enablex = 0;
        
    MS1 = 1;
    MS2 = 0;
    MS3 = 0;
    Stepx.write(0.5); // Duty cycle of 50%
    
    Ticker emgtimer;    //biceps
    arm_biquad_cascade_df1_init_f32(&lowpass_biceps, 1 , lowpass_const, lowpass_biceps_states);
    arm_biquad_cascade_df1_init_f32(&highnotch_biceps, 2 , highnotch_const, highnotch_biceps_states);
    //triceps
    arm_biquad_cascade_df1_init_f32(&lowpass_triceps, 1 , lowpass_const, lowpass_triceps_states);
    arm_biquad_cascade_df1_init_f32(&highnotch_triceps, 2 , highnotch_const, highnotch_triceps_states);
    emgtimer.attach(looper_emg, 0.01);

    Ticker looptimer1;
    looptimer1.attach(looper_motorx, 0.01); //X-Spindle motor, why this freq?

    //Ticker looptimer2;
    //looptimer2.attach(looper_motory, 0.01); //Y-Spindle motor

    //Microstepping control, now configured as half stepping (MS1=1,MS2=0,MS3=0)



    while (1) {

        //lcd.printf("x %.2f, y %.2f \n", Posx.read(), Posy.read());
//        lcd.printf("%.2f %.2f  \n", Stepx.read(), step_freq2);
        wait(0.01);

    }
}